SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Agenda

- Benefits of PCIe SSD Storage
- Tradeoffs versus other options
- Enabling technologies and standards
PCIe Storage Today

多重供应商今正上市
- FusionIO, Virident, LSI, Micron, OCZ, Smart Modular …

性能 vs. SAS
- BW: PCIe是4-5X更快
- IOPs: PCIe是3-6X更快
- 延迟: PCIe是2-3X更低

形态因素
- 卡片: 低剖面, 全高/半长, 全高/全长
- 应用程序: 机箱, 单个机架和多个机架

媒体
- SLC
- MLC
PCIe as a SSD Interface

- **PCIe is high performance**
 - Full duplex, multiple outstanding requests, and out of order processing
 - Scalable port width (x1 to x16)
 - Scalable link speed (2.5 GTps, 5 GTps, 8 GTps)
 - Low latency (no HBA overhead or protocol translation)
 - Low Overhead – encoding is 1.5%

- **PCIe is low cost**
 - High volume commodity interconnect
 - Direct attach to CPU eliminates HBA cost

- **PCIe power management capabilities**
 - Direct attach to CPU eliminates HBA power
 - Features include: Link power management, Optimized Buffer Flush/Fill (OBFF), Dynamic Power Allocation, Slow Power Limit, etc
PCIe Storage Strengths

- **Current PCIe SSD cards:**
 - Well received by customers, have attained highest performance to date.

- **Complement existing storage protocols**
 - Providing highest IOPs and lowest latency for demanding applications

- **Obvious advantages: Reduced path components**
 - Lower costs
 - Less real estate
 - Less Power
 - Higher reliability
 - Lower latency
More on Latency …

Today: Low OIO (Outstanding IO)
- High latency NVM and legacy stack can diminish interface latency benefits

Today: High OIO
Future: Upcoming advances
- Parallelism reduces NVM and stack aggregate latency, seen today in database work loads
- Future NVM can achieve low latency even at low OIO
- Path latency of a PCIe solution can be much lower than SAS solution, providing significant performance improvement
Why PCIe Storage Standards?

Areas to Address

Performance Trends
Processor vs. Storage Gap Increasing

Serviceability
Internal Access Cold-Plug

Interoperability
Card Form Factor Varying Card Sizes

Scalability
Performance & Capacity

PCle SSD Benefits

Minimize Gap
Improved Latency
Improved IOPs

Remove Constraints
External Access
Hot-Pluggable

Common Form Factor
Drive Form Factor
Multi-protocol

Increased Slots
External Slots
“Live” Scaling

*other brands and names may be claimed as the property of others
Customer Benefits Goals

- Increased Performance of PCIe
- High Availability and Serviceability
- Compatibility:
 - SAS/SATA/PCIe
 - Standard driver for each OS
- Improved Power Efficiency
- Reduced TCO

*other brands and names may be claimed as the property of others
SSD Form Factor WG Overview

- SSD FF WG was developed by industry consortium of 49+ members and is directed by a 5 company Promoter Group

- Charter
 - Promote Enterprise Storage usage of PCIe SSDs, by enabling serviceability, high-availability, ease of integration, interoperability and scalability of Solid-Stage Storage

- Elements
 - Form Factor
 - Connector
 - Hot-Plug
Working Group Key Elements

Form Factor
- Benefit from current 2.5” HDD form factor
- Expand power envelope

Connector
- Multiple protocols: PCIe 3.0, SAS 3.0, SATA 3.0
- Management Bus
- Dual port (PCle)
- Multi-lane capability (PCle/SAS)
- Power pins
- SAS Drive Backward Compatibility

Hot-Plug
- Hot-Plug Connector
- Identify desired drive behavior
- Define required system behavior
SSD FF WG Progress

▷ 2.5” Form Factor Specification is released
 ◦ Rev. 0.7 in Feb’11 released internally to working group members

▷ Drive Connector Mechanical and Pinout Specification released
 ◦ Rev. 1.0 released in March’11
 ◦ Rev. 1.1 released in May’11
 ◦ Released to SFF
 ▷ Content in SFF-8639
 ▷ Actively working towards industry alignment for “one connector” for PCIe and SAS

▷ More information
 ◦ Website: www.ssdformfactor.org
 ◦ Email: info@ssdformfactor.org
NVM Express Overview

- NVM Express is a scalable host controller interface designed for Enterprise and Client systems that use PCI Express* SSDs
 - Includes optimized register interface and command set

- NVMe was developed by industry consortium of 80+ members and is directed by a 10 company Promoter Group

- NVMe 1.0 published on March 1st, available at nvmexpress.org
NVMe: Efficient SSD Performance

<table>
<thead>
<tr>
<th>Feature</th>
<th>AHCI¹</th>
<th>NVMe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncacheable Register Reads</td>
<td>4 per command 8000 cycles, ~ 2.5 µs</td>
<td>0 per command</td>
</tr>
<tr>
<td>Each consumes 2000 CPU cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI-X and Interrupt Steering</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ensures one core not IOPs bottleneck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelism & Multiple Threads</td>
<td>Requires synchronization lock to issue command</td>
<td>No locking, doorbell register per Queue</td>
</tr>
<tr>
<td>Ensures one core not IOPs bottleneck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Queue Depth</td>
<td>32</td>
<td>64K Queues¹ 64K Commands</td>
</tr>
<tr>
<td>Ensures one core not IOPs bottleneck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency for 4KB Commands</td>
<td>Command parameters require two serialized host DRAM fetches</td>
<td>Command parameters in one 64B fetch</td>
</tr>
<tr>
<td>4KB critical in Client and Enterprise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NVMe: Robust EcoSystem

- NVMe drives broad adoption of PCI Express* SSDs by:
 - Enabling standard drivers across a wide range of OSes
 - Driving a consistent feature set across SSDs
 - OEM does not need to qualify separate driver for each SSD

- Drivers are coming online for major OSes
 - Linux* driver available at nvmexpress.org
 - IDT*, Intel, and SandForce* actively developing Windows* driver that will be released open source in Q1 ’12

- The University of New Hampshire IOL is creating an interoperability test suite and integrator’s list
 - LeCroy PCIe Protocol Analyzer includes NVMe command decode
Enabling Technologies

- **NV Memories**
 - Flash
 - Phase Change Memory
 - MRAM
 - Memristor
 - More …

- **SSD controller enhancements**
 - Higher parallelism
 - Improved performance consistency
 - Additional features: Power, Reliability, Endurance

- **PCIe Switches**
 - Increased lances
 - Version 3.0
Enabling Technologies (con’t)

- PCIe storage support
 - Hot-plug
 - Error-reporting

- Stack optimizations
 - Lower latency

- Applications
 - Adaptations to SSD accesses

- OS optimizations
 - Trim
 - Align to SSD behaviors
Customer Benefits Summary

- **Increased Performance of PCIe**
 - High Throughput
 - Low latency

- **High Availability and Serviceability**
 - Extended RAS capability in a common form factor
 - Known drive replacement behavior

- **Compatibility**
 - Standardization reduces issues
 - Single connector for SAS/SATA/PCIe
 - Standard driver(s) for multiple OSes

- **Improved Power Efficiency**
 - Higher performance from same media
 - Improved IOPs/Watt

- **Reduced TCO**
 - Reduce component complexity
 - Improved $/IOPs
Please send any questions or comments on this presentation to SNIA: tracktutorials@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Jim Pappas, Intel
Jason Leone, EMC
Berndt WinkleStraeter, FTS
Adam Roberts, IBM
Amber Huffman, Intel