
PRESENTATION TITLE GOES HERE Bill Bridge

Oracle

Software Architect

NVM support for C Applications

Place

Speaker

Photo Here

if Available

JANUARY 20, 2015, SAN JOSE, CA

Overview

Oracle has developed a NVM API consisting of:

C language extensions

Library for C

This API provides direct access to NVM by applications

The API provides the following

NVM region file management

Transactions with locks

Heap management

The NVM API simplifies coding, reduces bugs, and

catches corruptions

Oracle will publish an open source implementation of the

library and a precompiler for the C extensions
2

Design Motivations

Corruption is going to be a serious problem with NVM

There are many bugs that corrupt DRAM and occur infrequently

Rebooting eliminates corruption by reconstructing DRAM data

Rebooting does not cleanup NVM corruption

Bugs happen!

Missing processor cache flushes will not be found in testing

Missing undo will be hard to detect in testing

Programmers sometimes make silly mistakes

The primary focus for the design of the API is to reduce

bugs and catch corruption early

Another goal is to make it as easy to use structs in NVM

as it is to use structs in DRAM

 3

NVM Region Files

The API requires an OS file system that allows NVM to

be mapped into an application address space

A region file contains NVM formatted for API usage

Virtual size is the amount of address space used to mmap

Physical size is the amount of NVM allocated to the region

A region can contain multiple extents of physical NVM

An extent is contiguous NVM in the region’s virtual address space

Extents make a region file sparse

Extents can grow/shrink

Extents can be an API managed heap

Extents can be raw NVM managed by the application

An application can mmap multiple region files
4

An Application with Two Regions

5

An NVM Region with Four Extents

6

NVM Transactions

A transaction allows complex atomic updates to a region

The API defines a transaction as a code block

“@” <region_descriptor> “{“ begins a transaction code block

Normal exit commits transaction: goto, break, …

Death or long jump out of the code block aborts the transaction

Ensures there are no abandoned transactions

New assignment operator creates undo before storing

Multi-threading requires correct application locking

Locks are owned by a transaction – not a thread

Undo represents a potential store so the lock must be held until

the undo is released

7

NVM Locking

NVM mutexes can be a member of a persistent struct

An NVM mutex can be locked either shared or exclusive

Lock get can be wait, no wait, or timed wait

NVM locks are records in a transaction

Locks are only released at commit/abort

Lock release at abort happens after subsequent undo records

are applied

Lock release at commit is done in reverse of the locking order

8

Pointers to NVM

C extensions let the compiler know which pointers

contain NVM addresses and which are DRAM

Pointers to NVM use new syntax to help prevent bugs

^ instead of *

=> instead of ->

% instead of &

The compiler requires new operators for NVM stores

Automatically adds any needed flushes

Requires developer to decide if undo is needed

Transactional store: @=, @++=, @++, . . .

Non-transactional store: #=, #++=, #++, . . .

Undo is not needed for storing in uncommitted allocation

9

Persistent Structs

Structs allocated in NVM must be declared persistent

Several optional attributes are available for NVM structs

Pointers to NVM in a persistent struct are self-relative

Self-relative pointers are an offset from the location of the pointer

The null pointer is an offset of one, zero is a pointer to self

Automatically converted to/from absolute pointers

Verified at runtime to point within the same region

A transient struct member is treated like DRAM

Compiler adds a description of the type to the executable

Includes every member and its type

Includes the USID of the struct type or zero if no USID declared

10

Unique Symbol ID - USID

128 bit true random number chosen by developer as the

signature of a persistent struct type

At runtime a hash table is constructed mapping USID

values to the type description in the current executable

Duplicate USID value for different type descriptions prevents

startup

A persistent struct with a USID attribute starts with a

hidden member that is initialized to the USID

Compiler adds code to verify the USID before using a pointer

USID in NVM can find type description to check the struct

members

11

NVM Heaps

A region has a base heap when created

Additional heaps can be added as new extents

A corrupt heap extent can be deleted

A heap can be grown after adding

Allocation takes the address of a struct type description

Must have a USID defined so type can be determined from NVM

Type description used to properly initialize allocated memory

Free takes a pointer returned by allocation

Allocate/free rolled back if calling transaction aborts

Freed space is not available until calling transaction commits

12

In Place Struct Upgrade

Size attribute on a persistent struct can create zeroed

padding for adding new members to the struct

Sometimes zero is a compatible value for a new member

If zero is not compatible an upgrade attribute can define

an upgrade function and USID after upgrade

New USID on upgraded version of struct allows

detection of old version

When verification detects struct that needs upgrade, the

application function to do the upgrade is called

13

A Simple Example

14

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

No TX

A Simple Example

15

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

Active TX

UNDO

A Simple Example

16

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

Active TX

UNDO

Xlock

mutex

A Simple Example

17

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

Active TX

UNDO

Xlock

mutex

restore

count

A Simple Example

18

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

Active TX

UNDO

Xlock

mutex

restore

count

A Simple Example

19

typedef persistent struct mystruct mystruct;

persistent struct mystruct {

 nvm_mutex mutex;

 int count;

}

nvm_desc desc; // region descriptor

int increment(mystruct ^my){

 int ret;

 @ desc {

 nvm_xlock(%my=>mutex);

 my=>count@++;

 ret = my=>count;

 }

 return ret;

}

Committed

20

&

