Shareable Storage with Switched SAS

Terry Gibbons, LSI Corporation
The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.

Member companies and individual members may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced in their entirety without modification
- The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.

The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

Shareable Storage with Switched SAS

- This session outlines SAS as a shared storage alternative, a subject of interest to IT Professionals and System Integrators. This tutorial explores sharing storage amongst servers by using switching technology at the SAS level. This tutorial provides a technology review of Switched SAS, applications driving storage “closer” to the server, and how to reduce infrastructure while improving performance and operating expense.
Agenda

- Overview & Discussion Points
- What is Switched SAS?
 - Building Blocks
 - Technology Comparisons
- Applications and Environments
 - High Density Servers
 - Virtualization
 - Tiered Storage
 - Messaging Environment
- Infrastructure Improvements
- Summary
Overview

- Typical view of DAS

- SAS view of (external) DAS
 - May not be a standard feature

- New view – “Networked Connectivity”

Ethernet

Or Fibre Channel

Why not SAS?
Common Storage Solution Req’s

- Importance of data security (logical and physical)
- Performance (throughput, latency, and IOPS)
 - Predictable latency – high IOPS
- Availability, reliability, and uptime
 - Low latency replication of data
- Capacity to support growing data needs
- Flexibility to adapt to different environments
 - Blades, racks, external storage systems
- Cost effective, energy efficient, easy to install & use
- Storage moving closer to servers even with networked and cloud scenarios

Source: Making the Switch to Shared 6G/s SAS Storage
Greg Schulz, Server and StorageI/O Group
What is Switched SAS?

- It’s not a standard, it’s a way of conveying unique SAS attributes

- Combines usage of various SAS standards
 - SAS Expander (Connection Manager and Router)
 - Zoning
 - Wide Port Configuration

- Commonly delivered as a single unit with up to 16 ports
 - Each port is a x4 connection carrying 24Gb/s
 - Connects to controllers (servers) or expanders (JBOD/RBOD) only
Expander Overview

- Any-to-Any Connection
- Cables connect w/ 4-Phys
- Disks connect w/ 1-Phy
SAS Switch Overview

- Illustrates two initiators to many expander-based storage units
- Each initiator could be in separate host

SAS Switch

Expander Abstraction

SAS Expander

SAS Expander
IO SAN Technologies

<table>
<thead>
<tr>
<th>Attribute</th>
<th>1GbE iSCSI</th>
<th>6Gb/s SAS</th>
<th>8Gb/s FC</th>
<th>10GbE iSCSI / FCoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-Point</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Switched</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cost</td>
<td>Low</td>
<td>Low</td>
<td>Higher</td>
<td>Higher</td>
</tr>
<tr>
<td>Performance</td>
<td>Good</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Distance</td>
<td>DC or WAN</td>
<td>Up to 25m</td>
<td>DC or Campus</td>
<td>DC or Campus</td>
</tr>
<tr>
<td>Strength</td>
<td>Cost</td>
<td>Cost</td>
<td>Performance</td>
<td>Performance</td>
</tr>
<tr>
<td>Simplicity</td>
<td>Distance</td>
<td>Performance</td>
<td>Scalability</td>
<td>Scalability</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td>Distance</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td>Performance</td>
<td>Distance</td>
<td>Cost</td>
<td>Cost FCoE Emerging</td>
</tr>
<tr>
<td>Servers</td>
<td>10’s to 100’s</td>
<td>10’s</td>
<td>100’s to 1000’s</td>
<td>100’s to 1000’s</td>
</tr>
</tbody>
</table>

Source: Making the Switch to Shared 6G/s SAS Storage
Greg Schulz, Server and StorageI/O Group
Host Interface Options

<table>
<thead>
<tr>
<th>Description</th>
<th>iSCSI</th>
<th>SAS</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Interconnect technology build on SCSI and TCP/IP</td>
<td>Serial protocol for data transfer incorporating SCSI command</td>
<td>A set of related physical layer networking standards to transport SCSI command sets</td>
</tr>
<tr>
<td>Architecture</td>
<td>IP-based standard – SCSI commands sent in TCP/IP packets over Ethernet</td>
<td>Serial, point-to-point with discrete signal paths</td>
<td>Switched – multiple concurrent transactions</td>
</tr>
<tr>
<td>Distance</td>
<td>Unlimited – latencies increase over distance</td>
<td>10m Passive Copper [25m Active Copper]</td>
<td>30 meters (copper) 50,000 meters (optical)</td>
</tr>
<tr>
<td>Scalability</td>
<td>[Virtually] no limit for number of devices**</td>
<td>Varies – [1024 SAS Addresses is typical]</td>
<td>[Practical limit of 5K-20K devices in switched fabric++]</td>
</tr>
<tr>
<td>Raw Performance</td>
<td>1Gb/s on closed network</td>
<td>6Gb/s w/ x4 wide port or 24Gb/s per cable</td>
<td>Up to 8Gb/s</td>
</tr>
<tr>
<td>Investment</td>
<td>Low to Medium – may use existing IP network</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>IT Expertise</td>
<td>Medium – requires some storage and IP X-training</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

**Address uses 223 byte URL-style field, UTF-8 encoded
++Addressable to over 15M devices
Applications and Environments

Shared and switched 6Gb/s SAS support:

- Storage for high density servers and blade systems
- Server and desktop virtualization
- Database, data warehouse and business analytics
- Email, messaging and collaboration
- Application and server clustering
- Disk-to-disk backup/restore; Data protection appliances
- Video and multi-media streaming, security or gaming surveillance, seismic analysis
- Scale out NAS, object and cloud storage solutions

Source: Making the Switch to Shared 6G/s SAS Storage
Greg Schulz, Server and StorageIO Group
High Density Servers

- High Availability
- High Bandwidth
 - Latency ~100ns per step
- Scales to 100’s of drives
- Ease of setup – reduce cable confusion
- Central Management thru Switch
- SAS Zoning to isolate storage to servers
- Rack or Room, Blades, External Storage System

All Connections are SAS x4
Test Setup:

- Six servers w/ single 2.26GHz processor
 - Two 6Gb/s SAS HBA per server
- One 16-port 6Gb/s SAS Switch
- Eight 6Gb/s SAS JBOD
 - (96) 146GB 6Gb/s SAS Hard Disk Drives
 - HDD limit of 1000 LBA thus avoiding Seek operations
- Iometer 2006 in client/server configuration
 - IO Queue Depth of 8

Results

- 6 Servers (2 HBA each) to 4 JBOD pairs w/ 24 HDD per pair
- 7,820 MB/s Read ~ 8,069MB/s Write

Source: Switched SAS – Shareable, Scalable SAS Infrastructure
Terry Gibbons, LSI Corporation
Virtualization

- Multiple Servers
- Multiple VM’s each

- Bandwidth issue?
- Mobility manager moves VM instance to new server

- VM Images on Disk
- Accessible to all servers
- Metadata on Disk for identification
Managing Storage Options

- Is the data hot, warm, or cool?
- Database, data mining, HPC
 - Use SSD to maximize IOPS
 - Especially 2KB-16KB blocks
- Performance is important but not critical
 - Use SAS HDD at the next immediate level
- Data warehouse
 - High capacity SATA HDD
Sample Model

- Create primary database
- Replicate over Private Network
- Use SAS to enhance efficiency of updating change logs (high IOPS/low latency)
- Use SAS for additional backup paths (note the intent is orange to orange and blue to blue)
- Currently – different Racks w/ 25m Active Copper
- Future – different Rooms w/ 100m Optical Cable
Infrastructure Improvements

- Replacement for traditional DAS
 - Save Power
 - No need to purchase servers to acquire storage
 - Activate only the storage required for the task at hand
 - SAS Switch – economical 3.1W/port

- Improve throughput, reduce protocol controllers and cables
 - No protocol translation for SAS or SATA within storage unit
 - 4 cables, max raw throughput
 - SAS = 9,600MB/s; FC = 3,200MB/s; 1GbE iSCSI = 400MB/s

- Lower cost**: SAS $-per-MB/s 10% of iSCSI; 20% of FC

- Management from Switch
 - Add/Subtract or re-Zone storage with no reliance on servers
 - Let the Switch manage the cabled connections

**Source: Channel Host Interface Positioning Guide
LSI Corporation
Summary

- Applications and storage media are changing thus requiring new solutions
- Low latency of SAS Expanders, high IO processing capability of SAS IO Controllers, and 4-wide cables for throughput make SAS a strong choice for intense workloads
- Protocol changes delivered with 6Gb/s SAS have made Switch products achievable as opposed to custom built and limited
- Switched SAS allows a system integrator to match server traffic to storage needs especially in Racks and Blades
- SAS Switches simplify the topology, setup, and management thus reducing capital and operating expenses
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: trackstoragemgmt@snia.org

Many thanks to the following individuals for their contributions to this tutorial.
- SNIA Education Committee

Terry Gibbons
Greg Schulz
Harry Mason

Nancy Clay
Rob Callaghan
Joseph White