LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE

Matt Kixmoeller, Pure Storage
The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.

Member companies and individual members may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced in their entirety without modification
- The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.

The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Leveraging Flash Memory in Enterprise Storage

This session is for Storage Administrators and Application Architects seeking to understand how to best take advantage of flash memory in enterprise storage environments. The relative advantages of flash tiering, caching and all-flash approaches will be considered, across the dimensions of performance, cost, reliability and predictability.
Agenda

- The Storage I/O Crisis
- How to Evaluate Flash Solutions
- Approaches for Leveraging Flash
 - PCI cards
 - Flash caching in arrays
 - Flash tiering in arrays
 - All-flash arrays
- Analyzing Flash ROI
Moore’s Law vs. Newton’s Law

Moore’s Law: 58% CAGR

HDD Areal Density: 40-100% CAGR

HDD Latency (Seek Time) -3% CAGR

Sources: Intel, IDEMA, IBM Research

© 2011 Storage Networking Industry Association. All Rights Reserved.
Rotating Disk Challenges

Deconstructing a Random Read

1. Spin disk ~2ms
2. Actuate arm ~4ms
3. Read Data ~0.04ms

Typical Resulting Duty Pattern:

Disks spend >95% of their time seeking and rotating, not delivering data!
Randomization: The I/O Blender

Traditional Architecture

- Single-workload
- Serialized
- Cached
- Optimized

Virtualized / Consolidated Architecture

- Multi-workload
- No cross-VM optimization
- Highly randomized
Summary: The Storage I/O Crisis

Performance Demands

- Multi-core CPUs
- Data growth
- “Instant” user expectations

Randomization: The “I/O Blender”

- Virtualization
- Data consolidation
- Cloud architectures

IOPS / TB

- 95% time seeking/rotating
- IOPS/TB dropping
Understanding Your Application’s I/O Fingerprint

- **I/O Load**
 - 1Ks-10Ks IOPS
 - 10Ks-100Ks IOPS

- **Block Size**
 - Small Block (<8K)
 - Large Block (10sK - Ms)

- **Locality of Access**
 - Sequential, Predictable, Cacheable
 - Random, Unpredictable

- **Access Pattern**
 - Write-Centric
 - Read-Centric

- **Latency Sensitivity**
 - 10s of ms, Variability OK
 - <1-3 ms, Consistency Key

- **I/O Load**
 - 1Ks-10Ks IOPS
 - 10Ks-100Ks IOPS
How to Evaluate Flash Alternatives

Cost: $/GB?

$/GB: Managed
 + Operations team

$/GB: Operational
 + Datacenter space
 + Power / Cooling

$/GB: Protected
 + Snapshot / replication software
 + Snapshot / replication copies
 + Backup software and media

$/GB: Usable
 + Cost of RAID parity
 + Over-provisioning waste
 + Management software

$/GB: Raw
 + Cost of raw disk / flash

Performance

• Read IOPS
• Write IOPS
• Latency
• Bandwidth
• $/IOP

Power & Size

• Rackspace / floor space
• Power consumption
• Cooling

Protection

• How to make HA?
• How to backup?
• How to manage drive loss?

Integration

• Fits in current architecture?
• Requires process change?

Operational Simplicity

• Makes operations more or less complex?
• Increases TBs/admin managed?
Flash Architecture Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Server-Attach PCI Flash** | - PCI card in application server
- Host CPU typically used for flash management
- 100s of GB |
| **Array with Flash Cache** | - Flash as a read and/or write cache in array, or to cache FS metadata
- All data persisted to spinning disk
- Typically <1% - 5% of total capacity |
| **Array with Flash Tier** | - Sub-LUN/FS tiering, where a LUN or FS is spread across flash and disk
- Hot blocks/files moved to flash, cold left on disk
- Typically 1% - 10% of total capacity |
| **All-Flash LUN or Array** | - 100% flash LUN or array
- May or may not use DRAM for read/write caching |
Overview:
- Host-based PCI flash cards, typically 100s of GB in size
- Either non-RAIDed, or two cards mirrored in the server
- Either non-HA, or application clustered across multiple servers
- Leverages host CPU for flash management

High-level Benefits:
- Highest-performance flash architecture possible
- Eliminates the cost/burden of shared storage
- Ultra-small footprint
- Potentially allows for the reduction of host DRAM

High-level Challenges:
- Very high-cost, creates islands of expensive flash in every server
- Requires a re-architecture for most enterprises
- Expensive and difficult to protect (HA, backup)
- Requires mirroring for HA across multiple servers
- Requires app-level or external replication for DR
Overview:
- Expansion of array’s DRAM cache with flash
- Implemented either via controller-connected PCI flash cards, or SSDs in drive bays
- Typically read-cache only, although some implementations of write cache as well
- Cache page size / caching scheme varies by array (typically 4-16K)

High-level Benefits:
- Expands array’s cache buffer from <<1% of total storage to 1-5%
- 10 latency improvement on IOs which hit the flash cache (10+ms \rightarrow <1ms)
- Off-loading these IOs from disk reduces the load on disk and also makes the disk perform better
- Result: depends completely on cacheability of I/O stream, but typically 30-80% performance improvement

High-level Challenges:
- Improvement depends completely on cacheability of the I/O stream, results vary
- Flash as a cache heavily exercised: requires SLC flash
- Very expensive: $50-150/GB list prices typical from major vendors
- Cache requires time to “warm” to see the performance benefit, often doesn’t persist across re-boots or HA events
- Minimal benefit for truly random I/O streams: random I/O can’t be cached, it is random
Array with Flash Tier

概述:
- 创建多个存储层级（闪存、企业FC/SAS HDD、SATA HDD），能够将LUN/FS分布在它们之间
- 通常通过3.5”或2.5”SSD在驱动器托盘/架子上实现
- 通常在典型实施中，Flash占5-10%，90-95%为磁盘
- 后端存储虚拟化，块/文件根据访问模式迁移到Flash或磁盘
- 块迁移的大小取决于厂商：通常为MB到GB级别
- 频率也取决于厂商：通常在低I/O窗口期间每天

高级别优势:
- 允许利用Flash来处理IOPs，HDD来处理容量
- 与全Flash解决方案相比，成本更低，融合了Flash和HDD的经济性
- 适合MLC和SLC的Flash实施
- 可能允许减少磁盘/足迹/功率，如果磁盘已被过度建设以提高性能

高级别挑战:
- 成功取决于I/O流的可预测性/随机性
- 只有如果“热点块”是连续的才有效
- 当前实现的块大小很大；一个单个热点块可以锁定整个MB或GB块在Flash
- 不是“实时”可适应的解决方案，块只能在每天被提升/降级一次
- 设置和管理起来很难—值得管理另一个层级吗？
Overview:
- Creation of a LUN on 100% flash
- Typically implemented via 3.5” or 2.5” SSDs in the drive bays/shelves
- Suitable for MLC or SLC flash implementations

High-level Benefits:
- 10x+ potential performance improvement vs. 1-2x for cached/tiered solutions
- Much more consistent latency: no “cache-miss” penalty, all IOs at the speed of flash (typically <1ms)
- Dramatically smaller size, allows for reduction of storage footprint by 4-5x
- Flash fast enough to eliminate the need for significant DRAM caching in the array
- RAID re-build times greatly improved due to the speed of flash (hours → 10s of minutes)

High-level Challenges:
- Cost: flash varies from $20/GB - $150/GB depending on the vendor and type (MLC vs. SLC)
- Connectivity: most flash arrays have limited connectivity options compared to their more mature disk array alternatives
- HA & DR: varies by vendor, but the HA and DR models of these arrays are less mature than existing disk array alternatives
Understanding Flash ROI

Cost: $/GB?

$/GB: Managed
+ Operations team

$/GB: Operational
+ Datacenter space
+ Power / Cooling

$/GB: Protected
+ Snapshot / replication software
+ Snapshot / replication copies
+ Backup software and media

$/GB: Usable
+ Cost of RAID parity
+ Over-provisioning waste
+ Management software

$/GB: Raw
+ Cost of raw disk / flash

$5 / GB
$10 / GB
$30 / GB
$45 / GB
$60 / GB

Flash Impacts...

Reduction in management cost (performance troubleshooting)

2-5x reduction in space
2-5x reduction in power

2-3x reduction in disk over-provisioning for performance

5-10x the raw cost...

Source: averaged / anonymized customer examples
Summary

- Datacenters are facing a storage I/O crisis

- Understanding your application's "I/O fingerprint" is key to choosing the best flash strategy for your environment

- Flash should be evaluated on several dimensions, it’s not all about performance

- Look at the full picture (beyond $/GB raw!) to build your flash ROI
Visit the Hands-On Lab

Check out the Hands-On Lab:
Solid State Storage in the Enterprise
Please send any questions or comments on this presentation to SNIA: tracksolidstate@snia.org

Many thanks to the following individuals for their contributions to this tutorial.
- SNIA Education Committee

Matt Kixmoeller
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: tracksolidstate@snia.org