STORAGE INDUSTRY Realizing the

Benefits of the

S U MM I I Convergence of
Storage and Memory

JANUARY 20, 2015, SAN JOSE, CA

Bill Bridge
| Oracle
Software Architect
NVM support for C Applications

A
SNIA.

Solid State Storage Initiative

-
Overview SN'A

Solid State Storage Initiative

> Oracle has developed a NVM API consisting of:
« C language extensions
+ Library for C

> This API provides direct access to NVM by applications

> The API provides the following
« NVM region file management
+ Transactions with locks
+ Heap management

> The NVM API simplifies coding, reduces bugs, and
catches corruptions

> Oracle will publish an open source implementation of the

library and a precompiler for the C extensions
2

-
Design Motivations SNlA

Solid State Storage Initiative

> Corruption is going to be a serious problem with NVM
+ There are many bugs that corrupt DRAM and occur infrequently
+ Rebooting eliminates corruption by reconstructing DRAM data
+ Rebooting does not cleanup NVM corruption

> Bugs happen!
« Missing processor cache flushes will not be found in testing
+ Missing undo will be hard to detect in testing
« Programmers sometimes make silly mistakes

> The primary focus for the design of the API is to reduce
bugs and catch corruption early

> Another goal is to make it as easy to use structs in NVM
as it is to use structs in DRAM

=
NVM Region Files SN|A

— — Solid State Storage Initiative
> The API requires an OS file system that allows NVM to
be mapped into an application address space

> A region file contains NVM formatted for API usage
« Virtual size is the amount of address space used to mmap
+ Physical size is the amount of NVM allocated to the region

> A region can contain multiple extents of physical NVM
« An extent is contiguous NVM in the region’s virtual address space
+ Extents make a region file sparse
+ Extents can grow/shrink
+ Extents can be an APl managed heap
+ Extents can be raw NVM managed by the application

> An application can mmap multiple region files

=
An Application with Two Regions SNIA

Solid State Storage Initiative

DRAM

_ I—
Application System
'
App Address : NVM
Space .
; - \
' File System
wa L
__———'—./—,—l
R R [~
NVM P./
Region || 0 FileN
:
DRAM :
. A
'
S :
'
'
'
'
'
'
'
'
'
'
'
'
'

1
An NVM Region with Four Extents SN|A

Solid State Storage Initiative

[B I I i I I N D a

Virtual Address Space

=
NVM Transactions SN|A

Solid State Storage Initiative

> A transaction allows complex atomic updates to a region

> The API defines a transaction as a code block
+ “@” <region_descriptor> “{* begins a transaction code block
« Normal exit commits transaction: goto, break, ...
+ Death or long jump out of the code block aborts the transaction
+ Ensures there are no abandoned transactions

> New assignment operator creates undo before storing
> Multi-threading requires correct application locking

> Locks are owned by a transaction — not a thread

+ Undo represents a potential store so the lock must be held until
the undo is released

o
NVM Locking SN'A

Solid State Storage Initiative

> NVM mutexes can be a member of a persistent struct
> An NVM mutex can be locked either shared or exclusive
> Lock get can be wait, no wait, or timed wait

> NVM locks are records in a transaction
+ Locks are only released at commit/abort

+ Lock release at abort happens after subsequent undo records
are applied

+ Lock release at commit is done in reverse of the locking order

.
Pointers to NVM SNIA

Solid State Storage Initiative

> C extensions let the compiler know which pointers
contain NVM addresses and which are DRAM

> Pointers to NVM use new syntax to help prevent bugs
+ instead of *
+ =>Instead of ->
+ % instead of &

> The compiler requires new operators for NVM stores
« Automatically adds any needed flushes
+ Requires developer to decide if undo is needed
+ Transactional store: @=, @++=, @++, . ..
+ Non-transactional store: #=, #++=, #++, . ..
« Undo is not needed for storing in uncommitted allocation

.
Persistent Structs SNIA

Solid State Storage Initiative

> Structs allocated in NVM must be declared persistent
+ Several optional attributes are available for NVM structs

> Pointers to NVM In a persistent struct are self-relative
+ Self-relative pointers are an offset from the location of the pointer
« The null pointer is an offset of one, zero is a pointer to self

« Automatically converted to/from absolute pointers
« Verified at runtime to point within the same region

> A transient struct member is treated like DRAM

> Compiler adds a description of the type to the executable
+ Includes every member and its type
+ Includes the USID of the struct type or zero if no USID declared

10

-
Unique Symbol ID - USID SN|A

Solid State Storage Initiative

> 128 bit true random number chosen by developer as the
sighature of a persistent struct type

> At runtime a hash table is constructed mapping USID
values to the type description in the current executable
+ Duplicate USID value for different type descriptions prevents
startup
> A persistent struct with a USID attribute starts with a
hidden member that is initialized to the USID
« Compiler adds code to verify the USID before using a pointer

+ USID in NVM can find type description to check the struct
members

11

=
NVM Heaps SN|A

Solid State Storage Initiative

> Aregion has a base heap when created

> Additional heaps can be added as new extents
> A corrupt heap extent can be deleted

> A heap can be grown after adding

> Allocation takes the address of a struct type description
+ Must have a USID defined so type can be determined from NVM
+ Type description used to properly initialize allocated memory

> Free takes a pointer returned by allocation

> Allocate/free rolled back if calling transaction aborts
+ Freed space is not available until calling transaction commits

12

9
In Place Struct Upgrade SN|A

Solid State Storage Initiative

> Size attribute on a persistent struct can create zeroed
padding for adding new members to the struct

> Sometimes zero is a compatible value for a new member

> If zero is not compatible an upgrade attribute can define
an upgrade function and USID after upgrade

> New USID on upgraded version of struct allows
detection of old version

> When verification detects struct that needs upgrade, the
application function to do the upgrade is called

13

-
A Simple Example SNlA

Solid State Storage Initiative

No TX

typedef persistent struct mystruct mystruct;
persistent struct mystruct {
nvm mutex mutex;
int count;
}
nvm desc desc; // region descriptor
int increment (mystruct “my) { <i:::j
int ret;
@ desc {
nvm xlock (smy=>mutex) ;
my=>count@++;
ret = my=>count;
}

return ret;

(W
I

-
A Simple Example SNlA

Active TX

UNDO

Solid State Storage Initiative

I
typedef persistent struct mystruct mystruct;
persistent struct mystruct {
nvm mutex mutex;
int count;
}
nvim desc desc; // region descriptor

int increment (mystruct “my) {

nvm xlock (smy=>mutex) ;
my=>count@++;
ret = my=>count;

}

return ret;

15

A Simple Example

Active TX

UNDO

N

-1
SNIA.

Solid State Storage Initiative

.
typedef persistent struct mystruct mystruct;
persistent struct mystruct {
nvm mutex mutex;
int count;
}
nvm desc desc; // region descriptor
int increment (mystruct “my) {
int ret;
@ desc {
nvm xlock (% y=>mutex);<<:::j
my=>count@++;
ret = my=>count;
}

return ret;

16

A Simple Example

Active TX

UNDO

A\

-1
SNIA.

Solid State Storage Initiative

.
typedef persistent struct mystruct mystruct;
persistent struct mystruct {
nvm mutex mutex;
int count;
}
nvm desc desc; // region descriptor
int increment (mystruct “my) {
int ret;
@ desc {
nvm xlock (smy=>mutex) ;
my=>count@++; <i:::]
ret = my=>count;
}

return ret;

17

A Simple Example

Active TX

UNDO

A\

-1
SNIA.

Solid State Storage Initiative

.

typedef persistent struct mystruct mystruct;
persistent struct mystruct {

nvm mutex mutex;

int count;
}
nvm desc desc; // region descriptor
int increment (mystruct “my) {

int ret;

@ desc {

nvm xlock (smy=>mutex) ;

my=>count@++;

ret = my=>count; <$:::]
}

return ret;

18

-
A Simple Example SNlA

Committed

Solid State Storage Initiative

I
typedef persistent struct mystruct mystruct;
persistent struct mystruct {
nvm mutex mutex;
int count;
}
nvim desc desc; // region descriptor
int increment (mystruct “my) {
int ret;
@ desc {
nvm xlock (smy=>mutex) ;
my=>count@++;
ret = my=>count;
}

return ret;

19

-1
SNIA.

Solid State Storage Initiative

20

