
Cloud Data Management Interface

Version 1.0.1h

Publication of this Working Draft for review and comment has been
approved by the CDMI TWG. This draft represents a “best effort” attempt
by the CDMI TWG to reach preliminary consensus, and it may be
updated, replaced, or made obsolete at any time. This document should
not be used as reference material or cited as other than a “work in
progress.” Suggestion for revision should be directed to http://
www.snia.org/feedback/.

Working Draft

March 30, 2011

© SNIA

ii Working Draft CDMI 1.0.1h (March 30, 2011)

Revision History

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1 Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2 Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
emailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

Copyright © 2011 Storage Networking Industry Association.

Version Date Originator Comments

1.0 4/12/10 Released as a SNIA Technical Position.

1.0a 6/8/10 M. McMinn Incorporated Trac tickets 79, 82, 87, 92, 93, 95, 96, 116-122, 128, 130,
134, 135, 137, 138, 142, 143, 147, 149, 152, and 153.

1.0b 6/19/10 M. McMinn Incorporated Trac tickets 158, 161, 162-167, 169-171

1.0c 8/17/10 M. McMinn Incorporated Trac tickets 146, 154, 155, 159, 174-184, 206-209, 81, 210-
221, and 223-227.

1.0d 9/13/10 M. McMinn Incorporated Trac tickets 39, 124, 144, 145, 218, 219, 231, 235, 237, 238,
240, 245, and 246. Added Krishna Sankar to Acknowledgements section.
Changed “SNIA Technical Position” to “Working Draft”.

1.0e 11/03/10 M. McMinn Incorporated Trac tickets 234, 249, 250, 252-254, and 257. Released as
an” Internal Use Draft” for the San Jose Face-to-Face meeting.

1.0.1f 12/6/10 M. McMinn Updated scope, references, changed “must” to “shall,” and added cross-
references. Incorporated Trac tickets 156, 157, 172, 233, 236, 239, 241-
244, 247, 248, 251, 252, 255, 259, 260, 263-267, 272, 273, 276, 283, and
285. Performed consistency edits.

1.0.1g 1/21/11 M. McMinn Incorporated Trac tickets 287, 288, 289, 290, & 306.

1.0.1h 3/29/11 M. McMinn Incorporated Trac tickets 277, 279, 280, 287, 291-294, 296, 298-300, 305,
307, 310-311, 313, 315, 317-318, 320, 322, 324-329, 331, 337-343, 345,
351, 354-391, and 393-405. Performed consistency edits. Released as
Internal Use Draft.

1.0.1h 3/30/11 M. McMinn Released as a Working Draft.

© SNIA
Contents

Foreword .. ix
Introduction .. x

1 Scope ..1

2 References ...2

2.1 Normative References ...2
2.2 Informative References ...3

3 Terms ..4

4 Conventions ...7

4.1 Interface Format ..7
4.2 Typographical Conventions ...7

5 Overview of Cloud Storage ...8

5.1 Introduction ..8
5.2 What is Cloud Storage? ..8
5.3 Data Storage as a Service ..8
5.4 Data Management in the Cloud ...11
5.5 Data and Container Management ...12
5.6 Reference Model for Cloud Storage Interfaces ...13
5.7 SNIA Cloud Data Management Interface ..14
5.8 Object Model for CDMI ..14
5.9 CDMI Metadata ...15
5.10 Object ID ...16
5.11 CDMI Object ID Format ...16
5.12 Security ...17
5.13 Required HTTP Support ..18

5.13.1 Content-Type Negotiation ..18
5.13.2 Range Support ...18

5.14 Time Representations ...18

6 Common Operations ...19

6.1 Discover the Capabilities of a Cloud Storage Provider ...19
6.2 Create a New Container ..20
6.3 Create a Data Object in a Container ...20
6.4 List the Contents of a Container ..21
6.5 Read the Contents of a Data Object ...22
6.6 Read Only the Value of a Data Object ..22
6.7 Delete a Data Object ...22

7 Interface Standard ...23

7.1 HTTP Status Codes ..23
7.2 Types of Objects in the Model ...23
7.3 Object References ...24

8 Data Object Resource Operations ...25

8.1 Overview ...25
8.1.1 Data Object Metadata ..25
8.1.2 Data Object Consistency ..25
8.1.3 Data Object Representations ...26
CDMI 1.0.1h (March 30, 2011) Working Draft iii

© SNIA
8.2 Create a Data Object (CDMI Content Type) ...26
8.3 Create a Data Object (Non-CDMI Content Type) ..32
8.4 Read a Data Object (CDMI Content Type) ..33
8.5 Read a Data Object (Non-CDMI Content Type) ..38
8.6 Update a Data Object (CDMI Content Type) ...40
8.7 Update a Data Object (Non-CDMI Content Type) ...44
8.8 Delete a Data Object ...46

9 Container Object Resource Operations ..48

9.1 Overview ...48
9.1.1 Container Metadata ..49
9.1.2 Container Object Addressing ...49
9.1.3 Container Object Representations ...49

9.2 Create a Container (CDMI Content Type) ...49
9.3 Create a Container (Non-CDMI Content Type) ...55
9.4 Read a Container Object (CDMI Content Type) ..56
9.5 Read a Container Object (Non-CDMI Content Type) ..60
9.6 Update a Container (CDMI Content Type) ..63
9.7 Delete a Container Object ...66
9.8 Create (POST) a New Data Object (CDMI Content Type) ..67
9.9 Create (POST) a New Data Object (Non-CDMI Content Type) ..73
9.10 Create (POST) a New Queue Object (CDMI Content Type) ...75

10 Domain Object Resource Operations ..81

10.1 Overview ...81
10.1.1 Domain Metadata ...81
10.1.2 Domain Summaries ..81
10.1.3 Domain Membership ..84
10.1.4 Domain Object Representations ..86

10.2 Create a Domain Object (CDMI Content Type) ...86
10.3 Read a Domain Object (CDMI Content Type) ...90
10.4 Update a Domain (CDMI Content Type) ...93
10.5 Delete a Domain (CDMI Content Type) ..95

11 Queue Object Resource Operations ..97

11.1 Overview ...97
11.1.1 Queue Object Metadata ...97
11.1.2 Queue Object Addressing ..97
11.1.3 Queue Object Representations ..97

11.2 Create a Queue Object (CDMI Content Type) ..97
11.3 Read a Queue Object (CDMI Content Type) ..102
11.4 Update a Queue Object (CDMI Content Type) ...107
11.5 Delete a Queue Object (CDMI Content Type) ...109
11.6 Enqueue a New Queue Value (CDMI Content Type) ..110
11.7 Delete a Queue Value (CDMI Content Type) ..113

12 Capability Object Resource Operations ..116

12.1 Overview ...116
12.1.1 Cloud Storage System-Wide Capabilities ..117
12.1.2 Storage System Metadata Capabilities ..118
12.1.3 Data System Metadata Capabilities ...119
12.1.4 Data Object Capabilities ...121
12.1.5 Container Capabilities ..121
12.1.6 Domain Capabilities ...122
12.1.7 Queue Object Capabilities ..123
iv Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
12.2 Read a Capabilities Object (CDMI Content Type) ...124

13 Exported Protocols ..129

13.1 Exported Protocol Structure ..130
13.2 OCCI Exported Protocol ..130
13.3 iSCSI Export Modifications ..130

13.3.1 Read Container ..131
13.3.2 Create Container ..131
13.3.3 Modify an Export ..132

13.4 NFS Exported Protocol ...132
13.5 WebDAV Exported Protocol ..132

14 Snapshots ..133

15 Serialization/Deserialization ...134

15.1 Exporting Serialized Data ..134
15.2 Importing Serialized Data ..134

15.2.1 Canonical Format ...135
15.2.2 Example JSON Canonical Serialized Format ...136

16 Metadata ...138

16.1 Access Control ..138
16.1.1 ACL and ACE Structure ...138
16.1.2 ACE Type ...138
16.1.3 ACE Who ..139
16.1.4 ACE Flags ..139
16.1.5 ACE Mask Bits ...140
16.1.6 ACL Evaluation ...141
16.1.7 Example ACE Mask Expressions ...143
16.1.8 Canonical Format for ACE Hexadecimal Quantities ..143
16.1.9 JSON Format for ACLs ..144

16.2 Support for User Metadata ..145
16.3 Support for Storage System Metadata ..145
16.4 Support for Data System Metadata ...146
16.5 Support for Data Copies ..150
16.6 Support for Provided Data System Metadata ..150

17 Logging ...152

17.1 Access to Log Data ...152
17.2 Object Logging ..152
17.3 Security Logging ..153
17.4 Data Management Logging ...153
17.5 Logging Queues ..153
17.6 Logging Security Considerations ...155

18 Retention and Hold Management ...156

18.1 Retention Management Disciplines ...156
18.2 CDMI Retention ...156
18.3 CDMI Hold ...157
18.4 CDMI Deletion ...159
18.5 Retention Security Considerations ..160
CDMI 1.0.1h (March 30, 2011) Working Draft v

© SNIA
19 Notification Queues ...161

20 Query Queues ..165

20.1 Scope Specification ...166
20.2 Results Specification ...171
20.3 Extending CDMI Query ...173

Annex A
(normative)
Transport Security .. 174

A.1 General Requirements for HTTP Implementations ...174
A.2 Basic HTTP Security ...175
A.3 HTTP over TLS (HTTPS) ..175

A.3.1 Transport Layer Security (TLS) ...176

Annex B
(informative)
Extending the Interface .. 180

B.1 Data Object Versioning ...180
B.2 Terms ..180
B.3 Versioning System Capabilities ...180
B.4 Versioning Data System Metadataw ...181
B.5 Conditions for Versioning ..181
B.6 Access to Versions ..181

B.6.1 The Current Version ..183
B.6.2 Eventual Consistency ..183
B.6.3 Audit of Versions ..183
B.6.4 Serialization ...184
B.6.5 Exports ...184
B.6.6 Copy and Move ...184
vi Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA

CDMI 1.0.1h (March 30, 2011) Working Draft vii

Figures

Figure 1 – Existing Data Storage Interface Standards ..9
Figure 2 – Storage Interfaces for Database/Table Data ..10
Figure 3 – Storage Interfaces for Object Storage Client Data ...11
Figure 4 – Using the Resource Domain Model ..12
Figure 5 – Cloud Storage Reference Model ..13
Figure 6 – CDMI Interface Model ..14
Figure 7 – Object ID Format ..16
Figure 8 – Hierarchy of Capabilities ..116
Figure 9 – CDMI and OCCI in an Integrated Cloud Computing Environment ...129
Figure 10 – Snapshot Operation ...133
Figure 11 – Object Retention ...157
Figure 12 – Object Hold ...158
Figure 13 – Object Hold on Object with Retention ..158
Figure 14 – Object with Multiple Holds ..159
Figure 15 – Relationship Between Versioned Object, Versions Container, and Object Version182

© SNIA

viii Working Draft CDMI 1.0.1h (March 30, 2011)

Tables

Table 1 – Chapter Contents .. x
Table 2 – Interface Format Descriptions ...7
Table 3 – Typographical Conventions ...7
Table 4 – Creation/Consumption of Storage System Metadata ..16
Table 5 – HTTP Status Codes ...23
Table 6 – Types of Objects in the Model ...23
Table 7 – Contents of Domain Summary Objects ...82
Table 8 – Required Settings for Domain Member User Objects ...85
Table 9 – Required Settings for Domain Member Delegation Objects ..85
Table 10 – System-Wide Capabilities ..117
Table 11 – Capabilities for Storage System Metadata ..119
Table 12 – Capabilities for Data System Metadata ...120
Table 13 – Capabilities for Data Objects ...121
Table 14 – Capabilities for Containers ..121
Table 15 – Capabilities for Domains ..122
Table 16 – Capabilities of Queue Objects ...123
Table 17 – Snapshot Parameter of the Container Update Operation ..133
Table 18 – Who Identifiers ...139
Table 19 – Storage System Metadata ...146
Table 20 – Data Systems Metadata ..147
Table 21 – Provided Values of Data Systems Metadata Elements ...150
Table 22 – Required Metadata for a Logging Queue ..154
Table 23 – Logging Status Metadata ...155
Table 24 – Required Data for a Notification Queue ...161
Table 25 – Notification Status Metadata ..164
Table 26 – Required Metadata for a Query Queue ...165
Table 27 – Query Status Metadata ..166
Table 28 – Query Matching Expression ..168

© SNIA

CDMI 1.0.1h (March 30, 2011) Working Draft ix

Foreword

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at 
http://www.snia.org.

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the Storage Networking Industry Association, 425 Market Street, Suite #1020, San
Francisco, CA 94105, U.S.A.

Acknowledgements

The SNIA Cloud Storage Technical Working Group, who developed this standard, would like to recognize
the significant contributions made by the following members:

Organization Represented Name of Representative

Cisco Systems Krishna Sankar

Cisco Systems Mike Siefer

Hitachi Data Systems Eric Hibbard

Individual Rich Ramos

Iron Mountain Chris Schwarzer

Netapp Inc. Alan Yoder

NetApp Inc. David Slik

NetApp Inc. Lakshmi N. Bairavasundaram

Olocity Scott Baker

Oracle Mark Carlson

QLogic Hue Nguyen

© SNIA
Introduction

Purpose and Audience

This document tells you how to access cloud storage and to manage the data stored there. The intended
audience is application developers who are implementing or using cloud storage.

Organization

Table 1 describes the contents of each chapter in this document.

Table 1 - Chapter Contents

Chapter Contents

1 - Scope Defines the scope of this document.

2 - References Lists the documents referenced in this document.

3 - Terms Provides terminology used in this document.

4 - Conventions Describes the conventions used in presenting the interfaces and
the typographical conventions used in this document.

5 - Overview of Cloud Storage Provides a brief overview of cloud storage and details the
philosophy behind the standard as a model for the operations.

6 - Getting Started Gives an example of the resources that may be accessed and the
representations used to modify them.

7 - Interface Specification Provides a description of HTTP status codes, Cloud Data
Management Interface (CDMI) object types, object references,
and object manipulations.

8 - Data Object Resource Operations Provides the normative standard for data object resource
operations.

9 - Container Object Resource Operations Provides the normative standard of container object resource
operations.

10 - Domain Object Resource Operations Provides the normative standard of domain object resource
operations.

11 - Queue Object Resource Operations Provides the normative standard of queue object resource
operations.

12 - Capability Object Resource Operations Provides the normative standard of capability object resource
operations.

13 - Exported Protocols Discusses how virtual machines in the cloud computing
environment may use the exported protocols from CDMI
containers.

14 - Snapshots Discusses how snapshots are accessed under CDMI containers.

15 - Serialization/Deserialization Discusses serialization and deserialization, including import and
export of serialized data under CDMI.

16 - Metadata Provides the normative standard of the metadata used in the
interface.
x Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
17 - CDMI Logging Describes CDMI functional logging for object functions, security
events, data management events, and queues.

18 - Retention and Hold Management Describes the optional retention management disciplines to be
implemented into the system management functions.

19 - Notification Queues Describes how CDMI clients may efficiently discover what
changes have occurred to the system.

20 - Query Queues Describes how CDMI clients may efficiently discover what content
matches a given set of metadata query criteria or full-content
search criteria.

Annex A - (normative) Transport Security Provides normative text for securing the HTTP communications
protocol for transferring CDMI messages.

Annex B - (informative) Extending the Interface Provides informative guidelines for extending the interface for
data object versioning.

Table 1 - Chapter Contents

Chapter Contents
CDMI 1.0.1h (March 30, 2011) Working Draft xi

Scope © SNIA

1 Working Draft CDMI 1.0.1h (March 30, 2011)

1 Scope

This International Standard specifies the interface to access cloud storage and to manage the data stored
therein. This International Standard is applicable to developers who are implementing or using cloud
storage.

© SNIA References
2 References

2.1 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

[ISO-8601]

International Standards Organization, "Data elements and interchange formats -- Information interchange -
- Representation of dates and times”, ISO 8601:20044 - http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=40874

[ITU-T509]

International Telecommunications Union Telecommunication Standardization Sector (ITU-T),
Recommendation X.509: Information technology - Open Systems Interconnection - The Directory: Public-
key and attribute certificate frameworks, May 2000. Specification and technical corrigenda - http://
www.itu.int/ITU-T/publications/recs.html

[POSIX ERE]

The Open Group, Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition - http://www.unix.org/
version3/ieee_std.html

[RFC2045]

IETF RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies - http://www.ietf.org/rfc/rfc2045.txt

[RFC2246]

IETF RFC 2246. The TLS Protocol Version 1.0 - http://tools.ietf.org/rfc/rfc2246.txt

[RFC2578]

IETF RFC 2578. Structure of Management Information Version 2 (SMIv2) - http://www.ietf.org/rfc/
rfc2578.txt

[RFC2616]

IETF RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1 - http://www.ietf.org/rfc/rfc2616.txt

[RFC3280]

IETF RFC 3280. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile - http://www.ietf.org/rfc/rfc3280.txt

[RFC3530]

IETF RFC 3530. Network File System (NFS) version 4 Protocol - http://www.ietf.org/rfc/rfc3530.txt

[RFC3986]

IETF RFC 3986. Uniform Resource Identifier (URI): Generic Syntax - http://www.rfc-editor.org/rfc/
rfc3986.txt

[RFC4346]

IETF RFC 4346. The Transport Layer Security (TLS) Protocol Version 1.1 - http://tools.ietf.org/rfc/
rfc4346.txt
CDMI 1.0.1h (March 30, 2011) Working Draft 2

http://www.unix.org/version3/ieee_std.html
http://www.unix.org/version3/ieee_std.html
http://tools.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2578.txt
http://www.ietf.org/rfc/rfc2578.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3530.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://tools.ietf.org/rfc/rfc4346.txt
http://tools.ietf.org/rfc/rfc4346.txt
http://www.itu.int/ITU-T/publications/recs.html
http://www.itu.int/ITU-T/publications/recs.html

References © SNIA
[RFC4627]

IETF RFC 4627. The application/json Media Type for JavaScript Object Notation (JSON) - http://
www.ietf.org/rfc/rfc4627.txt

[RFC4918]

HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV) - http://www.ietf.org/rfc/
rfc4918.txt

[RFC5246]

IETF RFC 5246. The Transport Layer Security (TLS) Protocol Version 1.2 - http://tools.ietf.org/rfc/
rfc5246.txt

2.2 Informative References

[CRC]

Williams, Ross, “A Painless Guide to CRC Error Detection Algorithms”, Chapter 16, August 1993, http://
www.repairfaq.org/filipg/LINK/F_crc_v3.html

[PKS12]

RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June 1999.
Specification and Technical Corrigendum - http://www.rsa.com:80/rsalabs/node.asp?id=2138

[REST]

"Representational State Transfer” - http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[RESTful Web]

Richardson, Leonard and Sam Ruby, RESTful Web Services, O'Reilly, 2007.

[SIRDM]

Storage Industry Resource Domain Model - http://www.snia.org/education/storage_networking_primer/
sirdm/
3 Working Draft CDMI 1.0.1h (March 30, 2011)

http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.snia.org/education/storage_networking_primer/sirdm/
http://www.snia.org/education/storage_networking_primer/sirdm/
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.rsa.com:80/rsalabs/node.asp?id=2138
http://www.rsa.com:80/rsalabs/node.asp?id=2138
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/rfc/rfc5246.txt

© SNIA Terms
3 Terms

For the purposes of this document, the following terms and definitions apply.

Note: All of these terms and definitions are taken from the SNIA Dictionary, except for the following:
CRC, CRUD, object, object identifier, OCCI, and Uniform Resource Identifier.

3.1
Access Control List
ACL
a persistent list, commonly composed group of Access Control Entries (ACEs), that enumerates the rights
of principals (users and groups of users and/or groups) to access resources

3.2
CDMI
Cloud Data Management Interface

3.3
CRC
cyclic redundancy check

3.4
CRUD
create, retrieve, update, delete

3.5
Data storage as a Service
DaaS
cloud storage
delivery over a network of appropriately configured virtual storage and related data services, based on a
request for a given service level

delivery of virtualized storage and data services on demand over a network

Typically, DaaS hides limits to scalability, is either self-provisioned or provisionless, and is billed based on
consumption.

3.6
domain
shared user authorization database that contains users, groups, and their security policies

Each CDMI object belongs to a single domain, and each domain provides user mapping and accounting
information.

3.7
Infrastructure as a Service
IaaS
delivery over a network of an appropriately configured virtual computing environment, based on a request
for a given service level

Typically, IaaS is either self-provisioned or provisionless and is billed based on consumption.

3.8
iSCSI
Internet Small Computer Systems Interface
CDMI 1.0.1h (March 30, 2011) Working Draft 4

http://www.snia.org/education/dictionary/

Terms © SNIA
3.9
LUN
Logical Unit Number

3.10
MIME
Multipurpose Internet Mail Extensions

3.11
NFS
Network File System

3.12
object identifier
OID
globally unique object identifier (OID) assigned at creation time for every object stored within a CDMI-
compliant system

3.13
object
an entity that has an object identifier (OID), a unique URI, and contains state

Types of CDMI objects include data objects, containers, capabilities, domains, and queues.

3.14
OCCI
Open Cloud Computing Interface

3.15
Platform as a Service
PaaS
delivery over a network of a virtualized programming environment, consisting of an application deployment
stack based on a virtual computing environment

Typically, PaaS is based on IaaS, is either self-provisioned or provisionless, and is billed based on
consumption.

3.16
private cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to a restricted set of customers, usually within a single
organization

Private clouds are created due to issues of trust.

3.17
public cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to a relatively unrestricted set of customers

3.18
Representational State Transfer
specific set of principles for defining, addressing, and interacting with resources addressable by URIs

Architectures that follow these principles are said to be RESTful. The principles include abstraction of state
into resources and a uniform set of representations and operations (e.g., HTTP verbs like GET and PUT as
the only means to manipulate a resource). RESTful interfaces are contrasted with Web Services interfaces
such as WBEM, which tend to be RPC-like.
5 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Terms
3.19
REST
Representational State Transfer

3.20
Software as a Service
SaaS
delivery over a network, on demand, of the use of an application

3.21
Uniform Resource Identifier
URI
compact sequence of characters that identifies an abstract or physical resource

3.22
XAM
eXtensible Access Method
CDMI 1.0.1h (March 30, 2011) Working Draft 6

Conventions © SNIA

7 Working Draft CDMI 1.0.1h (March 30, 2011)

4 Conventions

4.1 Interface Format

Each interface description has eight sections, as described in Table 2.

4.2 Typographical Conventions

The typographical conventions used in this document are described in Table 3.

Table 2 - Interface Format Descriptions

Section Description

Synopsis The GET, PUT, and POST semantics.

Capabilities A description of the supported operations.

Request Headers The request headers, such as Accept, Authorization, Content-Length, Content-
Type, X-Cloud-Client-Specification-Version.

Request Message Body A description of the message body contents.

Response Headers The response headers, such as Content-Length, Content-Type.

Response Message Body A description of the message body contents.

Response Status A list of codes.

Example An example of the operation.

Table 3 - Typographical Conventions

Convention Description

Fixed-width text The names of commands and on-screen computer output.

Bold, fixed-width text What you type, contrasted with on-screen computer output.

Italicized text Variables, field names, and book titles.

Note: Additional or useful informative text.

WARNING:
Indicates that you should pay careful attention to the probable action, so that
you may avoid system failure or harm.

© SNIA Overview of Cloud Storage
5 Overview of Cloud Storage

5.1 Introduction

When discussing cloud storage and standards, it is important to distinguish the various resources that are
being offered as services. These resources are exposed to clients as functional interfaces (data paths) and
are managed by management interfaces (control paths). This standard explores the various types of
interfaces that are part of offerings today and shows how they are related. This standard proposes a model
for the interfaces that may be mapped to the various offerings and a model that forms the basis for rich
cloud storage interfaces into the future.

Another important concept in this standard is that of metadata. When managing large amounts of data with
differing requirements, metadata is a convenient mechanism to express those requirements in such a way
that underlying data services may differentiate their treatment of the data to meet those requirements.

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as
you go, the illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore
important that any interface for cloud storage support these attributes, while allowing for a multitude of
business cases and offerings long into the future.

5.2 What is Cloud Storage?

The use of the term cloud in describing these new models arose from architecture drawings that typically
used a cloud as the dominant networking icon. The cloud conceptually represents any-to-any connectivity
in a network. The cloud also conceptually represents an abstraction of concerns, such that the actual
connectivity and the services running in the network that accomplish that connectivity do so with little
manual intervention.

This abstraction of complexity and promotion of simplicity is what primarily constitutes a cloud of
resources, regardless of type. An important part of the cloud model, in general, is the concept of a pool of
resources that is drawn from, on demand, in small increments (smaller than what you would typically
purchase by buying equipment). The relatively recent innovation that has made this possible is
virtualization.

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that this
standard proposes for this is Data storage as a Service (DaaS). DaaS means “delivery over a network of
appropriately configured virtual storage and related data services, based on a request for a given service
level.”

5.3 Data Storage as a Service

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of
actual offerings and implementations are possible. The only type of storage that is excluded from this
definition is that which is delivered, not based on demand, but on fixed capacity increments.
CDMI 1.0.1h (March 30, 2011) Working Draft 8

Overview of Cloud Storage © SNIA
An important part of any DaaS offering is the support of legacy clients. Support is accommodated with
existing standard protocols such as iSCSI (and others) for block and CIFS/NFS or WebDAV for file
network storage, as shown in Figure 1, "Existing Data Storage Interface Standards".

The difference between the purchase of a dedicated appliance and that of cloud storage is not the
functional interface, but merely the fact that the storage is delivered on demand. The customer pays for
either what they actually use, or in other cases, what they have allocated for use. In the case of block
storage, a Logical Unit Number (LUN), or virtual volume, is the granularity of allocation. For file protocols, a
file system is the unit of granularity. In either case, the actual storage space may be thin provisioned and
billed for, based on actual usage. Data services, such as compression and deduplication, may be used to
further reduce the actual space consumed.

Managing this storage is typically done out of band of these standard data storage interfaces, either
through an API, or more commonly, through an administrative browser-based user interface. This interface
may be used to invoke other data services as well, such as snapshot and cloning.

In this model, the underlying storage space is abstracted and exposed by these interfaces using the notion
of a container. A container is not only a useful abstraction for storage space, but also serves as a grouping
of the data stored in it and a point of control for applying data services in the aggregate.

Another type of DaaS offering is one of simple table space storage, allowing for horizontal scaling of
database-like operations that certain applications need. Rather than virtualizing relational database
instances, table space storage offers a new data storage interface of limited functionality, with the
emphasis on scalability rather than features. Scalability allows the tables to be partitioned across multiple
nodes based on common key values, affording horizontal scalability at the expense of functions that may
typically only be implemented by a vertically-scaled relational database.

Figure 1 - Existing Data Storage Interface Standards

Container

POSIX (NFS, CIFS,
WebDAV)

iSCSI LUNs, Targets

Block Storage Client Filesystem Client
9 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Overview of Cloud Storage
A great deal of innovation and change is happening in these interfaces, and each offering has its own
unique proprietary interface, as shown in Figure 2, "Storage Interfaces for Database/Table Data".

Due to the rapid innovation in this space, it is probably best to wait for further development of this type of
cloud storage before trying to standardize a functional interface for this type of storage.

A third category of functional interface for data storage has emerged. This type of interface treats every
data object as accessible via a unique URI. It may then be fetched using the standard HTTP protocol, and
a browser may be used to invoke the appropriate application to deal with the data.

Each data object is created, retrieved, updated, and deleted (CRUD semantics) as a separate resource. In
this type of interface, a container, if used, is a simple grouping of data objects for convenience. Nothing
prevents the concept of containers, in this case, from being hierarchical, although any given

Figure 2 - Storage Interfaces for Database/Table Data

T
a

b
le

T
a

b
le

T
a

b
le

T
a

b
le

T
a

b
le

Database/Table Client

Multiple, Proprietary Interfaces
CDMI 1.0.1h (March 30, 2011) Working Draft 10

Overview of Cloud Storage © SNIA
implementation might support only a single level of such. This type of container is called a “soft” container,
as shown in Figure 3, "Storage Interfaces for Object Storage Client Data".

While there are several proprietary examples of this type of interface, they all pretty much support the
same set of operations. This, then, is an area ripe for standardization.

5.4 Data Management in the Cloud

Many of the initial offerings of cloud storage focused on a kind of “best effort” quality of storage service,
with very little offering of additional data services for that data. To address the needs of enterprise
applications with cloud storage, however, there is increasing pressure to offer better quality of service and
the deployment of additional data services.

The danger, of course, is that cloud storage loses its benefit of simplicity and the abstraction of complexity,
as additional data services are applied and the implication that these services need to be managed. One
can hardly have cloud storage customers setting up backup schedules through dedicated user interfaces,
deploying data services individually for their data elements, and so on.

Fortunately, the SNIA Storage Industry Resource Domain Model (see Figure 4) [SIRDM] gives us a way to
minimize this complexity and address the need for cloud storage to remain simple. By using the different
types of metadata discussed in that model for a cloud storage interface, an interface may be created that

Figure 3 - Storage Interfaces for Object Storage Client Data

Object Storage Client

CRUD
operations via
HTTP

Container
 Container

Container
11 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Overview of Cloud Storage
allows offerings to meet the requirements of the data without adding undue complexity to the management
of that data.

By supporting metadata in a cloud storage interface standard and prescribing how the storage system and
data system metadata is interpreted to meet the requirements of the data, the simplicity required by the
cloud storage paradigm may be maintained and may still address the requirements of enterprise
applications and their data.

User metadata is retained by the cloud and may be used to find the data objects and containers by doing a
query for specific metadata values. The schema for this metadata may be determined by each application,
domain, or the user. For more information on support for user metadata, see Section 16.2.

Storage system metadata is produced and interpreted by the cloud offering or basic storage functions,
such as modification and access statistics, and for governing access control. For more information on
support for storage system metadata, see Chapter 16, "Metadata".

Data system metadata is interpreted by the cloud offering as data requirements that drive the operation of
underlying data services for that data. It may apply to an aggregation of data objects in a container or even
to individual data objects, if the offering supports this level of granularity. For more information on support
for data system metadata, see Section 16.4.

5.5 Data and Container Management

There is no reason that managing data and managing containers should involve different paradigms.
Therefore, this standard proposes that the use of metadata be extended from applying to individual data
elements to applying to containers of data as well. Thus, any data placed into a container essentially
inherits the data system metadata of the container into which it was placed. When creating a new
container within an existing container, the new container would similarly inherit the metadata settings of its
parent's data system. Of course, the data system metadata may be overridden at the container or
individual data element level, as desired.

Even if the functional interface that the offering provides does not support setting this type of metadata on
individual data elements, it may still be applied to the containers, even though it may not be able to be
overridden on the basis of individual data elements through that interface. For file-based interfaces that
support extended attributes (i.e., CIFS, NFSv4), these extended attributes may be used to specify the data
system metadata to override that specified for the container through these existing standard interfaces.

Figure 4 - Using the Resource Domain Model

Read/Write Data Location

Metadata

System
User

Storage Data

HTTP
GET/PUT

Query,
URIs

Requirements
that drive
data services

Cloud Data Storage Interface

Access,
Modify
ACLs

Application
Specific
CDMI 1.0.1h (March 30, 2011) Working Draft 12

Overview of Cloud Storage © SNIA
The mapping of extended attribute names and values to individual file data requirements as supported by
cloud storage will be done as a follow-on effort.

5.6 Reference Model for Cloud Storage Interfaces

By putting all of these elements together, a reference model is created, as shown in Figure 5, "Cloud
Storage Reference Model":

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and
new applications. All of the interfaces allow storage to be provided on demand, drawn from a pool of
resources. The capacity is drawn from a pool of storage capacity provided by storage services. The data
services are applied to individual data elements, as determined by the data system metadata. Metadata
specifies the data requirements on the basis of individual data elements or on groups of data elements
(containers).

Figure 5 - Cloud Storage Reference Model

Data Storage Cloud

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

SNIA Cloud Data
Management
Interface (CDMI)

Cloud Data
Management

T
a

b
le

T
a

b
le

T
a

b
le

T
a

b
le

T
a

b
le

Draws Resources on
Demand

 Container

POSIX (NFS, CIFS,
WebDAV)

iSCSI, FC, FCoE
LUNs, Targets

XAM VIM for
CDMI Database/Table Client

XAM ClientObject Storage Client

Block Storage Client Filesystem Client SNIA Cloud
Data
Management
Interface
(CDMI)

Multiple, Proprietary Interfaces

Container
 Container

Container

Data/Storage Management Client

Management of the
Cloud Storage can be
standalone or part of
the overall
management of your
cloud computing

Clients acting in the role of using a Data Storage Interface

Clients acting in the
role of Managing Data/
Storage

Clients can be in the
cloud or enterprise and
provide additional
services (computing,
data, etc.)

Information
Services
(future)

Information
Services
(future)

Information
Services
(future)

Exports to Cloud
Computing
13 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Overview of Cloud Storage
5.7 SNIA Cloud Data Management Interface

As shown in Figure 5, "Cloud Storage Reference Model", the SNIA Cloud Data Management Interface
(CDMI) is the functional interface that applications may use to create, retrieve, update, and delete data
elements from the cloud. As part of this interface, the client will be able to discover the capabilities of the
cloud storage offering and to use this interface to manage containers and the data that is placed in them.
In addition, data system metadata may be set on containers and their contained data elements through
this interface.

The majority of existing cloud storage offerings today will likely be able to implement the interface. They
may implement the interface with an adapter to their existing proprietary interface, or they may implement
the interface directly, side by side with their existing interfaces. In addition, existing client libraries, such as
XAM, may be adapted to this interface, as shown in Figure 5.

This interface may also be used by administrative and management applications to manage containers,
domains, security access, and monitoring/billing information, even for storage that is functionally
accessible by legacy or proprietary protocols. The capabilities of the underlying storage and data services
are exposed so that clients may understand the offering.

Conformant cloud offerings may offer a subset of the CDMI interface, as long as they expose the
limitations in the capabilities part of the interface.

The CDMI standard uses RESTful principles in the interface design where possible [REST]. Typically,
cloud implementations will offer a subset of CDMI and describe what is implemented via the capabilities.
For more information on the REST principles, please see [RESTful Web].

5.8 Object Model for CDMI

The model behind the Cloud Data Management Interface is shown in Figure 6, "CDMI Interface Model".

Figure 6 - CDMI Interface Model

Root
https://<offering>/

Container A
https://<offering>/containerA/

Container B
https://<offering>/containerB/

Queue
https://<offering>/containerB/
queue1

DataObject1
https://<offering>/containerA/
dataobject1

DataObject2
https://<offering>/containerA/
dataobject2

Key Value
Key Value
......

Key Value
Key Value
......

Key Value
Key Value
......

Key Value
Key Value
......

Capabilities
https://<offering>/capabilities/

Key Value
Key Value
......

Domains
https://<offering>/domains/

Key Value
Key Value
......

Key Value
Key Value
......
CDMI 1.0.1h (March 30, 2011) Working Draft 14

Overview of Cloud Storage © SNIA
For data storage operations, the client of the interface only needs to know about container objects and
data objects. All data path implementations are required to support at least one level of containers, a sort
of grouping of data objects. As shown in Figure 6, the client may do a PUT to the container URI and create
a new container with the specified name. The KEY/VALUE metadata is optional. Once a container is
created, a client may do a PUT to create a data object URI. A subsequent GET will fetch the actual data
object and its value. The only metadata KEY/VALUE required on the data object PUT is content type
(MIME). Other KEY/VALUE pairs may be used to specify the data requirements at the object level. This
metadata is defined in the CDMI standard.

CDMI also defines an object, called a queue, which has special properties for in-order, first in, first-out
creation and fetching of queue objects, similar to a container of data objects. More information on queues
may be found in Chapter 11, "Queue Object Resource Operations".

The CDMI does not need to be used as the data path, and it applies to cloud storage that is exposed as
either standard or proprietary interfaces. In this case, the client might stop at creating the container. The
metadata is also used to configure the data requirements of the storage under the exported protocol that
the container exposes, such as a block protocol or a file protocol. While many implementations may use an
underlying file to store data for a block protocol (such as iSCSI), in the CDMI interface, the container is
used as the abstraction for applying the data system metadata for this data and for attaching the structures
that govern the exported protocols. This maps to the concept of a block storage location (Target, LUN)
being a container of data objects, each a block in size and located by their Logical Block Address.

A cloud offering may also support domains, which allow administrative ownership to be associated with
stored objects. Domains allow the standard to determine how user credentials are mapped to principles
used in an Access Control List (ACL), allow granting of special cloud-related privileges, and allow
delegation to external user authorization systems, such as LDAP or Active Directory. Domains may also be
hierarchical, allowing for corporate domains with multiple children domains for departments or individuals.
The domain concept is also used to aggregate usage data that is used to bill, meter, and monitor cloud
use.

Finally, a capabilities resource and associated URI allows a client to discover the capabilities of the
offering and its implementation of CDMI. The interface requires this resource, but static pages that list
exactly what is implemented may satisfy this requirement.

5.9 CDMI Metadata

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user
metadata, and storage system metadata.

HTTP metadata is metadata that is related to the use of the HTTP protocol, such as content-size, content-
type, etc. This type of metadata is not specifically related to the CDMI standard, but needs to be discussed
to explain how CDMI uses the HTTP standard.

Data system metadata is metadata that is specified by a CDMI client and attached to a container or data
object, abstractly specifying the data requirements that are then supplied by data services that are
deployed in the cloud storage system. The data system metadata settings are treated as goals. In some
cases, actual measurements toward these goals are specified.

User metadata is arbitrarily-defined JSON strings that are specified by the CDMI client and attached to
objects. The namespace used for user metadata is self-administered (such as using the reverse domain
name) and restricted to not beginning with the prefix “cdmi_”.
15 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Overview of Cloud Storage
Storage system metadata is read-only metadata that is generated by the storage services in the system to
provide useful information to a CDMI client. Examples include ACLs, creation time, etc.

5.10 Object ID

Every object stored within a CDMI-compliant system will have a globally unique object identifier (OID)
assigned at creation time. The CDMI object ID is a string but has rules for how it is generated and how it
obtains its uniqueness. Each offering that implements CDMI is able to produce these identifiers without
conflicting with other offerings.

Every CDMI system shall allow access to stored objects, by object ID, by allowing the object ID to be
appended to the root container URI. For example, for the following root container URI, the second URI
would provide access to objects by object ID:

http://cloud.example.com/root
http://cloud.example.com/root/cdmi_objectid/<objectID>

5.11 CDMI Object ID Format

The offering shall create the Object ID, which identifies an object. The Object ID shall be globally unique
and shall conform to the format defined in Figure 7, "Object ID Format". The native format of an Object ID
is a variable-length byte sequence and shall be a maximum length of 40 bytes. An application should treat
Object IDs as opaque byte strings. However, the Object ID format is defined such that its integrity may be
validated, and independent offerings may assign unique Object ID values independently.

As shown in Figure 7,

• The reserved bytes shall be set to zero.

• The Enterprise Number field shall be the SNMP enterprise number of the offering organization that
created the Object ID, in network byte order. See [RFC2578] and http://www.iana.org/
assignments/enterprise-numbers. 0 is a reserved value.

• The 5th byte shall contain the full length of the Object ID, in bytes.

• The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables the
Object ID to be validated for integrity. The CRC field shall be generated by running the algorithm

Table 4 - Creation/Consumption of Storage System Metadata

Created by User Created By System

Consumed by User User metadata. Storage system metadata.

Consumed by System Data system metadata. N/A.

0 1 2 3 4 5 6 7 8 9 10 ... 38 39

Reserved
(zero)

Enterprise Number Reserved
(zero)

Length CRC Opaque Data

Figure 7 - Object ID Format
CDMI 1.0.1h (March 30, 2011) Working Draft 16

http://www.iana.org/assignments/enterprise-numbers

Overview of Cloud Storage © SNIA
[CRC] across all bytes of the Object ID, as defined by the Length field, with the CRC field set to
zero. The CRC function shall have the following parameters:

— Name : "CRC-16"

— Width : 16

— Poly : 0x8005

— Init : 0x0000

— RefIn : True

— RefOut : True

— XorOut : 0x0000

— Check : 0xBB3D

This function defines a 16-bit CRC with polynomial 0x8005, reflected input, and reflected output.
This CRC-16 is specified in [CRC].

• Opaque data in each Object ID shall be unique for a given Enterprise Number.

• The native format for an Object ID is binary. When necessary, such as when included in JSON
strings, the Object ID textual representation shall be hex-encoded and case insensitive.

5.12 Security

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing
data and storage. The specific objectives to be addressed by security include:

• Provide a mechanism that assures that the communications between a CDMI client and server
may not be read or modified by a third party

• Provide a mechanism that allows CDMI clients and servers to provide an assurance of their
identity

• Provide a mechanism that allows control of the actions a CDMI client is permitted to perform on a
CDMI server

• Provide a mechanism for records to be generated for actions performed by a CDMI client on a
CDMI server

• Provide mechanisms to protect data at rest

• Provide a mechanism to eliminate data in a controlled manner

• Provide mechanisms to discover the security capabilities of a particular implementation

Security measures within CDMI may be summarized as transport security, user and entity authentication,
authorization and access controls, data integrity, data and media sanitization, data retention, protections
against malware, data at-rest encryption, and security capability queries. With the exception of both the
transport security and the security capability queries, which are mandatory to implement, the security
measures may vary significantly from implementation to implementation.

When security is a concern, the CDMI client should begin with a series of security capability queries to
determine the exact nature of the security features that are available. (See Section 12.1.1, "Cloud Storage
17 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Overview of Cloud Storage
System-Wide Capabilities".) Based on responses from the CDMI implementation, a risk-based decision
should be made as to whether the CDMI resource should be used. This is particularly true when the data
to be stored in the cloud storage is sensitive or regulated, such that it shall be protected (for example,
encrypted) or handled in a particular manner (for example, full accountability and traceability of
management and access).

HTTP is the mandatory transport mechanism for this version of CDMI, and HTTP over TLS (HTTPS) is the
mechanism used to secure the communications between CDMI entities. To ensure both security and
interoperability, all CDMI implementations are required to implement the Transport Layer Security (TLS)
protocol as described in Annex A, but its use by CDMI entities is optional (see Annex A, "(normative)
Transport Security").

Additional details associated with the security capabilities are found in other sections of this document.

5.13 Required HTTP Support

A conformant implementation of CDMI shall also be a conformant implementation of [RFC2616] (HTTP
1.1). This standard lists the sections of [RFC2616] that shall be supported.

5.13.1 Content-Type Negotiation

A client may optionally supply an Accept header. If the content type of the requested resource is not
present in the header, the server shall return a 406 Not Acceptable status code. (See Section 12 of
[RFC2616].)

5.13.2 Range Support

The server shall support Range headers and partial content responses (see Section 14.16 of [RFC2616]).

5.14 Time Representations

All date/time values, unless otherwise specified, are in the [ISO-8601] extended representation (YYYY-
MM-DDThh:mm:ss.ssssssZ). The full precision must be specified, the sub-second separator must be a ".",
the Z UTC zone indicator must be included, and all timestamps must be in UTC time zone. The YYYY-MM-
DDT24:00:00.000000Z hour must not be used and represented as YYYY-MM-DDT00:00:00.000000Z.

All time durations, unless otherwise specified, are in the [ISO-8601] start date/end date representation
(YYYY-MM-DDThh:mm:ss.ssssssZ/YYYY-MM-DDThh:mm:ss.ssssssZ). The end-date must be equal to or
later than the start-date. The full precision must be specified, the sub-second separator must be a ".", the Z
UTC zone indicator must be included, and all timestamps must be in UTC time zone. The YYYY-MM-
DDT24:00:00.000000Z hour must not be used and represented as YYYY-MM-DDT00:00:00.000000Z.
CDMI 1.0.1h (March 30, 2011) Working Draft 18

Common Operations © SNIA
6 Common Operations

The example transactions in this chapter illustrate some of the more common CDMI operations.

6.1 Discover the Capabilities of a Cloud Storage Provider

Perform a GET to the capabilities URI:

The response looks like:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_capabilities/",
 "objectID" : "0000706D00100C435125A61B4C289455",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_webdav" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024",
 "cdmi_size" : "true",
 "cdmi_list_children" : "true",
 "cdmi_read_metadata" : "true",
 "cdmi_modify_metadata" : "true",
 "cdmi_create_container" : "true",
 "cdmi_delete_container" : "true"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

19 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Common Operations
6.2 Create a New Container

Perform a PUT to the new container URI:

The response looks like:

6.3 Create a Data Object in a Container

Perform a PUT to the new data object URI:

PUT /MyContainer HTTP/1.1/
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 }
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/",
 "objectID" : "0000706D0010D538DEEE8E38399E2815",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "0"
 },
 "childrenrange" : "",
 "children" : [

]
}

PUT /MyContainer/MyDataObject.txt HTTP/1.1/
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "Hello CDMI World!"
}

CDMI 1.0.1h (March 30, 2011) Working Draft 20

Common Operations © SNIA
The response looks like:

6.4 List the Contents of a Container

Perform a GET to the container URI:

The response looks like:

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyDataObject.txt",
 "objectID" : "0000706D0010734CE0BAEB29DD542B51",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17"
 }
}

GET /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: */*
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/",
 "objectID" : "0000706D0010D538DEEE8E38399E2815",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "83"
 },
 "childrenrange" : "0-0",
 "children" : [
 "MyDataObject.txt"
]
}

21 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Common Operations
6.5 Read the Contents of a Data Object

GET from the data object URI:

The response looks like:

6.6 Read Only the Value of a Data Object

Perform a GET to the data object URI:

The response looks like:

6.7 Delete a Data Object

Perform a DELETE to the data object URI:

The response looks like:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi_object
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyDataObject.txt",
 "objectID" : "0000706D0010734CE0BAEB29DD542B51",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17"
 },
 "valuerange" : "0-16",
 "value" : "Hello CDMI World!"
}

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

HTTP/1.1 200 OK
Content-Type: text/plain

Hello CDMI World!

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 204 No Content
CDMI 1.0.1h (March 30, 2011) Working Draft 22

Interface Standard © SNIA
7 Interface Standard

7.1 HTTP Status Codes

HTTP status codes are used to convey the results of the RESTful operations and to follow the basic
semantics of HTTP with minimal overloading, as described in each operation description below (see
Table 5). Other status codes are not part of this standard and retain their original semantics from
HTTP 1.1.

7.2 Types of Objects in the Model

The five types of resource objects in the model include data objects, container objects, domain objects,
and capability objects (see Table 6). The Content-Type in any given operation is specific to each type of
resource object.

Table 5 - HTTP Status Codes

Status Code HTTP Name Used for

200 OK Resource retrieved successfully.

201 Created Resource created successfully.

202 Accepted Long running operation accepted for processing.

204 No Content Operation successful, no data.

400 Bad Request Missing or invalid request contents.

401 Unauthorized Invalid authentication/authorization credentials.

403 Forbidden This user is not allowed to perform this request.

404 Not Found Requested resource not found.

405 Method Not Allowed Requested HTTP verb not allowed on this resource.

406 Not Acceptable No content type may be produced at this URI that matches the request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock, or may
cause a state transition error on the server.

500 Internal Server Error An unexpected implementor-specific error.

501 Not Implemented A CDMI operation or metadata value was attempted that is not
implemented.

Table 6 - Types of Objects in the Model

Object Type Description

Data objects Data objects have a value but have no children.

For more information, see Chapter 8, "Data Object Resource Operations".

Container objects Container objects may have child objects but have no value. Container objects may be
exported via protocols other than CDMI for data path operations, but the associated value is
not represented in container objects via the CDMI data path.

For more information, see Chapter 9, "Container Object Resource Operations".
23 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Interface Standard
The HTTP verbs overloaded by CDMI for each of these objects varies by object type. Non-overloaded
HTTP operations may also be allowed for certain objects.

7.3 Object References

Object references are URIs within the cloud storage namespace that point to another URI within the same
or another cloud storage namespace. References are similar to soft links in a file system, and the cloud
does not guarantee that the referenced URI will be valid after the time of creation.

References are visible as children in a container and are distinguished from non-references by a trailing
"?" character added to the reference name. Performing an operation (with the exception of create or
delete) to a reference URI will result in a 302 Found HTTP redirect, with the "Location" HTTP header
containing the redirect destination URI that was specified at the time the reference was created. The
reference’s destination URI may not be altered once a reference has been created.

To continue, when CDMI clients receive a 302 Found redirect, they should retry the operation on the URI
contained with the "Location" header.

A delete operation on a reference URI shall delete the reference.

Example 7-1

GET to a URI, where the URI is a reference:

The response looks like:

Domain objects Domain objects may have child objects but have no value.

For more information, see Chapter 10, "Domain Object Resource Operations".

Queue objects Queue objects have a value but have no children.

For more information, see Chapter 11, "Queue Object Resource Operations".

Capability objects Capability objects may have child objects but have no value.

For more information, see Chapter 12, "Capability Object Resource Operations".

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0

HTTP/1.1 302 Found
Location: http://cloud.example.com/MyContainer/MyOtherDataObject.txt

Table 6 - Types of Objects in the Model

Object Type Description
CDMI 1.0.1h (March 30, 2011) Working Draft 24

Data Object Resource Operations © SNIA
8 Data Object Resource Operations

8.1 Overview

Data objects are the fundamental storage component within CDMI and are analogous to files within a
filesystem. Each data object has a set of well-defined fields that include a single value and optional
metadata that is generated by the cloud storage system and specified by the cloud user.

Data objects are addressed in CDMI in one of the two following ways:

• http://cloud.example.com/dataobject

• http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E

The first example addresses the data object by URI, and the second addresses the data object by object
ID. Every data object has a single, globally-unique object identifier (OID) that remains constant for the life
of the object. Each data object may also have one or more URI addresses that allow the object to be
accessed.

Every data object has a parent object from which the data object inherits data system metadata that is not
explicitly specified in the data object itself. For example, the "budget.xls" data object stored at "http://
cloud.example.com/finance/budget.xls" would inherit data system metadata from its parent
container, "finance".

Individual fields within a data object may be accessed by specifying the field name after a question mark
"?" that is appended to the end of the data object URI. For example, the following URI would return just the
value field in the response body:

http://cloud.example.com/dataobject?value

Specific ranges of the value field may be accessed by specifying a byte range after the value field name.
For example, the following URI would return the first thousand bytes of the value field:

http://cloud.example.com/dataobject?value:0-1000

Byte ranges are specified as per Section 14.35.1 of [RFC2616].

A list of unique fields, separated by a semicolon ";" may be specified, allowing multiple fields to be
accessed in a single request. For example, the following URI would return the value and metadata fields in
the response body:

http://cloud.example.com/dataobject?value;metadata

8.1.1 Data Object Metadata

Data object metadata may also include arbitrary user-supplied metadata and data system metadata, as
specified in Chapter 16, "Metadata".

8.1.2 Data Object Consistency

Writing to a data object is an atomic operation. If a client were to read an object simultaneously with a write
to that same object, it shall get either the old version or the new version, but not a mix of both. Writes are
also atomic in the face of errors. Multiple simultaneous writes that complete without errors shall be ordered
by the timestamps on the returning responses, which is to say, by the timestamps placed on the responses
by the server-side implementation (i.e., according to the principle of eventual consistency).
25 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
Reading from an uninitialized data object byte shall return zero. If a client performs a data object value
read from a specific byte range that has not previously been written to, the byte value returned shall be
zero.

Note: Conformant implementations only need to support this atomicity via the CDMI object interface and
are free to provide other semantics through other interfaces to the data in the container.

8.1.3 Data Object Representations

The representations in this section are shown using JSON notation. A conforming implementation shall
support the mandatory parameters and may support the optional parameters. The parameter fields may be
specified or returned in any order. Both clients and servers shall support JSON representation.

8.2 Create a Data Object (CDMI Content Type)

Synopsis:

Creates a new data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <DataObjectName> is the name specified for the data object to be created.

Once created, the object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Delayed Completion of Create:

On a create operation for a data object, the server may return a response of 202 Accepted. In this case,
the object is in the process of being created. This response is particularly useful for long-running
operations, for instance, copying a large data object from a source URI. Such a response has the following
implications:

• The server returns an OID along with the 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the object

— User authorization for read access to any source object for move, copy, serialize, or
deserialize

— Availability of space to create the object or at least enough space to create a URI to report an
error

• Future accesses to the URI created (or the OID) shall succeed modulo any delays due to use of
eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In particular, the
server returns two fields in its response body to indicate progress:

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error
string starting with the value “Error”.

PUT <root URI>/<ContainerName>/<DataObjectName>
CDMI 1.0.1h (March 30, 2011) Working Draft 26

Data Object Resource Operations © SNIA
• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not Complete. When the final result
of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
"cdmi_create_dataobject" capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the "cdmi_create_reference" capability in the parent container.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the "cdmi_create_copy" capability in the parent container.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the "cdmi_create_move" capability in the parent container.

• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the
"cdmi_deserialize_dataobject" capability in the parent container.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the "cdmi_serialize_dataobject",
"cdmi_serialize_container", "cdmi_serialize_domain", or "cdmi_serialize_queue" capability in the
parent container.

Request Headers:

Header Type Description Requirement

Accept Header
String

"application/cdmi-object". Mandatory

Content-Type Header
String

"application/cdmi-object". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and the value has not yet been fully
populated. When set, the completionStatus field shall be set
to “Processing”.

Optional
27 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
Request Message Body:

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of the
data object.

• This field shall be kept as part of the metadata and
shall be included when deserializing, serializing,
copying, moving, or referencing a data object.

• If this field is not specified, the value of "text/plain"
shall be assigned as the field value.

• This field shall not be included when referencing a data
object.

Optional

metadata JSON
Object

Metadata for the data object.

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a data object, the metadata from the
source URI shall be used.

• If this field is included when creating a new data object by
specifying a value, the value provided in this field shall be
used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object ("{}")
shall be assigned as the field value.

• This field shall not be included when referencing a data
object.

Optional

domainURI JSON
String

URI of the owning domain. If different from the parent
domain, the user shall have the "cross_domain" privilege. If
not specified, the parent domain shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new data object.

Optional*

serialize JSON
String

URI of a CDMI object that shall be serialized into the new
data object.

Optional*

copy JSON
String

URI of a CDMI data object or queue that shall be copied
into the new data object.

Optional*

move JSON
String

URI of a CDMI data object or queue that shall be copied
into the new data object, then removing the data object or
queue value at the source URI upon the successful
completion of the copy.

Optional*

reference JSON
String

URI of a CDMI data object that shall be pointed to by a
reference. If other fields from this table are supplied when
creating a reference, the server shall respond with a 400
Bad Request error response.

Optional*

deserializevalue JSON
String

A data object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

*Only one of these parameters shall be specified in any given operation, and except for value, these fields are
not persisted.
CDMI 1.0.1h (March 30, 2011) Working Draft 28

Data Object Resource Operations © SNIA
Response Headers:

Response Message Body:

value JSON
String

JSON-encoded data.

• If this field is not included, an empty JSON String ("")
shall be assigned as the field value.

• Binary data shall be escaped as per the JSON escaping
rules described in [RFC4627].

Optional*

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object". Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the object as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectid/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

Field Name Type Description Requirement

*Only one of these parameters shall be specified in any given operation, and except for value, these fields are
not persisted.
29 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
Response Status:

Example 8-1

PUT to the container URI the data object name and contents

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object. Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

HTTP Status Description

201 Created New data object was created.

202 Accepted Data object is in the process of being created. Investigate completionStatus
and percentComplete parameters to determine the current status of the
operation.

304 Not Modified The operation conflicts because the object already exists.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

Field Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 30

Data Object Resource Operations © SNIA
The response looks like:

Example 8-2

PUT to the container URI a move from an existing data object

The response looks like:

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyDataObject.txt",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 }
}

PUT /MyContainer/MySecondDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "move" : "/MyContainer/MyDataObject.txt"
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MySecondDataObject.txt",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",

 "objectName" : "MySecondDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 }
}
31 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
8.3 Create a Data Object (Non-CDMI Content Type)

Synopsis:

Creates a new data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <DataObjectName> is the name specified for the data object to be created.

Once created, the object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
"cdmi_create_dataobject" capability in the parent container.

Request Headers:

Request Message Body:

The data to be stored in the value of the data object.

Response Headers:

None specified.

Response Message Body:

None specified.

PUT <root URI>/<ContainerName>/<DataObjectName>

Header Type Description Requirement

Content-Type Header
String

The content-type of the data to be stored as a data object.
The value specified here shall be used in the mimetype field
of the CDMI data object.

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and has not yet been fully created. When
set, the completionStatus field shall be set to
"Processing".

Optional
CDMI 1.0.1h (March 30, 2011) Working Draft 32

Data Object Resource Operations © SNIA
Response Status:

Example 8-3

PUT to the container URI the data object name and contents

The response looks like:

8.4 Read a Data Object (CDMI Content Type)

Synopsis:

Reads from an existing data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range within the data object value field.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

HTTP Status Description

201 Created New data object was created.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

HTTP/1.1 201 Created

GET <root URI>/<ContainerName>/<DataObjectName>
GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<DataObjectName>?value:<range>;...
GET <root URI>/<ContainerName>/<DataObjectName>?metadata:<prefix>;...
33 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the metadata of an existing data object is indicated by the presence
of the "cdmi_read_metadata" capability in the specified object.

• Support for the ability to read the value of an existing data object is indicated by the presence of
the "cdmi_read_value" capability in the specified object. Any read from a specific byte location not
previously written to by a create or update operation shall return zero for the byte value.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the "cdmi_read_value_range" capability in the specified object. Any
read from a specific byte location within the value range specified not previously written to by a
create or update operation shall return zero for the byte value.

Request Headers:

Request Message Body:

None specified.

Response Headers:

Response Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-object"

Shall contain a list of one or more of the five CDMI MIME
types.

Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Content-Type Header
String

"application/cdmi-object". Mandatory

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the object as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 34

Data Object Resource Operations © SNIA
objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectid/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object. Mandatory

metadata JSON
Object

Metadata for the data object.

This field includes any user and data system metadata
specified in the request body metadata field, along with
storage system metadata generated by the cloud storage
system.

See Chapter 16, "Metadata" for a further description of
metadata.

Mandatory

valuerange JSON
String

The range of bytes of the value returned in the value field. If
the object value has gaps (due to PUTs with non-contigious
value ranges), the valuerange will indicate the range to the
first gap in the object value. The cdmi_size storage system
metadata of the data object will indicate the size of the
object including gaps.

Mandatory

value String The data object value encoded in JSON. The value field is
only provided when completionStatus is Complete.

Mandatory

Field Name Type Description Requirement
35 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Response Status:

Example 8-4

GET to the data object URI to read all fields of the data object

The response looks like:

HTTP Status Description

200 OK Valid response is enclosed.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A data object was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content-type specified in the
Accept header.

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.0
Content-Type: application/cdmi-object

{
 "objectURI" : "/MyContainer/MyDataObject.txt",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuerange" : "0-36",
 "value" : "This is the Value of this Data Object"
}

CDMI 1.0.1h (March 30, 2011) Working Draft 36

Data Object Resource Operations © SNIA
Example 8-5

GET to the data object URI by ID to read all fields of the data object

The response looks like:

Example 8-6

GET to the data object URI to read the value and mimetype of the data object

The response looks like:

Example 8-7

GET to the data object URI to read the first ten bytes of the value of the data object

GET /cdmi_objectid/0000706D0010B84FAD185C425D8B537E
HTTP/1.1 Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_objectid/0000706D0010B84FAD185C425D8B537E",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuerange" : "0-36",
 "value" : "This is the Value of this Data Object"
}

GET /MyContainer/MyDataObject.txt?value;mimetype HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "value" : "This is the Value of this Data Object",
 "mimetype" : "text/plain"
}

GET /MyContainer/MyDataObject.txt?valuerange;value:0-10 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.0
37 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
The response looks like:

8.5 Read a Data Object (Non-CDMI Content Type)

Synopsis:

Reads from an existing data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

• <fieldname> is the name of a field.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the metadata of an existing data object is indicated by the presence
of the "cdmi_read_metadata" capability in the specified object.

• Support for the ability to read the value of an existing data object is indicated by the presence of
the "cdmi_read_value" capability in the specified object. Any read from a specific byte location not
previously written to by a create or update operation shall return zero for the byte value.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the "cdmi_read_value_range" capability in the specified object. Any
read from a specific byte location within the value range specified not previously written to by a
create or update operation shall return zero for the byte value.

Request Header:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "valuerange" : "0-10",
 "value" : "This is the"
}

GET <root URI>/<ContainerName>/<DataObjectName>
GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>
GET <root URI>/<ContainerName>/<DataObjectName>?metadata:<prefix>

Header Type Description Requirement

Range Header
String

A valid ranges-specifier (see [RFC2616] Section 14.35.1). Optional
CDMI 1.0.1h (March 30, 2011) Working Draft 38

Data Object Resource Operations © SNIA
Request Message Body:

None specified.

Response Headers:

Response Message Body:

• If no fields were specified in the request or the value field was specified in the request, the
response message body shall be the contents of the data object's value field.

• If a field other than the value field was specified in the request, the value of that specified field shall
be returned in JSON format.

• Requesting an optional field that is not present results in an HTTP status code of 404 Not Found.

• Requesting an undefined field results in an HTTP status codeof 400 Bad Request .

Response Status:

Example 8-8

GET to the data object URI to read the value of the data object

Header Type Description Requirement

Content-Type Header
String

If a field was not specified, or the value field was
specified, the content-type returned shall be the
mimetype field in the data object.

If a non-value field was specified, the content-type
shall be "application/json".

Mandatory

Location Header
String

The server shall respond with the URL that the
reference points to if the object is a reference.

Mandatory

HTTP Status Description

200 OK Data object contents in response.

204 No Content Data object exists but has no content.

206 Partial Content A requested range of the data object content was returned in response.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A data object was not found at the specified URI, or a requested field within
the data object was not found.

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
39 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
The response looks like:

Example 8-9

GET to the data object URI to read the mimetype field of the data object

The response looks like:

Example 8-10

GET to the data object URI to read the first ten bytes of the value of the data object

The response looks like:

8.6 Update a Data Object (CDMI Content Type)

Synopsis:

Updates an existing data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

GET /MyContainer/MyDataObject.txt?mimetype HTTP/1.1
Host: cloud.example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 "mimetype" : "text/plain"
}

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Range: bytes=0-10

HTTP/1.1 206 Partial Content
Content-Type: text/plain
Content-Range: bytes 0-10
Content-Length: 11

This is the

PUT <root URI>/<ContainerName>/<DataObjectName>
PUT <root URI>/<ContainerName>/<DataObjectName>?metadata
PUT <root URI>/<ContainerName>/<DataObjectName>?value
PUT <root URI>/<ContainerName>/<DataObjectName>?value:<range>
PUT <root URI>/<ContainerName>/<DataObjectName>?<fieldname>
CDMI 1.0.1h (March 30, 2011) Working Draft 40

Data Object Resource Operations © SNIA
• <DataObjectName> is the name of the data object to be updated.

• <range> is a byte range within the data object value field.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the Object ID.

Capabilities:

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the metadata of an existing data object is indicated by the
presence of the "cdmi_modify_metadata" capability in the specified object.

• Support for the ability to modify the value of an existing data object is indicated by the presence of
the "cdmi_modify_value" capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the "cdmi_modify_value_range" capability in the specified object.

Request Headers:

Request Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-object". Mandatory

Content-Type Header
String

"application/cdmi-object". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the object is in the process of being
updated, and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or
update, the next update without this field shall change the
completionStatus field back to "Complete".

Optional

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of the
data object. If present, this replaces the existing mimetype.

Optional

metadata JSON
Object

Metadata for the data object. If present, this replaces the
existing metadata. See Chapter 16, "Metadata" for a further
description of metadata.

Optional
41 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
Response Headers:

Response Message Body:

None specified.

Response Status:

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have the
"cross_domain" privilege.

• If not specified, the parent domain shall be used.

Optional

value JSON
String

This is the new data for the object. If present, this replaces
the existing value.

• If a value range was specified in the request, the new
data is inserted at the location specified by the range. Any
resulting gaps between ranges shall be treated as if zeros
had been written and shall be included when calculating
the size of the value.

• Binary data shall be escaped as per the JSON escaping
rules described in [RFC4627].

Optional

Header Type Description Requirement

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

HTTP Status Description

200 OK New metadata and/or content accepted.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found An update was attempted on an object that does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

Field Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 42

Data Object Resource Operations © SNIA
Example 8-11

PUT to the data object URI to set new field values

The response looks like:

Example 8-12

PUT to the data object URI to set a new mimetype

The response looks like:

Example 8-13

PUT to the data object URI to update a range of the value

The response looks like:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

HTTP/1.1 200 OK

PUT /MyContainer/MyDataObject.txt?mimetype HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain"
}

HTTP/1.1 200 OK

PUT /MyContainer/MyDataObject.txt?value:21-24 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "value" : "that"
}

HTTP/1.1 200 OK
43 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
8.7 Update a Data Object (Non-CDMI Content Type)

Synopsis:

Updates an existing data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the Object ID.

Capabilities:

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the value of an existing data object is indicated by the presence of
the "cdmi_modify_value" capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the "cdmi_modify_value_range" capability in the specified object.

Request Headers:

Request Message Body:

The data to be stored in the value of the data object.

Response Headers:

PUT <root URI>/<ContainerName>/<DataObjectName>

Header Type Description Requirement

Content-Type Header
String

The content-type of the data to be stored as a data object. The
value specified here shall be used in the mimetype field of the
CDMI data object.

Mandatory

X-CDMI-
Partial

Header
String

"true". Indicates that the object is in the process of being
updated and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to "Complete".

Optional

Header Type Description Requirement

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 44

Data Object Resource Operations © SNIA
Response Message Body:

None specified.

Response Status:

Example 8-14

PUT to the data object URI to update the value of the data object

The response looks like:

Example 8-15

PUT to the data object URI to update four bytes within of the value of the data object

The response looks like:

HTTP Status Description

200 OK New value accepted.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain
Content-Length: 37

This is the value of this data object

HTTP/1.1 200 OK

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Range: bytes=21-24
Content-Type: text/plain
Content-Length: 4

that

HTTP/1.1 200 OK
45 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Data Object Resource Operations
8.8 Delete a Data Object

Synopsis:

Deletes an existing data object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing data object is indicated by the presence of the
"cdmi_delete_object" capability in the specified object.

Request Headers:

Request Message Body:

None specified.

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client, for
example, "1.0, 1.5, 2.0".

Mandatory

HTTP Status Description

204 No Content Data object was successfully deleted.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.
CDMI 1.0.1h (March 30, 2011) Working Draft 46

Data Object Resource Operations © SNIA
Example 8-16

DELETE to the data object URI

The response looks like:

404 Not Found The resource specified was not found.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server or he data object may not be deleted.

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 204 No Content

HTTP Status Description
47 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
9 Container Object Resource Operations

9.1 Overview

Container objects are the fundamental grouping of stored data within CDMI and are analogous to
directories within a filesystem. Each container has zero or more child objects and a set of well-defined
fields that include standardized and optional metadata generated by the cloud storage system and
specified by the cloud user.

Containers are addressed in CDMI in the two following ways:

• http://cloud.example.com/container/

• http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E

The first example addresses the container by URI, and the second addresses the container by CDMI
object ID. Every container has a single, globally-unique object identifier (OID) that remains constant for the
life of the object. Each container may also have one or more URI addresses that allow the container to be
accessed.

Containers may also be nested, as follows:

http://cloud.example.com/container/sub-container/

A container may have a parent object. In this case, the container inherits data system metadata from its
parent object. For example, the "sub-container" container may inherit its data system metadata from the
parent container "container".

This model allows direct mapping between CDMI-managed cloud storage and filesystems (for example),
as CDMI containers may be exported as NFSv4 or WebDAV filesystems, with all metadata visible. As files
are created, the files and directories are then visible through the CDMI interface acting as a data path. This
mapping, though possible, is not further described in this standard.

Individual fields within a container may be accessed by specifying the field name after a question mark "?"
appended to the end of the container URI. For example, the below URI would return just the children field
in the response body:

http://cloud.example.com/container?children

By specifying a range after the children field name, specific ranges of the children field may be accessed.
For example, the below URI returns the first two children from the children field:

http://cloud.example.com/container?children:0-2

Children ranges are specified in a similar fashion to byte ranges as per Section 14.35.1 of [RFC2616].

A list of fields, separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a
single request. For example, the below URI would return the children and metadata fields in the response
body:

http://cloud.example.com/container?children;metadata
CDMI 1.0.1h (March 30, 2011) Working Draft 48

Container Object Resource Operations © SNIA
9.1.1 Container Metadata

The following optional data system metadata may be provided:

Container metadata may also include arbitrary user-supplied metadata and data system metadata as
described in Chapter 16, "Metadata".

9.1.2 Container Object Addressing

Each container object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs. For example, a data object may be accessible via multiple virtual hosting paths,
where "http://cloud.example.com/users/snia/cdmi/" is also accessible through "http://
snia.example.com/cdmi/". Conflicting writes via different paths are managed the same way that
conflicting writes via one path are managed, via the principle of eventual consistency (see Section 9.2,
"Create a Container (CDMI Content Type)").

9.1.3 Container Object Representations

The representations in this section are shown using JSON notation. A conforming implementation shall
support the mandatory fields and may support the optional fields. The parameter fields may be specified or
returned in any order. Both clients and servers shall support JSON representation.

9.2 Create a Container (CDMI Content Type)

Synopsis:

Creates a new container at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <NewContainerName> is the name specified for the container to be created.

Once created, the container may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Delayed Completion of Create:

On a create operation for a container, the server may return a response of 202 Accepted. In this case, the
container is in the process of being created. This response is particularly useful for long-running
operations, for instance, for deserializing a source data object to create a large container hierarchy. Such a
response has the following implications:

• The server returns an OID along with 202 Accepted.

Metadata Name Type Description Requirement

cdmi_assignedsize JSON
String

The number of bytes that is reported via exported
protocols (may be thin provisioned). This number may
limit cdmi_size.

Optional

PUT <root URI>/<ContainerName>/<NewContainerName>/
49 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the container

— User authorization for read access to any source object for move, copy, serialize, or
deserialize

— Availability of space to create the container or at least enough space to create a URI to report
an error

• Future accesses to the URI created (or the object ID) shall succeed modulo any delays due to use
of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In particular, the
server returns two fields in its response body to indicate progress:

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error
string starting with the value "Error".

• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100). GET does not return any children for the container when completionStatus is
not “Complete”.

When the final result of the create operation is an error, the URI is created with the completionStatus field
set to the error message. It is the client's responsibility to delete the URI after the error has been noted.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
container:

• Support for the ability to create a new container object is indicated by the presence of the
"cdmi_create_container" capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the "cdmi_create_reference" capability in the parent container.

• If the new container object is a copy of an existing container, support for the ability to copy is
indicated by the presence of the "cdmi_create_copy" capability in the parent container.

• If the new container is the destination of a move, support for the ability to move the container is
indicated by the presence of the "cdmi_create_move" capability in the parent container.

• If the new container is the destination of a deserialize operation, support for the ability to
deserialize the source data object serialization of a container is indicated by the presence of the
"cdmi_deserialize_container" capability in the parent container.
CDMI 1.0.1h (March 30, 2011) Working Draft 50

Container Object Resource Operations © SNIA
Request Headers:

Request Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-container". Mandatory

Content-Type Header
String

"application/cdmi-container". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container.

• If this field is included when deserializing, serializing,
copying, or moving a container, the value provided in this
field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a container, the metadata from the
source URI shall be used.

• If this field is included when creating a new container by
specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new container
by specifying a value, an empty JSON object ("{}") shall
be assigned as the field value.

• This field shall not be included when referencing a
container.

Optional

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have
the "cross_domain" privilege.

• If not specified, the parent domain shall be used.

Optional

exports JSON
Object

A structure for each protocol enabled for this container.
This field shall not be included when referencing a data
object.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new container, including all child
objects inside the source serialized data object.

When deserializing a container, any exported protocols
from the original serialized container are not applied to the
newly created container(s).

Optional*

copy JSON
String

URI of a CDMI container that shall be copied into the new
container, including all child objects under the source
container. When copying a container, exported protocols
are not preserved across the copy.

Optional*

*If present, only one of these parameters shall be specified in any given operation, and these fields are not
persisted.
51 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Response Headers:

Response Message Body:

move JSON
String

URI of a CDMI container that shall be copied into the new
container, including all child objects under the source
container., then removing the container at the source URI
upon the successful completion of the copy.

Optional*

reference JSON
String

URI of a CDMI data object that shall be pointed to by a
reference. If other fields from this table are supplied when
creating a reference, the server shall respond with a 400
Bad Request error response.

Optional*

deserializevalue JSON
String

A container object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-container". Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, for example,
"1.0".

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the container as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectid/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

Field Name Type Description Requirement

*If present, only one of these parameters shall be specified in any given operation, and these fields are not
persisted.
CDMI 1.0.1h (March 30, 2011) Working Draft 52

Container Object Resource Operations © SNIA
Response Status:

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the container. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container. See Chapter 13, "Exported Protocols".

Optional
(returned only
if present)

snapshots JSON
Array

URI(s) of the SnapShot containers. See Chapter 14,
"Snapshots".

Optional
(returned only
if present)

childrenrange JSON
String

The range of the children returned in the children field. Mandatory

children JSON
Array

Names of the children objects in the container. Child
containers end with "/".

Mandatory

HTTP Status Description

201 Created New container was created.

202 Accepted Container is in the process of being created. Investigate completionStatus and
percentComplete parameters to determine the current status of the operation.

304 Not Modified The operation conflicts because the container already exists.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The container name already exists.

Field Name Type Description Requirement
53 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Example 9-1

PUT to the URI the container name and metadata

The response looks like:

PUT /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Container",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },
 "childrenrange" : "",
 "children" : [

]
}

CDMI 1.0.1h (March 30, 2011) Working Draft 54

Container Object Resource Operations © SNIA
9.3 Create a Container (Non-CDMI Content Type)

Synopsis:

Creates a new container at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <NewContainerName> is the name specified for the container to be created.

Once created, the container may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
container:

• Support for the ability to create a new container object is indicated by the presence of the
"cdmi_create_container" capability in the parent container.

Request Headers:

None specified.

Request Message Body:

None specified.

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

PUT <root URI>/<ContainerName>/<NewContainerName>/

HTTP Status Description

201 Created New container was created.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The container name already exists.
55 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Example 9-2

PUT to the URI the container name.

The response looks like:

9.4 Read a Container Object (CDMI Content Type)

Synopsis:

Reads from an existing container at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name specified for the container to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing container:

• Support for the ability to read the metadata of an existing container object is indicated by the
presence of the "cdmi_read_metadata" capability in the specified container.

• Support for the ability to list the children of an existing container is indicated by the presence of the
"cdmi_list_children" capability in the specified container.

• Support for the ability to list ranges of the children of an existing container is indicated by the
presence of the "cdmi_list_children_range" capability in the specified container.

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com

HTTP/1.1 201 Created

GET <root URI>/<ContainerName>/<TheContainerName>/
GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?children:<range>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?metadata:<prefix>;...
CDMI 1.0.1h (March 30, 2011) Working Draft 56

Container Object Resource Operations © SNIA
Request Headers:

Request Message Body:

None specified.

Response Headers:

Response Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-container". Shall contain a list of one or
more of the five CDMI MIME types.

Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, for example,
"1.0".

Mandatory

Content-Type Header
String

"application/cdmi-container". Mandatory

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the object as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectid/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory
57 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Response Status:

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the container. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container.

Optional
(returned only
if present)

snapshots JSON
Array

URI(s) of the SnapShot containers. Optional
(returned only
if present)

childrenrange JSON
String

The range of the children returned in the children field. Mandatory

children JSON
Array

Names of the children objects in the container. Child
containers end with "/".

Mandatory

HTTP Status Description

200 OK Metadata for the container object provided in the message body.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A container was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content-type specified in the
Accept header.

Field Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 58

Container Object Resource Operations © SNIA
Example 9-3

GET to the container URI to read all the fields of the container

The response looks like:

Example 9-4

GET to the container URI to read parentURI and children of the container

GET /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "MyContainer",
 "parentURI" : "/",
 "domainURI" : "/cdmi_domains/MyDomain",
 "capabilitiesURI" : "/cdmi_capabilities/Container",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 },
 "childrenrange" : "0-4",
 "children" : [
 "red",
 "green",
 "yellow",
 "orange/",
 "purple/"
]
 }
}

GET /MyContainer/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0
59 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
The response looks like:

Example 9-5

GET to the container URI to read children 0..2 of the container

The response looks like:

9.5 Read a Container Object (Non-CDMI Content Type)

Synopsis:

Reads from an existing container at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name specified for the container to be read from.

• <fieldname> is the name of a field.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "parentURI" : "/",
 "children" : [
 "red",
 "green",
 "yellow",
 "orange/",
 "purple/"
]
}

GET /MyContainer/?childrenrange;children:0-2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "childrenrange" : "0-2",
 "children" : [
 "red",
 "green",
 "yellow"
]
}

GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>
GET <root URI>/<ContainerName>/<TheContainerName>/?children:<range>
GET <root URI>/<ContainerName>/<TheContainerName>/?metadata:<prefix>
CDMI 1.0.1h (March 30, 2011) Working Draft 60

Container Object Resource Operations © SNIA
• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Note: CDMI does not define the format for a GET of a container when fields are not being requested.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing container:

• Support for the ability to read the metadata of an existing container object is indicated by the
presence of the "cdmi_read_metadata" capability in the specified container.

• Support for the ability to list the children of an existing container is indicated by the presence of the
"cdmi_list_children" capability in the specified container.

• Support for the ability to list ranges of the children of an existing container is indicated by the
presence of the "cdmi_list_children_range" capability in the specified container.

Request Headers:

None specified.

Request Message Body:

None specified.

Response Headers:

Response Message Body:

• The value of the specified field shall be returned in JSON format.

• Requesting an optional field that is not present results in a 404 Not Found HTTP status code.

• Requesting an undefined field results in a 400 Bad Request HTTP status code.

Header Type Description Requirement

Content-Type Header
String

"application/json”. Mandatory

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory
61 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Response Status:

Example 9-6

GET to the container URI to read parentURI of the container

The response looks like:

Example 9-7

GET to the container URI to read children 0..2 of the container

The response looks like:

HTTP Status Description

200 OK Metadata for the container object provided in the message body.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A container was not found at the specified URI.

GET /MyContainer/?parentURI HTTP/1.1
Host: cloud.example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 "parentURI" : "/"
}

GET /MyContainer/?childrenrange;children:0-2 HTTP/1.1
Host: cloud.example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 "childrenrange" : "0-2",
 "children" : [
 "red",
 "green",
 "yellow"
]
}
CDMI 1.0.1h (March 30, 2011) Working Draft 62

Container Object Resource Operations © SNIA
9.6 Update a Container (CDMI Content Type)

Synopsis:

Updates an existing container at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name of the container to be updated.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the Object ID.

Delayed completion of snapshot: On a snapshot operation for a container, the server may return a
response of 202 Accepted. Such a response has the following implications:

• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the snapshot

— User authorization for read access to the container

• Availability of space to create the snapshot or at least enough space to create a URI to report an
error.

• Future accesses to the snapshot URI shall succeed modulo any delays due to use of eventual
consistency.

The client performs GET operations to the snapshot URI to track the progress of the operation. In
particular, the server returns two fields in its response body to indicate progress:

• A completionStatus text field contains either “Processing”, “Complete”, or an error string starting
with the value "Error".

• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100). GET does not return any value for the object when completionStatus is not
“Complete”.

When the final result of the snapshot operation is an error, the snapshot URI is created with the
completionStatus field set to the error message. It is the client's responsibility to delete the URI after the
error has been noted.

Capabilities:

The following capabilities describe the supported operations that may be performed when updating an
existing container:

• Support for the ability to modify the metadata of an existing container is indicated by the presence
of the "cdmi_modify_metadata" capability in the specified container.

• Support for the ability to snapshot the contents of an existing container is indicated by the
presence of the "cdmi_snapshot" capability in the specified container.

PUT <root URI>/<ContainerName>/<TheContainerName>/
PUT <root URI>/<ContainerName>/<TheContainerName>/?metadata
63 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
• Support for the ability to add an exported protocol to an existing container is indicated by the
presence of the "cdmi_export_<protocol>" capabilities for the specified container.

Request Headers:

Request Message Body:

Response Headers:

Response Message Body:

None specified.

Header Type Description Requirement

Accept Header
String

"application/cdmi-container". Mandatory

Content-Type Header
String

"application/cdmi-container". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container. If present, this replaces the
existing metadata. See Chapter 16, "Metadata" for a further
description of metadata.

Optional

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have
the "cross_domain" privilege.

• If not specified, the parent domain shall be used.

Optional

snapshot JSON
String

Name of the snapshot to be taken. If a snapshot is added
or altered, the PUT operation only returns after the
snapshot is added to the snapshot list. Once created,
snapshots may be accessed as children containers under
the cdmi_snapshots child container of the container
receiving a snapshot.

Optional

exports JSON
Object

A structure for each protocol that is enabled for this
container. If an exported protocol is added or altered, the
PUT operation only returns after the export operation has
completed.

Optional

Header Type Description Requirement

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 64

Container Object Resource Operations © SNIA
Response Status:

Example 9-8

PUT to the container URI to set new field values

The response looks like:

HTTP Status Description

200 OK Container was updated.

202 Accepted Container or a snapshot (sub-container) is in the process of being created.
Investigate completionStatus and percentComplete parameters to determine the
current status of the operation.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found An update was attempted on a container that does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 } ,
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

HTTP/1.1 200 OK
65 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Example 9-9

PUT to the container URI to set a new exported protocol value

The response looks like:

9.7 Delete a Container Object

Synopsis:

Deletes an existing container, all contained children, and snapshots at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name of the container to be deleted.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when deleting an
existing container:

• Support for the ability to delete an existing data object is indicated by the presence of the
"cdmi_delete_container" capability in the specified container.

PUT /MyContainer/?exports HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D0010B84FAD185C425D8B537E",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 } ,
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

HTTP/1.1 200 OK

DELETE <root URI>/<ContainerName>/<TheContainerName>/
CDMI 1.0.1h (March 30, 2011) Working Draft 66

Container Object Resource Operations © SNIA
Request Headers:

Request Message Body:

None specified.

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

Example 9-10

DELETE to the container URI

The response looks like:

9.8 Create (POST) a New Data Object (CDMI Content Type)

Synopsis:

Creates a new data object as a child of the specified container URI.

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

HTTP Status Description

204 No Content Container object was successfully deleted.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The resource specified was not found

409 Conflict The container object may not be deleted

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 204 No Content

POST <root URI>/<ContainerName>/
POST <root URI>/cdmi_objectid/
67 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

Once created, the object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Delayed Completion of Create:

On a create operation for a data object, the server may return a response of 202 Accepted. In this case,
the object is in the process of being created. This response is particularly useful for long-running
operations, for instance, copying a large data object from a source URI. Such a response has the following
implications:

• The server returns an OID along with the 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the object

— User authorization for read access to any source object for move, copy, serialize, or
deserialize

— Availability of space to create the object or at least enough space to create a URI to report an
error

• Future accesses to the URI created (or the object ID) shall succeed modulo any delays due to use
of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In particular, the
server returns two fields in its response body to indicate progress:

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error
string starting with the value "Error".

• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not “Complete”. When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
data object:

• Support for the ability to create data objects through this operation is indicated by both the
presence of the "cdmi_post_dataobject" capability the presence of the "cdmi_create_dataobject"
capability in the specified container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the "cdmi_create_reference" capability in the parent container.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the "cdmi_create_copy" capability in the parent container.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the "cdmi_create_move" capability in the parent container.
CDMI 1.0.1h (March 30, 2011) Working Draft 68

Container Object Resource Operations © SNIA
• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the
"cdmi_deserialize_dataobject" capability in the parent container.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the "cdmi_serialize_dataobject",
"cdmi_serialize_container", "cdmi_serialize_domain", or "cdmi_serialize_queue" capability in the
parent container.

Request Headers:

Request Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-object". Mandatory

Content-Type Header
String

"application/cdmi-object". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of the
data object.

• This field shall not be included when deserializing,
serializing, copying, moving, or referencing a data object.

• If this field is not specified, the value of "text/plain" shall
be assigned as the field value.

Optional

metadata JSON
Object

Metadata for the data object.

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a data object, the metadata from the
source URI shall be used.

• If this field is included when creating a new data object by
specifying a value, the value provided in this field shall be
used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object ("{}")
shall be assigned as the field value.

• This field shall not be included when referencing a data
object.

Optional

*Only one of these parameters shall be specified in any given operation, and except for value, these fields are
not persisted. If more than one of these fields are supplied, the server shall respond with a 400 Bad Request
error response.
69 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Response Headers:

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have
the "cross_domain" privilege.

• If not specified, the parent domain shall be used.

• If creating an object by ID using /cdmi_objectid/,
there is no parent container, so the domain must be
specified.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new data object.

Optional*

serialize JSON
String

URI of a CDMI object that shall be serialized into the new
data object.

Optional*

copy JSON
String

URI of a CDMI data object or queue that shall be copied
into the new data object.

Optional*

move JSON
String

URI of a CDMI data object or queue that shall be copied
into the new data object, then removing the data object or
queue value at the source URI upon the successful
completion of the copy.

Optional*

reference JSON
String

URI of a CDMI data object that shall be pointed to by a
reference. If other fields from this table are supplied when
creating a reference, the server shall respond with a 400
Bad Request error response.

Optional*

deserializevalue JSON
String

A data object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

value JSON
String

JSON-encoded data. If this field is not included, an empty
JSON String ("") shall be assigned as the field value. Binary
data shall be escaped as per the JSON escaping rules
described in [RFC4627].

Optional*

Header Type Description Requirement

 Accept Header
String

"application/cdmi-object". Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Location Header
String

The unique URL for the new data object as assigned by the
system. In the absence of file name information from the
client the system shall assign the URL in the form: <root
URL>/<ContainerName>/<ObjectID>.

Mandatory

Field Name Type Description Requirement

*Only one of these parameters shall be specified in any given operation, and except for value, these fields are
not persisted. If more than one of these fields are supplied, the server shall respond with a 400 Bad Request
error response.
CDMI 1.0.1h (March 30, 2011) Working Draft 70

Container Object Resource Operations © SNIA
Response Message Body:

Field Name Type Description Requirement

objectURI JSON
String

URI of the object as assigned by the system. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object. Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system.

See Chapter 16, "Metadata" for a further description of
metadata.

Mandatory
71 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Response Status:

Example 9-11

POST to the container URI the data object contents

The response looks like:

HTTP Status Description

201 Created New data object was created.

202 Accepted Data object is in the process of being created. Investigate completionStatus and
percentComplete parameters to determine the current status of the operation.

400 Bad Request Invalid parameter in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The specified container URI does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0
http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectURI" : "/MyContainer/0000706D0010B84FAD185C425D8B537E",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "0000706D0010B84FAD185C425D8B537E",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 }
}

CDMI 1.0.1h (March 30, 2011) Working Draft 72

Container Object Resource Operations © SNIA
Example 9-12

POST to the object ID URI the data object contents

The response looks like:

9.9 Create (POST) a New Data Object (Non-CDMI Content Type)

Synopsis:

Creates a new data object as a child of the specified container URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
data object:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_objectid/0000706D0010B84FAD185C425D8B537E",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "0000706D0010B84FAD185C425D8B537E",
 "parentURI" : "/cdmi_objectid/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 }
}

POST <root URI>/<ContainerName>/
73 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
• Support for the ability to create data objects through this operation is indicated by both the
presence of the "cdmi_post_dataobject" capability the presence of the "cdmi_create_dataobject"
capability in the specified container.

Request Headers:

Request Message Body:

The message body shall contain the contents (value) of the data object to be created.

Response Headers:

Response Message Body:

None specified.

Response Status:

Example 9-13

POST to the container URI the data object contents

The response looks like:

Header Type Description Requirement

Content-Type Header
String

Supply the MIME type of the object to be created. Mandatory

Header Type Description Requirement

Location Header
String

The unique URL for the new data object as assigned by the
system. In the absence of file name information from the
client the system shall assign the URL in the form: <root
URL>/<ContainerName>/<ObjectID>.

Mandatory

HTTP Status Description

201 Created New data object was created.

400 Bad Request Invalid parameter in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The specified container URI does not exist.

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain

<object contents>

HTTP/1.1 201 Created
Location: http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E
CDMI 1.0.1h (March 30, 2011) Working Draft 74

Container Object Resource Operations © SNIA
Example 9-14

POST to the object ID URI the data object contents

The response looks like:

9.10 Create (POST) a New Queue Object (CDMI Content Type)

Synopsis:

Creates a new queue object as a child of the specified container URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

Once created, the queue object can also be accessed at <root URI>/cdmi_objectid/<objectID>.

Delayed Completion of Create:

On a create operation for a queue object, the server may return a response of 202 Accepted. In this case,
the object is in the process of being created. This response is particularly useful for long-running
operations, for instance, copying a large number of queue items from a source URI. Such a response has
the following implications:

• The server returns an OID along with the 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the object

— User authorization for read access to any source object for move, copy, serialize, or
deserialize

— Availability of space to create the object or at least enough space to create a URI to report an
error

• Future accesses to the URI created (or the object ID) will succeed modulo any delays due to use
of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In particular, the
server returns two fields in its response body to indicate progress:

• A mandatory completionStatus text field contains either “Processing”, “Complete”, or an error
string starting with the value "Error".

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain

<object contents>

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537

POST <root URI>/<ContainerName>/
POST <root URI>/cdmi_objectid/
75 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not “Complete”. When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

Capabilities:

The following capabilities describe the supported operations that can be performed when creating a new
queue object:

• Support for the ability to create queue objects through this operation is indicated by both the
presence of the "cdmi_post_queue" capability the presence of the "cdmi_create_queue" capability
in the specified container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the "cdmi_create_reference" capability in the parent container.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the "cdmi_copy_queue" capability in the parent container.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the "cdmi_move_queue" capability in the parent container.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the "cdmi_deserialize_queue"
capability in the parent container.

Request Headers:

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" Mandatory

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 76

Container Object Resource Operations © SNIA
Request Message Body:

Response Headers:

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object.

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from
the source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object ("{}")
will be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user must have
the "cross_domain" privilege.

• If not specified, the parent domain will be used.

• If creating an object by ID using /cdmi_objectid/,
there is no parent container, so the domain must be
specified.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that will be
deserialized to create the new queue object.

Optional*

copy JSON
String

URI of a CDMI queue object that will be copied into the new
queue object.

Optional*

move JSON
String

URI of a CDMI queue object that will be copied into the new
queue object. When the copy is successfully completed, the
queue object at the source URI is removed.

Optional*

reference JSON
String

URI of a CDMI queue object to which a reference points. No
other fields may be specified when creating a reference.

Optional*

deserializevalue JSON
String

A queue object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

*If present, only one of these parameters shall be specified in any given operation, and these fields are not
persisted.

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory
77 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
Response Message Body:

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Location Header
String

The unique URL for the new queue object as assigned by
the system. In the absence of file name information from
the client, the system shall assign the URL in the form:
<root URL>/<ContainerName>/<ObjectID>.

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the queue as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object.

The capabilities URI returned is based on the object type
and requested data system metadata fields.

Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

Header Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 78

Container Object Resource Operations © SNIA
Response Status:

Example 9-15

POST to the container URI the queue object name and metadata

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

queueValues JSON
String

A range of values enqueued in the queue. The first value
goes up as items are deleted, and the second value goes
up as items are enqueued, i.e.,

• Create: -> ""

• Enqueue: -> "0-0"

• Enqueue: -> "0-1"

• Enqueue: -> "0-2"

• Delete: -> "1-2"

• Delete: -> "2-2"

• Delete: -> ""

• Enqueue: -> "3-3"

Mandatory

HTTP Status Description

201 Created New queue object was created.

202 Accepted Queue object is in the process of being created. Investigate completionStatus and
percentComplete parameters to determine the current status of the operation.

304 Not Modified The operation conflicts because the queue object already exists.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or could cause a state
transition error on the server.

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
}

Field Name Type Description Requirement
79 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Container Object Resource Operations
The response looks like:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0
Location: http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectURI" : "/MyContainer/0000706D0010B84FAD185C425D8B537E",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "objectName" : "0000706D0010B84FAD185C425D8B537E",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Queue",
 "completionStatus" : "Complete",
 "metadata" : {
 },
 "queueValues" : ""
}

CDMI 1.0.1h (March 30, 2011) Working Draft 80

Domain Object Resource Operations © SNIA
10 Domain Object Resource Operations

10.1 Overview

Domain objects represent the concept of administrative ownership of stored data within a CDMI storage
system. A CDMI offering may include a hierarchy of domains that provide access to domain-related
information within a CDMI context. This domain hierarchy is a series of CDMI objects that correspond to
parent and child domains, with each domain corresponding to logical groupings of objects that are to be
managed together. Domain measurement information about objects that are associated with each domain
flow up to parent domains, facilitating billing and management operations that are typical for a cloud storage
environment.

A CDMI URI may optionally include domains using the following form:

http://example.com/cdmi_domains/parent_domain/child_domain/

Domains are a special class of container that are created in the cdmi_domains container found in the root
URI for the cloud storage system. If the "cdmi_create_domain" capability is present for the URI of a given
domain, then the cloud storage system supports the ability to create child domains under the URI. If a
cloud storage system supports domains, the cdmi_domains container shall be present.

10.1.1 Domain Metadata

The following domain-specific field shall be present for each domain:

10.1.2 Domain Summaries

Domain summaries provide summary measurement information about domain usage and billing. They are
not intended to provide reporting functionality, but rather to provide a simple mechanism for gathering
information about the storage operations that are associated with a domain. If supported, a domain
summary container named "cdmi_domain_summary" shall be present under each domain container. Like
any container, the domain summary sub-container may have standard storage system metadata, such as
an Access Control List (ACL) that permits access to this information to be restricted.

Within each domain summary container are a series of domain summary data objects that are generated
by the cloud storage system. The "yearly", "monthly", and "daily" containers of these data objects contain
domain summary data objects corresponding to each year, month, and day, respectively. These
containers are organized into the following structures:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/cumulative

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/

Metadata Name Type Description Requirement

cdmi_domain_enabled JSON
String

Indicates if the domain is enabled and specified at the
time of creation. Values may be "true" or "false".

• If a domain is disabled, the cloud storage system shall
not permit any operations to be performed against any
URI managed by that domain.

• If this metadata item is not present at the time of domain
creation, the value is set to "false".

Mandatory
81 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-01

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-02

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-03

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-07

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-08

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-10

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2009

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2010

All time and duration values, unless otherwise specified, are in the [ISO-8601] extended representation
(YYYY-MM-DDThh:mm:ss.ssssssZ). The full precision must be specified, the sub-second separator must
be a ".", the Z UTC zone indicator must be included, and all timestamps must be in UTC time zone.

The "cumulative" summary data object covers the entire time period, from the time the domain is created to
the time it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary
information for the time period specified, bounded by domain creation time and access time.

If a time period extends earlier than the domain creation time, the summary information includes the time
from when the domain was created until the end of the time period. For example, if a domain was created
on July 4, 2009, at noon, the daily summary "2009-07-04" would contain information from noon until
midnight, the monthly summary "2009-07" would contain information from noon on July 4 until midnight on
July 31, and the yearly summary "2009" would contain information from noon on July 4 until midnight on
December 31.

If a time period starts after the time when the domain was created and ends earlier than the time of access,
the summary data object contains complete information for that time period. For example, if a domain was
created on July 4, 2009, and on July 10, the "2009-07-06" daily summary data object was accessed, it
would contain information for the complete day.

If a time period ends after the current access time, the domain summary data object contains partial
information from the start of the time period (or the time the domain was created) until the time of access.
For example, if a domain was created on July 4, 2009, and at noon on July 10, the "2009-07-10" daily
summary data object was accessed, it would contain information from the beginning of the day until noon.

The information in Table 7 shall be present within the contents of each domain summary object, which is in
JSON representation.

Table 7 - Contents of Domain Summary Objects

Metadata Name Type Description Requirement

cdmi_domainURI JSON
String

Domain name corresponding to the domain that is
summarized.

Mandatory

cdmi_summary_start JSON
String

An [ISO-8601] time indicating the start of the time
range that the summary information is presenting.

Mandatory

cdmi_summary_end JSON
String

An [ISO-8601] time indicating the end of the time
range that the summary information is presenting.

Mandatory

cdmi_summary_objecthours JSON
String

The sum of the time each object belonging to the
domain existed during the summary time period.

Optional
CDMI 1.0.1h (March 30, 2011) Working Draft 82

Domain Object Resource Operations © SNIA
cdmi_summary_objectsmin JSON
String

The minimum number of objects belonging to the
domain during the summary time period.

Optional

cdmi_summary_objectsmax JSON
String

The maximum number of objects belonging to the
domain during the summary time period.

Optional

cdmi_summary_objectsaverage JSON
String

The average number of objects belonging to the
domain during the summary time period.

Optional

cdmi_summary_puts JSON
String

The number of objects written to the domain. Optional

cdmi_summary_gets JSON
String

The number of objects read from the domain. Optional

cdmi_summary_bytehours JSON
String

The sum of the time each byte belonging to the
domain existed during the summary time period.

Optional

cdmi_summary_bytesmin JSON
String

The minimum number of bytes belonging to the
domain during the summary time period.

Optional

cdmi_summary_bytesmax JSON
String

The maximum number of bytes belonging to the
domain during the summary time period.

Optional

cdmi_summary_bytesaverage JSON
String

The average number of bytes belonging to the
domain .during the summary time period

Optional

cdmi_summary_writes JSON
String

The number of bytes written to the domain. Optional

cdmi_summary_reads JSON
String

The number of bytes read from the domain. Optional

cdmi_summary_charge JSON
String

A free-form monetary measurement of the charge
for the use of the service to the user of the
domain.

Optional

cdmi_summary_kwhours JSON
String

The sum of power consumed by the domain
during the summary time period.

Optional

cdmi_summary_kwmin JSON
String

The minimum power consumed by the domain
during the summary time period.

Optional

cdmi_summary_kwmax JSON
String

The maximum power consumed by the domain
during the summary time period.

Optional

cdmi_summary_kwaverage JSON
String

The average power consumed by the domain
during the summary time period.

Optional

Table 7 - Contents of Domain Summary Objects

Metadata Name Type Description Requirement
83 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
An example of a daily domain summary object is as follows:

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already
performed and storage and bandwidth already consumed. Pricing of services is handled separately.
Domain summary information may be extended by offerings to include additional metadata or domain
reports beyond the metadata items standardized here.

10.1.3 Domain Membership

In cloud storage environments, just as domains are often created programmatically, domain user
membership and credential mapping also shall be populated using such interfaces. By providing access to
user membership, this capability enables self-enrollment, automatic provisioning, and other advanced self-
service capabilities, either directly through the CDMI standard or through software systems that interface
using CDMI.

The domain membership capability provides information about and allows the specification of end users
and groups of users that are allowed to access the domain via CDMI and other access protocols. The
concept of domain membership is not intended to replace or supplant ACLs, which form the fundamental
basis for access control and object/container ownership, but rather to provide a single, unified place to
map identities and credentials to principals used by ACLs within the context of a domain. It also provides a
place for authentication mappings to external authentication providers, such as LDAP and AD, to be
specified.

If supported, a domain membership container named "cdmi_domain_members" shall be present under
each domain. Like any container, the domain membership container may have standard metadata, such
as ACLs that permit access to this information to be restricted.

Within each domain membership container are a series of user objects that are specified through CDMI to
define each user known to the domain. These objects are formatted into the following structure:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_members/

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_doe

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_smith

The domain membership container may also contain sub-containers with user data objects. User data
objects in these sub-containers are treated the same as user data objects in the domain membership
container, and no meaning is inferred from the sub-container name. This is allowed to create different
access security relationships for groups of user objects (via container ACLs) and to allow delegation to
common user lists.

{
 "cdmi_domainURI" : "/cdmi_domains/MyDomain/",
 "cdmi_summary_start" : "2009-12-10T00:00:00",
 "cdmi_summary_end" : "2009-12-10T23:59:59",
 "cdmi_summary_objecthours" : "382239734",
 "cdmi_summary_puts" : "234234",
 "cdmi_summary_gets" : "489432",
 "cdmi_summary_bytehours" : "334895798347",
 "cdmi_summary_writes" : "7218368343",
 "cdmi_summary_reads" : "11283974933",
 "cdmi_summary_charge" : "4289.23 USD"
}

CDMI 1.0.1h (March 30, 2011) Working Draft 84

Domain Object Resource Operations © SNIA
Table 8 lists the domain settings that shall be present within each domain member user object:

Table 9 lists the domain settings that shall be present within each domain member delegation object:

Table 8 - Required Settings for Domain Member User Objects

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

Indicates if the member is enabled. Mandatory

cdmi_member_type JSON
String

The type of member record. Values include "user" and
"delegation".

Mandatory

cdmi_member_name JSON
String

This field contains the user name as presented by the
client.

Mandatory

cdmi_member_credentials JSON
String

This field contains credentials to be matched against the
credentials as presented by the client. If this field is not
present, one or more delegations must be present and
shall be used to resolve user credentials.

Optional

cdmi_member_principal JSON
String

This field indicates to which principal name (used in
ACLs) the user is mapped. If this field is not present, one
or more delegations must be present and shall be used
to resolve the user principal.

Optional

cdmi_member_privileges JSON
Array of
JSON
Strings

This field contains a JSON list of special privileges
associated with the user.

The following privileges are defined:

• "administrator". All ACL access checks are always
successful.

• "backup_operator". All read ACL access checks are
always successful.

• "cross_domain". Operations specifying a domain
other than the domain of the parent object are
permitted.

Mandatory

cdmi_member_groups JSON
Array of
JSON
Strings

This field contains a JSON array of group names to
which the user belongs.

Optional

Table 9 - Required Settings for Domain Member Delegation Objects

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

Indicates if the member is enabled. Mandatory

cdmi_member_type JSON
String

The type of member record. Values include "user" and
"delegation".

Mandatory

cdmi_delegation_URI JSON
String

This field contains the URI of an external identity
resolution provider (such as LDAP or Active Directory) or
the URI of a Domain Membership Container.

External delegations are expressed in the form of
ldap:// or ad://, etc.

Mandatory
85 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
An example of a domain membership object for a user is as follows:

An example of a domain membership object for a delegation is as follows:

When a transaction is initiated against a CDMI URI, the domain associated with the object at the URI (as
indicated by the domainURI) is used as the authentication context. The user identity and credentials
presented as part of the transaction are compared against the domain membership list to determine if the
user is authorized within the domain and to resolve the user's principal. If resolved, the principal is then
evaluated against the object's ACL to determine if the transaction is permitted.

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user
records, in any order. If there is at least one matching record and none of the matching records indicate
that the user is disabled, the user is considered to be a member of the domain.

When a sub-domain is initially created, the membership container contains one member record, a
delegation, where the delegation URI is set to the URI of the parent domain.

10.1.4 Domain Object Representations

The representations in this section are shown using JSON notation. A conforming implementation shall
support the mandatory parameters and may support the optional parameters. The parameter fields may be
specified or returned in any order. Both clients and servers shall support JSON representation.

10.2 Create a Domain Object (CDMI Content Type)

Synopsis:

Creates a new domain at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more intermediate domains that already exist.

{
 "cdmi_member_enabled" : "true",
 "cdmi_member_type" : "user",
 "cdmi_member_name" : "John Doe",
 "cdmi_member_credentials" : "p+5/oX1cmExfOIrUxhX1lw==",
 "cdmi_groups" : [
 "users"
],
 "cdmi_member_principal" : "jdoe",
 "cdmi_privileges" : [
 "administrator",
 "cross_domain"
]
}

{
 "cdmi_member_enabled" : "true",
 "cdmi_member_type" : "delegation",
 "cdmi_member_uri" : "/cdmi_accounts/MyAccount/",

}

PUT <root URI>/cdmi_domains/<DomainName>/<NewDomainName>/
CDMI 1.0.1h (March 30, 2011) Working Draft 86

Domain Object Resource Operations © SNIA
• <NewDomainName> is the name specified for the domain to be created.

Once created, the container may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
domain:

• Support for the ability to create a new domain object is indicated by the presence of the
"cdmi_domain_create " capability in the parent container.

• If the new domain object is a copy of an existing domain object, support for the ability to copy is
indicated by the presence of the "cdmi_copy_domain" capability in the source domain.

• If the new domain is the destination of a deserialize operation, support for the ability to deserialize
the source data object serialization of a domain is indicated by the presence of the
"cdmi_deserialize_domain" capability in the parent domain.

Request Headers:

Request Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain". Mandatory

Content-Type Header
String

"application/cdmi-domain". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the domain. If this field is included when
copying a domain object, the value provided shall be
replace the metadata from the source URI. If this field is
not specified, an empty JSON object ("{}") shall be
assigned as the field value.

Optional

copy JSON
String

URI of a CDMI domain that shall be copied into the new
domain, including all child domains and membership from
the source domain.

Optional*

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new domain, including all child
objects inside the source serialized data object.

Optional*

deserializevalue JSON
String

A domain object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

*If present, only one of these parameters shall be specified in any given operation, and these fields are not
persisted.
87 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
Response Headers:

Response Message Body:

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-domain". Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, for example,
"1.0".

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the domain as specified in the request. Mandatory

objectID JSON
String

Object ID of the domain. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always
owned by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object. The capabilities URI
returned is based on the object type and requested data
system metadata fields.

Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

childrenrange JSON
String

The range of the children returned in the children field. Mandatory

children JSON
Array

Names of the children domains in the domain. Child
containers end with "/".

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 88

Domain Object Resource Operations © SNIA
Response Status:

Example 10-1

PUT to the domain URI the domain name and metadata

The response looks like:

HTTP Status Description

201 Created New domain object was created.

304 Not Modified The operation conflicts because the domain already exists.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The domain name already exists.

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 }
}

HTTP/1.1 201 Created
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_domains/MyDomain",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyDomain",
 "parentURI" : "/cdmi_domains",
 "domainURI" : "/cdmi_domains/MyDomain",
 "capabilitiesURI" : "/cdmi_capabilities/Domain",
 "metadata" : {

 },
 "childrenrange" : "1-2",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

89 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
10.3 Read a Domain Object (CDMI Content Type)

Synopsis:

Reads from an existing domain at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing domain:

• Support for the ability to read the metadata of an existing domain object is indicated by the
presence of the "cdmi_read_metadata" capability in the specified domain.

• Support for the ability to list the children of an existing domain object is indicated by the presence
of the "cdmi_list_children" capability in the specified domain.

Request Headers:

Request Message Body:

None specified.

GET <root URI>/cdmi_domain/<DomainName>/<TheDomainName>/
GET <root URI>/cdmi_domain/<DomainName>/<TheDomainName>/

?<fieldname>;<fieldname>;...
GET <root URI>/cdmi_domain/<DomainName>/<TheDomainName>/?children:<range>;...
GET <root URI>/cdmi_domain/<DomainName>/<TheDomainName>/?metadata:<prefix>;...

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain". Shall contain a list of one or more
of the five CDMI MIME types.

Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client, for
example, "1.0, 1.5, 2.0".

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 90

Domain Object Resource Operations © SNIA
Response Headers:

Response Message Body:

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Content-Type Header
String

"application/cdmi-domain". Mandatory

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the domain as specified in the request. Mandatory

objectID JSON
String

Object ID of the domain. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always owned
by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object. The capabilities URI
returned is based on the object type and requested data
system metadata fields.

Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

childrenrange JSON
String

The range of the children returned in the children field. Mandatory
91 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Response Status:

Example 10-2

GET to the domain URI to read all the fields of the domain

The response looks like:

children JSON
Array

The children of the domain. Sub-domains end with "/". Mandatory

HTTP Status Description

200 OK Domain contents in response.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A domain was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content-type specified in the
Accept header.

GET /MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_domains/MyDomain",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyDomain",
 "parentURI" : "/cdmi_domains",
 "domainURI" : "/cdmi_domains/MyDomain",
 "capabilitiesURI" : "/cdmi_capabilities/Domain",
 "metadata" : {

 },
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

Field Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 92

Domain Object Resource Operations © SNIA
Example 10-3

GET to the domain URI to read all the parentURI and children of the domain

The response looks like:

Example 10-4

GET to the domain URI to read the first two children of the domain

The response looks like:

10.4 Update a Domain (CDMI Content Type)

Synopsis:

Updates an existing domain at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

GET /MyDomain/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "parentURI" : "/cdmi_domains",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

GET /MyDomain/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?metadata
93 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
• <TheDomainName> is the name specified for the domain to be updated.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the Object ID.

Capabilities:

The following capabilities describe the supported operations that may be performed when updating an
existing domain:

• Support for the ability to modify the metadata of an existing domain object is indicated by the
presence of the "cdmi_modify_metadata" capability in the specified domain.

Request Headers:

Request Message Body:

Response Headers:

Response Message Body:

None specified.

Response Status:

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain". Mandatory

Content-Type Header
String

"application/cdmi-domain". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container. If present, this replaces the
existing metadata. See Chapter 16, "Metadata" for a further
description of metadata.

Optional

Header Type Description Requirement

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

HTTP Status Description

200 OK Domain was updated.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.
CDMI 1.0.1h (March 30, 2011) Working Draft 94

Domain Object Resource Operations © SNIA
Example 10-5

PUT to the domain URI to set new field values

The response looks like:

10.5 Delete a Domain (CDMI Content Type)

Synopsis:

Deletes an existing domain, and all contained children domains under the specified URI.

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be deleted.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when deleting an
existing container:

• Support for the ability to delete an existing data object is indicated by the presence of the
"cdmi_domain_delete " capability in the specified domain.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found An update was attempted on a domain that does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

PUT /cdmi_domains/myDomain/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {
 "test" : "value"
 }
}

HTTP/1.1 200 OK

DELETE <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

HTTP Status Description
95 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Domain Object Resource Operations
Request Headers:

Request Message Body:

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

Example 10-6

DELETE to the domain URI

The response looks like:

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

newDomain JSON
String

The new domainURI that shall own the objects being
deleted, including the objects that the domain owns and any
children domains. This shall be a valid domain URI.

Mandatory

HTTP Status Description

204 No Content Domain was successfully deleted.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The resource specified was not found.

409 Conflict The domain may not be deleted (may be immutable), or the specified
newDomain URI is invalid or unusable.

DELETE /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.0

{
 "newDomain" : "/cdmi_domains/secondDomain"
}

HTTP/1.1 204 No Content
CDMI 1.0.1h (March 30, 2011) Working Draft 96

Queue Object Resource Operations © SNIA
11 Queue Object Resource Operations

11.1 Overview

Queues are a special class of container object and are used to provide first-in, first-out access when
storing and retrieving data. A queue writer PUTs objects to the queue, and a queue reader GETs objects
from the queue, acknowledging the receipt of the last object that it received. Queuing provides a simple
mechanism for one or more writers to send data to a single reader in a reliable way. If supported by the
cloud storage system, cloud clients create the queue objects by using the same mechanism used to create
data objects.

Every queue object has a parent object from which the queue object inherits data system metadata. For
example, the "receipts.queue" queue object stored at "http://cloud.example.com/finance/receipts.queue"
would inherit data system metadata from its parent container, "finance".

11.1.1 Queue Object Metadata

Queue object metadata may also include arbitrary user-supplied metadata and data system metadata, as
specified in Chapter 16, "Metadata".

11.1.2 Queue Object Addressing

Each queue object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs.

11.1.3 Queue Object Representations

The representations in this section are shown using JSON notation. A conforming implementation shall
support the mandatory parameters and may support the optional parameters. The parameter fields may be
specified or returned in any order. Both clients and servers shall support JSON representation.

11.2 Create a Queue Object (CDMI Content Type)

Synopsis:

Creates a new queue object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <QueueName> is the name specified for the queue object to be created.

Once created, the object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Delayed Completion of Create:

On a create operation for a queue, the server may return a response of 202 Accepted. In this case, the
queue is in the process of being created. This response is particularly useful for long-running operations,
for instance, for copying a large data object from a source URI. Such a response has the following
implications:

PUT <root URI>/<ContainerName>/<QueueName>
97 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
• The server returns an object identifier (OID) along with the 202 Accepted.

• With 202 Accepted, the server implies that the following checks have passed:

— User authorization for creating the queue object

— User authorization for read access to any source object for move, copy, serialize, or
deserialize

— Availability of space to create the queue or at least enough space to create a URI to report an
error

• Future accesses to the URI created (or the object ID) shall succeed modulo any delays due to use
of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In particular, the
server returns two fields in its response body to indicate progress:

• A completionStatus text field contains either “Processing”, “Complete”, or an error string starting
with the value "Error".

• An optional percentComplete field that indicates the percentage to which the last PUT has
completed (0 to 100)

GET does not return any value for the object when completionStatus is not Complete. When the final result
of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

Capabilities:

The following capabilities describe the supported operations that may be performed when creating a new
queue object:

• Support for the ability to create a new queue object is indicated by the presence of the
"cdmi_create_queue" capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the "cdmi_create_reference" capability in the parent container.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the "cdmi_copy_queue" capability in the patent container.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the "cdmi_move_queue" capability in the parent container.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the "cdmi_deserialize_queue"
capability in the parent container.

Request Headers:

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue". Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 98

Queue Object Resource Operations © SNIA
Request Message Body:

Content-Type Header
String

"application/cdmi-queue". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object.

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from the
source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object ("{}")
shall be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have
the "cross_domain" privilege.

• If not specified, the parent domain shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new queue object.

Optional*

copy JSON
String

URI of a CDMI queue object that shall be copied into the
new queue object.

Optional*

move JSON
String

URI of a CDMI queue object that shall be copied into the
new queue object. When the copy is successfully
completed, the queue object at the source URI is removed.

Optional*

reference JSON
String

URI of a CDMI queue object to which a reference points. No
other fields may be specified when creating a reference.

Optional*

deserializevalue JSON
String

A queue object serialized as specified in Chapter 15,
"Serialization/Deserialization".

Optional*

*If present, only one of these parameters shall be specified in any given operation, and these fields are not
persisted.

Header Type Description Requirement
99 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
Response Headers:

Response Message Body:

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue". Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the queue as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object. The capabilities URI
returned is based on the object type and requested data
system metadata fields.

Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional
CDMI 1.0.1h (March 30, 2011) Working Draft 100

Queue Object Resource Operations © SNIA
Response Status:

Example 11-1

PUT to the container URI the queue object name and contents

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

queueValues JSON
String

A range of values enqueued in the queue. The first value
goes up as items are deleted, and the second value goes up
as items are enqueued, i.e.,

• Create: -> ""

• Enqueue: -> "0-0"

• Enqueue: -> "0-1"

• Enqueue: -> "0-2"

• Delete: -> "1-2"

• Delete: -> "2-2"

• Delete: -> ""

• Enqueue: -> "3-3"

Mandatory

HTTP Status Description

201 Created New queue object was created.

202 Accepted Queue object is in the process of being created. Investigate completionStatus
and percentComplete parameters to determine the current status of the
operation.

304 Not Modified The operation conflicts because the queue object already exists.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 }
}

Field Name Type Description Requirement
101 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
The response looks like:

11.3 Read a Queue Object (CDMI Content Type)

Synopsis:

Reads from an existing queue object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range within the queue element value field.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

• <count> is the number of values to be retrieved from the queue. If more queue entries are
requested to be retrieved than exist in the queue, the count is considered equal to the number of
entries in the queue.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing queue object:

• Support for the ability to read the metadata of an existing queue object is indicated by the
presence of the "cdmi_read_metadata" capability in the specified queue.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyQueue",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyQueue",
 "parentURI " : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Queue",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "queuevalues" : ""
}

GET <root URI>/<ContainerName>/<QueueName>
GET <root URI>/<ContainerName>/<QueueName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<QueueName>?value:<range>;...
GET <root URI>/<ContainerName>/<QueueName>?metadata:<prefix>;...
GET <root URI>/<ContainerName>/<QueueName>?values:<count>
CDMI 1.0.1h (March 30, 2011) Working Draft 102

Queue Object Resource Operations © SNIA
• Support for the ability to read the value of an existing queue object is indicated by the presence of
the "cdmi_read_value" capability in the specified queue.

Request Headers:

Request Message Body:

None specified.

Response Headers:

Response Message Body:

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue". Shall contain a list of one or more
of the five CDMI MIME types.

Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Content-Type Header
String

"application/cdmi-queue". Mandatory

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the queue object as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an wimplementor chooses to always return the Object
ID as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory
103 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object. The capabilities URI
returned is based on the object type and requested data
system metadata fields.

Mandatory

completionStatus JSON

String

A string indicating if the object is still in the process of being
created, and once the operation is complete, if it was
created successfully or an error occurred. The value shall
be the string "Processing", the string "Complete", or an
error string starting with the value "Error".

Mandatory

percentComplete JSON
String

The value shall be an integer numeric value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Chapter 16,
"Metadata" for a further description of metadata.

Mandatory

queueValues JSON
String

A range of values enqueued in the queue. The first value
goes up as items are deleted, and the second value goes up
as items are enqueued, i.e.,

• Create: -> ""

• Enqueue: -> "0-0"

• Enqueue: -> "0-1"

• Enqueue: -> "0-2"

• Delete: -> "1-2"

• Delete: -> "2-2"

• Delete: -> ""

• Enqueue: -> "3-3"

Mandatory

mimetype JSON
Array of
JSON
Strings

MIME type of the oldest queue value. This field shall only be
provided when completionStatus is Complete, and when
there are one or more values enqueued. If two or more
values are requested, the MIME types of the values are
returned, each corresponding to the value in the same
position in the JSON array.

Optional

Field Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 104

Queue Object Resource Operations © SNIA
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Response Status:

Example 11-2

GET to the queue object URI to read all fields of the queue object

valuerange JSON
Array of
JSON
Strings

The range of bytes of the value returned in the value field.
This field shall only be provided when completionStatus is
Complete, and when there are one or more values
enqueued. If two or more values are requested, the value
range for the values are returned, each corresponding to the
value in the same position in the JSON array.

Optional

value JSON
Array of
JSON
Strings

Value of the oldest enqueued item. This field shall only be
provided when completionStatus is Complete and when
there are one or more values enqueued. If two or more
values are requested, the value for each entry are returned
in a JSON array, from oldest to newest.

Optional

HTTP Status Description

200 OK Valid response is enclosed.

302 Found The URI is a reference to another URI.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A queue object was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content-type specified in the
Accept header.

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

Field Name Type Description Requirement
105 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
The response looks like:

Example 11-3

GET to the queue object URI to read the value and queue items of the queue object

The response looks like:

Example 11-4

GET to the queue object URI to read the first five bytes of the value of the queue object

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyQueue",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyQueue",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "queueValues" : "1-2",
 "mimetype" : [
 "text/plain"
],
 "valuerange" : [
 "0-19"
],
 "value" : [
 "First Enqueued Value"
]
}

GET /MyContainer/MyQueue?value;queueValues HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "queueValues" : "1-2",
 "value" : [
 "First Enqueued Value"
]
}

GET /MyContainer/MyQueue?value:0-5 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0
CDMI 1.0.1h (March 30, 2011) Working Draft 106

Queue Object Resource Operations © SNIA
The response looks like:

Example 11-5

GET to the queue object URI to read two values of the queue object

The response looks like:

11.4 Update a Queue Object (CDMI Content Type)

Synopsis:

Updates an existing queue at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue to be updated.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "value" : [
 "First"
]
}

GET /MyContainer/MyQueue?mimetype;valuerange;values:2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "valuerange" : [
 "0-19",
 "0-20"
],
 "value" : [
 "First Enqueued Value",
 "Second Enqueued Value"
]
}

PUT <root URI>/<ContainerName>/<QueueName>
PUT <root URI>/<ContainerName>/<QueueName>?metadata
107 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
The object may also be accessed at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the Object ID.

Capabilities:

The following capabilities describe the supported operations that may be performed when updating an
existing queue object:

• Support for the ability to modify the metadata of an existing queue object is indicated by the
presence of the "cdmi_modify_metadata" capability in the specified queue.

Request Headers:

Request Message Body:

Response Headers:

Response Message Body:

None specified.

Response Status:

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue". Mandatory

Content-Type Header
String

"application/cdmi-queue ". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object. If present this replaces the
existing metadata. See Chapter 16, "Metadata" for a further
description of metadata.

Optional

domainURI JSON
String

URI of the owning domain. If different from the parent
domain, the user shall have the "cross_domain” privilege. If
not specified, the parent domain shall be used.

Optional

Header Type Description Requirement

Location Header
String

The server shall respond with the URL that the reference
points to if the object is a reference.

Mandatory

HTTP Status Description

200 OK New metadata and/or content accepted.

302 Found The URI is a reference to another URI.
CDMI 1.0.1h (March 30, 2011) Working Draft 108

Queue Object Resource Operations © SNIA
Example 11-6

PUT to the queue object URI to set new metadata

The response looks like:

11.5 Delete a Queue Object (CDMI Content Type)

Synopsis:

Deletes an existing queue object and all enqueued values at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing queue object is indicated by the presence of the
"cdmi_delete_queue" capability in the specified queue.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found An update was attempted on an object which does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "metadata" : {

 }
}

HTTP/1.1 200 OK

DELETE <root URI>/<ContainerName>/<QueueName>

HTTP Status Description
109 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
Request Headers:

Request Message Body:

None specified.

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

Example 11-7

DELETE to the queue URI

The response looks like:

11.6 Enqueue a New Queue Value (CDMI Content Type)

Synopsis:

Enqueues a new data value in an existing Queue at the specified container URI.

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

HTTP Status Description

204 No Content Queue object was successfully deleted.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The resource specified was not found.

409 Conflict The queue object may not be deleted (may be immutable).

DELETE /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 204 No Content

POST <root URI>/<ContainerName>/<QueueName>
CDMI 1.0.1h (March 30, 2011) Working Draft 110

Queue Object Resource Operations © SNIA
• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist.

• <QueueName> is the name of the queue object to be read from.

Capabilities:

The following capabilities describe the supported operations that may be performed when enqueuing a
new value into an existing queue object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the "cdmi_modify_value" capability in the specified queue.

Request Headers:

Request Message Body:

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue". Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Field Name Type Description Requirement

mimetype JSON
Array of
JSON
Strings

MIME type of the data contained within the value field of the
data object. This field shall not be included when copying
or moving a data object.

• If this field is not specified, the value of "text/plain" shall
be assigned as the field value.

• If this field is a JSON array, the same number of array
elements shall be present in the value field, and the
mimetype shall be associated with the value in the
corresponding position.

Optional

copy JSON
String

URI of a CDMI data object or queue from which the value
shall be copied and enqueued.

Optional*

move JSON
String

URI of a CDMI data object or queue from which the value
shall be enqueued, then removing the data object or queue
value at the source URI upon the successful completion of
the enqueue.

Optional*

value JSON
Array of
JSON
Strings

JSON-encoded data. If this field is not included, an empty
JSON String ("") shall be assigned as the field value. Binary
data shall be escaped as per the JSON escaping rules
described in [RFC4627]. If this field is a JSON array, each
item in the array shall be considered to be an independent
entry being enqueued.

Optional*

*Only one of these parameters shall be specified in any given operation.
111 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

Example 11-8

POST to the queue URI a new value

The response looks like:

Example 11-9

POST to the queue URI to copy an existing value

HTTP Status Description

201 Created New queue value was enqueued.

400 Bad Request Invalid parameter in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The specified container URI does not exist.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause
a state transition error on the server.

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : [
 "text/plain"
],
 "value" : [
 "Value to Enqueue"
]
}

HTTP/1.1 201 Created

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "copy" : "/MyContainer/MyDataObject"
}
CDMI 1.0.1h (March 30, 2011) Working Draft 112

Queue Object Resource Operations © SNIA
The response looks like:

Example 11-10

POST to the queue URI to transfer twenty values from another queue

The response looks like:

Example 11-11

POST to the queue URI two new values

The response looks like:

11.7 Delete a Queue Value (CDMI Content Type)

Synopsis:

Deletes the oldest enqueued value in an existing queue object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

HTTP/1.1 201 Created

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "move" : "/MyContainer/FirstQueue;values:20"
}

HTTP/1.1 201 Created

POST /MyContainer/MyQueue
HTTP/1.1 Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "value" : [
 "First",
 "Second"
]
}

HTTP/1.1 201 Created

DELETE <root URI>/<ContainerName>/<QueueName>?value
DELETE <root URI>/<ContainerName>/<QueueName>?values:<count>
113 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Queue Object Resource Operations
• <QueueName> is the name of the queue object to be deleted.

• <count> is the number of values to be removed from the queue. If more queue entries are
requested to be deleted than exist in the queue, the count is considered equal to the number of
entries in the queue.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the "cdmi_modify_value" capability in the specified queue.

Request Headers:

Request Message Body:

None specified.

Response Headers:

None specified.

Response Message Body:

None specified.

Response Status:

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

HTTP Status Description

204 No Content Queue object was successfully deleted.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found The resource specified was not found.

409 Conflict The queue object may not be deleted (may be immutable).
CDMI 1.0.1h (March 30, 2011) Working Draft 114

Queue Object Resource Operations © SNIA
Example 11-12

DELETE to the queue URI value to access the next enqueued value

The response looks like:

DELETE /MyContainer/MyQueue?value HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.0

HTTP/1.1 204 No Content
115 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
12 Capability Object Resource Operations

12.1 Overview

Capability objects are a special class of container object that allow a CDMI client to discover what subset
of the CDMI standard is implemented by a CDMI provider.

For each URI in a CDMI system, the set of interactions that the system is capable of performing against
that URI are described by the presence of named "capabilities". Each capability present for a given URI
indicates what functionality the cloud storage system will allow against that URI. Capabilities are always
static.

It is important to note that capabilities may differ from the operations permitted by an Access Control List
(ACL) associated with a given URI‚ for example, a read-only cloud may not permit write access to a
container or object, despite the presence of an ACL allowing write access.

Cloud clients may use capabilities to discover what operations are supported. If an operation is attempted
to be performed against a CDMI object that does not have a corresponding capability, an HTTP 405 status
code shall be returned to the client. All CDMI-compliant cloud storage systems shall implement the ability
to list capabilities, but support for all other capabilities is optional.

Every CDMI data object, container domain, and queue shall have a capabilitiesURI field that contains a
valid URI that points to a capabilities object. Within the capabilities object, the name of each capability
confers a specific meaning that has been agreed to between the cloud storage provider and the cloud
storage consumer, and the capabilities defined as part of the CDMI standard are described later in this
section. Capabilities not listed in this standard shall not begin with the prefix "cdmi_", but are otherwise
permitted to allow cloud storage system wimplementors to add additional capabilities.

The base set of CDMI capabilities are based on the operations defined in the previous sections, with
additional cloud-specific capabilities added based on use cases for standard cloud storage. The hierarchy
of capabilities (see Figure 8) shows the hierarchy of capabilities in an offering and shows how the
capabilitiesURI links data objects and containers into the capabilities tree.

Figure 8 - Hierarchy of Capabilities

domain/mydomain/

capabilitiesURI

gold_container

container/

immutable

dataobject/

mycontainer/ capabilitiesURI

mygoldcontainer/

capabilitiesURI

capabilitiesURI

mydataobject/ capabilitiesURI

myimmutabledataobject/
capabilitiesURI

queue/

myqueue//
capabilitiesURI

“/” Root URI cdmi_capabilities/
CDMI 1.0.1h (March 30, 2011) Working Draft 116

Capability Object Resource Operations © SNIA
The capabilities container within the capabilities tree to which an object is linked is based on the type of the
object and the data system metadata fields present in the object. For example, a container with no data
system metadata fields specified may map to the "container" capabilities entry.

As an option, a CDMI implementation may map a container to a "gold_container" capabilities entry, if a
data system metadata field is present and set to a given value, such as if the cdmi_data_redundancy field
was set to the value of "4". This permits a cloud provider to create profiles of data system metadata fields
and values.

Capabilities do not have CDMI metadata.

12.1.1 Cloud Storage System-Wide Capabilities

Table 10, "System-Wide Capabilities" defines the system-wide capabilities in a cloud storage system.
These capabilities, which are found in the capabilities object, are referred to by the root URI (root
capabilities).

Table 10 - System-Wide Capabilities

Capability Name Type Definition

cdmi_domains JSON
String

If present and "true", indicates that the cloud storage system
supports domains. If not present, the domainURI field shall not be
present in response bodies and the "cdmi_domains" URI shall not
be present.

cdmi_export_cifs JSON
String

If present and "true", indicates that the cloud storage system
supports CIFS exports.

cdmi_export_iscsi JSON
String

If present and "true", indicates that the cloud storage system
supports FC exports.

cdmi_export_nfs JSON
String

If present and "true", indicates that the cloud storage system
supports NFS protocol exports.

cdmi_export_occi_iscsi JSON
String

If present and "true", indicates that the cloud storage system
supports OCCI/iSCSI exports.

cdmi_export_webdav JSON
String

If present and "true", indicates that the cloud storage system
supports WebDAV exports.

cdmi_metadata_maxitems JSON
String

If present, this capability specifies the maximum number of user-
defined metadata items supported by the cloud storage system. If
absent, there is no limit placed on the number of user-defined
metadata items.

cdmi_metadata_maxsize JSON
String

If present, this capability specifies the maximum size in bytes of
each user-defined metadata item supported by the cloud storage
system. If absent, there is no limit placed on the size of user-
defined metadata items.

cdmi_notification JSON
String

If present and "true", indicates that the cloud storage system
supports notification queues.

cdmi_logging JSON
String

If present and "true", indicates that the cloud storage system
supports logging queues.

cdmi_query JSON
String

If present and "true", indicates that the cloud storage system
supports query queues.

cdmi_query_regex JSON
String

If present and "true", indicates that the cloud storage system
supports query with regular expressions.
117 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
12.1.2 Storage System Metadata Capabilities

Table 11, "Capabilities for Storage System Metadata" defines the capabilities for storage system metadata
in a cloud storage system. These capabilities are found in the capabilities objects for domains, data

cdmi_query_contains JSON
String

If present and "true", indicates that the cloud storage system
supports query with the “contains” expressions.

cdmi_query_tags JSON
String

If present and "true", indicates that the cloud storage system
supports query with tag-matching expressions.

cdmi_query_value JSON
String

If present and "true", indicates that the cloud storage system
supports query of value fields.

cdmi_queues JSON
String

If present and "true", indicates that the cloud storage system
supports queue objects.

cdmi_security_access_control JSON
String

If present and "true", indicates that the cloud storage system
supports ACLs. See Section 12.1.3, "Data System Metadata
Capabilities" for additional information.

cdmi_security_audit JSON
String

If present and "true", indicates that the cloud storage system
supports audit logging. See Section 17.3, "Security Logging" for
additional information.

cdmi_security_data_integrity JSON
String

If present and "true", indicates that the cloud storage system
supports data integrity/authenticity. See Section 12.1.3, "Data
System Metadata Capabilities" for additional information.

cdmi_security_encryption JSON
String

If present and "true", indicates that the cloud storage system
supports data at-rest encryption. See Section 12.1.3, "Data
System Metadata Capabilities" for additional information.

cdmi_security_immutability JSON
String

If present and "true", indicates that the cloud storage system
supports data immutability/retentions. See Section 12.1.3, "Data
System Metadata Capabilities" for additional information.

cdmi_security_sanitization JSON
String

If present and "true", indicates that the cloud storage system
supports data/media sanitization. See Section 12.1.3, "Data
System Metadata Capabilities" for additional information.

cdmi_serialization_json JSON
String

If present and "true", indicates that the cloud storage system
supports json as a serialization format.

cdmi_snapshots JSON
String

If present and “true”, indicates that the cloud storage system
supports snapshots.

cdmi_xmlrepresentation JSON
String

This capability is reserved for future use, as the xml
representation is not defined in this version of CDMI. This
capability shall never be present for CDMI 1.0.x.

cdmi_references JSON
String

If present and “true”, indicates that the cloud storage system
supports references.

Table 10 - System-Wide Capabilities

Capability Name Type Definition
CDMI 1.0.1h (March 30, 2011) Working Draft 118

Capability Object Resource Operations © SNIA
objects, containers, and queues. See Section 16.3, "Support for Storage System Metadata" for a
description of these storage system metadata elements.

12.1.3 Data System Metadata Capabilities

Table 12, "Capabilities for Data System Metadata" defines the capabilities for data system metadata in a
cloud storage system. These capabilities are found in the capabilities objects for domains, data objects,

Table 11 - Capabilities for Storage System Metadata

Capability Name Type Definition

cdmi_acl JSON
String

If present and "true", indicates that the cloud storage system
supports ACLs. When a CDMI implementation supports ACLs for
the purpose of access control, the system-wide capability of
“cdmi_security_access_control” specified in Table 10 of
Section 12.1.1, "Cloud Storage System-Wide Capabilities" shall
be set to “true”. Otherwise, it shall not be present, indicating that
there is no support for access control.

cdmi_size JSON
String

If present and "true", indicates that the cloud storage system shall
generate a "size" storage system metadata for each stored object.

cdmi_ctime JSON
String

If present and "true", indicates that the cloud storage system shall
generate a "ctime" storage system metadata for each stored
object.

cdmi_atime JSON
String

If present and "true", indicates that the cloud storage system shall
generate an "atime" storage system metadata for each stored
object.

cdmi_mtime JSON
String

If present and "true", indicates that the cloud storage system shall
generate an "mtime" storage system metadata for each stored
object.

cdmi_acount JSON
String

If present and "true", indicates that the cloud storage system shall
generate an "acount" storage system metadata for each stored
object.

cdmi_mcount JSON
String

If present and "true", indicates that the cloud storage system shall
generate an "mcount" storage system metadata for each stored
object.

cdmi_hash JSON
String

If present, indicates that the cloud storage system shall generate
a "cdmi_hash" storage system metadata for each stored object
using the algorithm specified in the value of the cdmi_value_hash
data system metadata.

cdmi_acl JSON
String

If present and "true", indicates that the cloud storage system shall
support ACLs.
119 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
containers, and queues. See Section 16.3, "Support for Storage System Metadata" for a description of
these data system metadata elements.

Table 12 - Capabilities for Data System Metadata

Capability Name Type Definition

cdmi_data_redundancy JSON
String

If present, this capability specifies the maximum number of
redundancy copies that may be specified. If absent, redundancy
copies specified shall be ignored.

cdmi_infrastructure_redundancy JSON
String

If present, this capability specifies the maximum number of
infrastructure redundancy copies that may be specified. If absent,
infrastructure redundancy copies specified shall be ignored.

cdmi_data_dispersion JSON
String

If present and “true”, indicates that the cloud storage system shall
disperse data. If absent, redundancy copies specified shall be
ignored.

cdmi_data_retention JSON
String

If present and "true", indicates that the cloud storage system shall
support retention.

cdmi_data_autodelete JSON
String

If present and “true”, indicates that the cloud storage system shall
support the autodeletion of objects when retention ends.

cdmi_data_holds JSON
String

If present and "true", indicates that the cloud storage system shall
support placing holds on objects. When a CDMI implementation
supports holds for the purpose of making data immutable, the
system-wide capability of “cdmi_security_immutability” specified
in Table 10 of Section 12.1.1, "Cloud Storage System-Wide
Capabilities" shall be set to “true”. Otherwise, it shall not be
present, indicating that there is no support for data immutability.

cdmi_encryption JSON
String

If present, this capability lists the encryption algorithms and key
lengths supported. If absent, objects shall not be encrypted. When
a CDMI implementation supports at-rest encryption, the system-
wide capability of “cdmi_security_encryption” specified in Table 10
of Section 12.1.1, "Cloud Storage System-Wide Capabilities" shall
be set to “true”. Otherwise, it shall not be present, indicating that
there is no support for at-rest encryption.

cdmi_value_hash JSON
String

This metadata is used to indicate if the object data is to be hashed
and indicates the desired hash algorithm and length. Supported
algorithm/length values are provided by the cdmi_value_hash
capability.

cdmi_latency JSON
String

If present and "true", indicates that the cloud storage system shall
tier data based on desired latency. If absent, the max latency
specified shall be ignored.

cdmi_throughput JSON
String

If present and "true", indicates that the cloud storage system shall
tier data based on desired throughput. If absent, the max
throughput specified shall be ignored.

cdmi_sanitization_method JSON
String

If present, this capability lists the sanitization methods supported.
When a CDMI implementation supports sanitization, the system-
wide capability of “cdmi_security_sanitization” specified in
Table 10 of Section 12.1.1, "Cloud Storage System-Wide
Capabilities" shall be set to “true”. Otherwise, it shall not be
present, indicating that there is no sanitization support.
CDMI 1.0.1h (March 30, 2011) Working Draft 120

Capability Object Resource Operations © SNIA
12.1.4 Data Object Capabilities

Table 13, "Capabilities for Data Objects" defines the capabilities for data objects in a cloud storage system.

12.1.5 Container Capabilities

Table 14, "Capabilities for Containers" defines the capabilities for containers in a cloud storage system.

cdmi_RPO JSON
String

If present and "true", indicates that the cloud storage system shall
manage data to achieve a specified RPO. If absent, the RPO
specified shall be ignored.

cdmi_RTO JSON
String

If present and "true", indicates that the cloud storage system shall
manage data to achieve a specified RTO. If absent, the RTO
specified shall be ignored.

Table 13 - Capabilities for Data Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", indicates that the object’s value may be read.

cdmi_read_value_range JSON
String

If present and "true", indicates that the object’s value may be read
with byte ranges.

cdmi_read_metadata JSON
String

If present and "true", indicates that the object’s metadata may be
read.

cdmi_modify_value JSON
String

If present and "true", indicates that the object’s value may be
modified.

cdmi_modify_value_range JSON
String

If present and "true", indicates that the object’s value may be
modified with byte ranges.

cdmi_modify_metadata JSON
String

If present and "true", indicates that the object’s metadata may be
modified.

cdmi_serialize_dataobject JSON
String

If present and "true", indicates that the object may be serialized.

cdmi_delete_dataobject JSON
String

If present and "true", indicates that the object may be deleted.

Table 14 - Capabilities for Containers

Capability Name Type Definition

cdmi_list_children JSON
String

If present and "true", indicates that the container’s children may
be listed.

cdmi_list_children_range JSON
String

If present and "true", indicates that the container’s children may
be listed with ranges.

cdmi_read_metadata JSON
String

If present and "true", indicates that the container’s metadata may
be read.

Table 12 - Capabilities for Data System Metadata

Capability Name Type Definition
121 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
12.1.6 Domain Capabilities

Table 15, "Capabilities for Domains" defines the capabilities for domains in a cloud storage system. (All
capabilities refer to what may be done via CDMI operations.)

cdmi_modify_metadata JSON
String

If present and "true", indicates that the container’s metadata may
be modified.

cdmi_snapshot JSON
String

If present and "true", indicates that the container allows a new
snapshot to be created.

cdmi_serialize_container JSON
String

If present and "true", indicates that the container and all children’s
contents may be serialized.

cdmi_deserialize_container JSON
String

If present and "true", indicates that the container permits the
deserialization of serialized containers and associated serialized
children into the container

cdmi_deserialize_queue JSON
String

If present and "true", indicates that the container permits the
deserialization of serialized queues into the container.

cdmi_deserialize_dataobject JSON
String

If present and "true", indicates that the container permits the
deserialization of serialized data objects into the container.

cdmi_create_dataobject JSON
String

If present and "true", indicates that the container allows a new
object to be added.

cdmi_post_dataobject JSON
String

If present and "true", indicates that the container allows a new
object to be added via POST.

cdmi_post_queue JSON
String

If present and "true", indicates that the container allows a new
queue to be added via POST.

cdmi_create_container JSON
String

If present and "true", indicates that the container allows a new
container may be added.

cdmi_create_queue JSON
String

If present and "true", indicates that the container allows queues to
be created.

cdmi_create_reference JSON
String

If present and "true", indicates that the container allows a new
child reference may be added.

cdmi_delete_container JSON
String

If present and "true", indicates that the container may be deleted.

cdmi_move_container JSON
String

If present and "true", indicates that the container may be moved
(via PUT) to another URI.

cdmi_copy_container JSON
String

If present and "true", indicates that the container may be copied
(via PUT) to another URI.

Table 15 - Capabilities for Domains

Capability Name Type Definition

cdmi_create_domain JSON
String

If present and "true", indicates that the domain allows a new
subdomain to be added.

cdmi_delete_domain JSON
String

If present and "true", indicates that the domain may be deleted.

Table 14 - Capabilities for Containers

Capability Name Type Definition
CDMI 1.0.1h (March 30, 2011) Working Draft 122

Capability Object Resource Operations © SNIA
12.1.7 Queue Object Capabilities

Table 16, "Capabilities of Queue Objects" defines the capabilities for queue objects in a cloud storage
system.

cdmi_domain_summary JSON
String

If present and "true", indicates that the domain supports domain
summaries.

cdmi_domain_members JSON
String

If present and "true", indicates that the domain supports domain
user management.

cdmi_list_children JSON
String

If present and "true", indicates that the domain's children may be
listed.

cdmi_read_metadata JSON
String

If present and "true", indicates that the domain's metadata may be
read.

cdmi_modify_metadata JSON
String

If present and "true", indicates that the domain's metadata may be
modified.

cdmi_create_container JSON
String

If present and "true", indicates that the domain allows a new
container may be added.

cdmi_create_queue JSON
String

If present and "true", indicates that the domain allows queues to
be created.

cdmi_copy_domain JSON
String

If present and "true", indicates that the container may be copied
(via PUT) to another URI.

cdmi_serialize_domain JSON
String

If present and "true", indicates that the domain and all child
domains may be serialized.

cdmi_deserialize_domain JSON
String

If present and "true", indicates that the domain permits the
deserialization of serialized domains and associated serialized
children into the domain.

Table 16 - Capabilities of Queue Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", indicates that the queue 's value may be
read.

cdmi_read_metadata JSON
String

If present and "true", indicates that the queue's metadata may be
read.

cdmi_serialize_queue JSON
String

If present and "true", indicates that the queue may be serialized.

cdmi_modify_value JSON
String

If present and "true", indicates that the queue 's value and
metadata may be modified.

cdmi_modify_metadata JSON
String

If present and "true", indicates that the queue's metadata may be
modified.

cdmi_delete_queue JSON
String

If present and "true", indicates that the queue may be deleted.

cdmi_move_queue JSON
String

If present and "true", indicates that the queue may be moved to
another URI.

Table 15 - Capabilities for Domains

Capability Name Type Definition
123 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
12.2 Read a Capabilities Object (CDMI Content Type)

Synopsis:

Reads from an existing capability object at the specified URI.

• <root URI> is the path to the CDMI cloud.

• <Capability> is zero or more intermediate capabilities containers.

• <TheCapability> is the name specified for the capabilities to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

The object may also be accessed at <root URI>/cdmi_objectid/<objectID>.

Capabilities:

The following capabilities describe the supported operations that may be performed when reading an
existing capabilities object:

• All CDMI implementations shall permit clients to read the metadata and contents of all capabilities
objects.

Request Headers:

Request Message Body:

None specified.

cdmi_copy_queue JSON
String

If present and "true", indicates that the queue may be copied to
another URI.

cdmi_reference_queue JSON
String

If present and "true", indicates that the queue may be referenced
from another queue.

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/
GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/

?<fieldname>;<fieldname>
GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?children:{range}

Header Type Description Requirement

Accept Header
String

"application/cdmi-capability". Shall contain a list of one or
more of the five CDMI MIME types.

Mandatory

X-CDMI-
Specification-
Version

String
Array

A comma separated list of versions supported by the client,
for example, "1.0, 1.5, 2.0".

Mandatory

Table 16 - Capabilities of Queue Objects

Capability Name Type Definition
CDMI 1.0.1h (March 30, 2011) Working Draft 124

Capability Object Resource Operations © SNIA
Response Headers:

Response Message Body:

If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, for example, "1.0".

Mandatory

Content-Type Header
String

"application/cdmi-capability". Mandatory

Field Name Type Description Requirement

objectURI JSON
String

URI of the object as specified in the request. Mandatory

objectID JSON
String

Object ID of the object. Mandatory

objectName JSON
String

Name of the object.

• If the object has a path, the name shall be the last part of
the path.

• If the object does not have a path and is only accessible
by ID, then the name shall be the Object ID of the object.

• If an implementor chooses to always return the Object ID
as the name of an object, even if one or more paths
exists, the parentURI shall be set to /cdmi_objectID/.

Mandatory

parentURI JSON
String

URI for the parent object.

• If the object has a path, the parentURI shall be the URI
path to the parent object.

OR

• If the object does not have a path and is only accessible
by ID, the parentURI shall be set to /cdmi_objectid/,
and objectName shall be set to the Object ID of the
object."

Mandatory

capabilites JSON
Object

A tag list of capabilities supported by the corresponding
object. Capabilities in the "cdmi_capabilities" object are
system-wide capabilities. Capabilities found in children
objects correspond to the capabilities of a specific subset of
objects.

Mandatory

childrenrange JSON
String

The range of the children returned in the children field. Mandatory

children JSON
Array

Names of the children capabilities objects. For the root
capabilities container, this includes "domain/", "container/",
"dataobject/", and "queue/". Within each of these
capabilities objects, further more specialized capabilities
profiles may be specified by the cloud storage system.

Mandatory
125 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
Response Status:

Example 12-1

GET to the root capabilities container URI to read all fields of the container

The response looks like:

HTTP Status Description

200 OK Capabilities object list in response.

400 Bad Request Invalid parameter or field names in the request.

401 Unauthenticated Incorrect or missing authentication credentials.

403 Unauthorized Client lacks the proper authorization to perform this request.

404 Not Found A container was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content-type specified in
the Accept header.

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/cdmi_capabilities/",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_webdav" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

CDMI 1.0.1h (March 30, 2011) Working Draft 126

Capability Object Resource Operations © SNIA
Example 12-2

GET to the root capabilities container URI to read the capabilities and children of the container

The response looks like:

Example 12-3

GET to the root capabilities container URI to read the first two children of the container

The response looks like:

GET /cdmi_capabilities/?capabilities;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

{
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_webdav" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

GET /cdmi_capabilities/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

HTTP/1.1 200 OK
Location: application/cdmi-capability
X-CDMI-Specification-Version: 1.0

{
 "childrenrange" : "0-1",
 "children" : [
 "domain/",
 "container/"
]
}

127 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Capability Object Resource Operations
CDMI 1.0.1h (March 30, 2011) Working Draft 128

Exported Protocols © SNIA
13 Exported Protocols

CDMI containers are accessible not only via CDMI as a data path, but also via other protocols as well. This
access is especially useful for using CDMI as the storage interface for a cloud-computing environment, as
Figure 9 shows.

The exported protocols from CDMI containers may be used by the virtual machines in the cloud-computing
environment as virtual disks on each guest as shown. The cloud computing infrastructure management is
shown as implementing both an Open Cloud Computer Interface (OCCI) and CDMI interfaces. With the
internal knowledge of the network and the virtual machine manager's mapping of drives, this infrastructure
may hook the CDMI containers to the guests using the appropriate exported protocol.

Figure 9 - CDMI and OCCI in an Integrated Cloud Computing Environment

VM VM VM

Cont
ainer

Cont
ainer

Cont
ainer

Cont
ainer

Cont
ainer

Data Storage Resources

Compute Resources

iSCSI NFS

OCCI
API

CDMI
API

iSCSI NFS WebDAV

NFS NFS

Client

iSCSI
Web
DAV

V
irtual

M
achine

M
anager

 C
D

M
I

E
xported

P
rtotocols

OCCI <> CDMI Interface Diagram

Cloud Computing
and Storage
Infrastructure

[OCCI_VMID]
[CDMI_ObjectID

CDMI

OCCI

 Private, Hidden Storage Network for the Cloud
129 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Exported Protocols
To do this interoperably, CDMI provides a type of exported protocol that contains information obtained via
the OCCI interface. In addition, OCCI provides a type of storage that corresponds to a CDMI container that
is exported with a specific type of protocol used by OCCI. A client of both interfaces would perform the
following operations as an example:

1 The client creates a CDMI container through the CDMI interface and exports it as an OCCI export
protocol type. The CDMI container objectID is returned as a result.

2 The client then creates a virtual machine through the OCCI interface and attaches a storage volume
of type CDMI using the objectID and protocol type. The OCCI virtual machine ID is returned as a
result.

3 The client then updates the export protocol structure of the CDMI container object with the OCCI
virtual machine ID to allow the virtual machine access to the container.

4 The client then starts the virtual machine through the OCCI interface.

13.1 Exported Protocol Structure

The export of a container, via data path protocols other than CDMI, is done by creating or updating a
container and supplying one or more export protocol structures, one for each such protocol.

The elements of the export protocol structure include:

• The protocol being used

• The identity of the container as standardized by the protocol

• The list of who may access that container via that protocol, identified as standardized by that
protocol (may leverage the CDMI domains for this)

CDMI standardizes several export protocol structures for various protocols. Export protocol structures may
also be defined for proprietary and vendor extensions of protocols. For more information, see Annex B,
"(informative) Extending the Interface".

13.2 OCCI Exported Protocol

CDMI defines an export protocol structure for the OGF standard: Open Cloud Computing Interface (OCCI)
as follows:

• Protocol is "OCCI/<protocol standard>" (i.e., OCCI/NFSv4)

• The identifier is the CDMI objectid

• The list of who may access is a list of OCCI VM IDs

An example of an OCCI export protocol structure in JSON is as follows:

13.3 iSCSI Export Modifications

CDMI defines the export of a container using the iSCSI protocol. Each container is exported as a single
SCSI Logical Unit at a Logical Unit Number (LUN) to one or more iSCSI initiators through an iSCSI target
node and port using one or more iSCSI network portals (IP addresses). Support for this export by a CDMI

"OCCI/iSCSI" : {"identifier" : "0000706D00101ADEBC119D1BFE98672A", "permissions" :
"0000706D00107B85BFE6D20B84D603CA" }
CDMI 1.0.1h (March 30, 2011) Working Draft 130

Exported Protocols © SNIA
implementation is advertised by the cdmi_export_iscsi capability within the system-wide capabilities (see
Section 12.1.1, "Cloud Storage System-Wide Capabilities").

The export is described by the presence of an export field structure on the container that specifies the
following information:

• Export protocol (“Network/iSCSI”)

• iSCSI target information (IP addresses or fully qualified domain names, target identifier, and LUN)

• Logical unit world-wide name

• iSCSI initiators having access

The target identifier may be in iqn, naa, or eui format and shall have the target portal group tag appended
in hexadecimal.

13.3.1 Read Container

All of the information in the export structure is returned:

13.3.2 Create Container

The follow code creates a container with iSCSI export or updates an existing container with new iSCSI
export. Support for either of these operations is indicated by the cdmi_export_iscsi capability on the parent
container of the created container or of the existing container, respectively.

For these export creation operations, the CDMI implementation selects the IP portals, iSCSI target, logical
unit number and logical unit name; these are not supplied. Only the list of initiator identifiers that are to
have access to the container are specified:

 "exports" : {
 "Network/iSCSI" : {
 "portals" : [

 "192.168.1.101",
 "192.168.1.102",

],
 "target_identifier" :

 "iqn.2010-01.com.cloudprovider:acmeroot.container1,t,0x0001",
 "logical_unit_number" : "3",
 "logical_unit_name" : "0x60012340000000000000000000000001",
 "permissions" : [
 "iqn.2010-01.com.acme:host1" ,
 "iqn.2010-01.com.acme:host2,"
]
 }
 },

 "exports" : {
 "Network/iSCSI" : {
 "permissions" : [
 "iqn.2010-01.com.acme:host1" ,
 "iqn.2010-01.com.acme:host2"
]
 }
 },
131 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Exported Protocols
13.3.3 Modify an Export

The following code modifies an export on an existing container. Support for this operation is indicated by
the cdmi_export_iscsi on the parent container of the existing container. For this operation, only the current
list of initiator identifiers that are to have access to the container are specified:

13.4 NFS Exported Protocol

CDMI defines an export protocol structure for the NFS standard as follows:

• Protocol is "Network/NFSv4"

• The path of the share as presented to clients (including server host name)

• The list of who may access the share

This example shows an NFSv4 export protocol structure in JSON:

In this example, the value "domain" in the permissions field indicates that user credentials should be
mapped through the domain membership in the domain of the CDMI container being exported.

For more information on the NFS version 4 protocol, see [RFC3530].

Note: This section is incomplete and needs further definition.

13.5 WebDAV Exported Protocol

CDMI defines an export protocol structure for the WebDAV [RFC4918] standard as follows:

• Protocol is "Network/WebDAV".

• The path of the WebDAV mount point as presented to clients (including server host name).

• The list of who may access the share is determined by the standard CDMI ACLs for each resource
as exported via WebDAV.

The following example shows a WebDAV export protocol structure in JSON:

In this example, the value "domain" in the permissions field indicates that user credentials should be
mapped through the domain membership in the domain of the CDMI container being exported.

WebDAV supports locking, but it is up to implementations to support any locking of access through the
CDMI as a result, and the interaction between the two protocols is purposely not described in this
standard.

 "exports" : {
 "Network/iSCSI" : {
 "permissions" : [
 "iqn.2010-01.com.acme:host1" ,
 "iqn.2010-01.com.acme:host2"
]
 }
 },

"Network/NFSv4" : { "identifier" : "/users", "permissions" : "domain" }

"Network/WebDAV" : { "identifier" : "/users", "permissions" : "domain" }
CDMI 1.0.1h (March 30, 2011) Working Draft 132

Snapshots © SNIA

133 Working Draft CDMI 1.0.1h (March 30, 2011)

14 Snapshots

A snapshot is a point-in-time image of a container and its contents. The client names a snapshot of a
container at the time the snapshot is taken. The operation results in a child destination container of the
cdmi_snapshots container under the source container. The snapshot does not include the
cdmi_snapshots child container or its contents (see Figure 10, "Snapshot Operation").

To take a snapshot, a Container Update operation is performed, as described in Section 9.6, "Update a
Container (CDMI Content Type)", supplying the snapshot parameter (the name of the snapshot).

Table 17 describes the snapshot parameter of a container update operation.

Snapshots may be accessed in place or used as the source for copy operations, restoring a container to a
previous point in time.

Figure 10 - Snapshot Operation

Table 17 - Snapshot Parameter of the Container Update Operation

Name Type Description Requirement

snapshot JSON
String

Name of the snapshot to be taken. If a snapshot is added or
changed, the PUT operation only returns after the snapshot is
added to the snapshot list. Once created, snapshots may be
accessed as children containers under the cdmi_snapshots
child container of the container receiving a snapshot.

Mandatory

Source Container

cdmi_snapshots

Snap_Shot_A

Snap_Shot_B...

PUT(Container Update) A

PUT(Container Update) B

https://example.com/source

https://example.com/source/cdmi_snapshots

https://example.com/source/cdmi_snapshots/Snap_Shot_A

https://example.com/source/cdmi_snapshots/Snap_Shot_B

© SNIA Serialization/Deserialization
15 Serialization/Deserialization

Cloud storage provides benefits to users and applications due to the pervasive presence and "always on"
availability. Occasionally, data is moved between, into, or out of clouds in bulk operations. Cloud
serialization operations are enabled by normalizing data to a canonical, self-describing format. Use case
examples of cloud serialization include, but are not limited to:

• Data migration between clouds

• Data migration during upgrades (or replacements) of cloud implementations

• Robust backup

The canonical format of serialized data describes how the data is to be represented in a byte stream. This
stream may be transported in any desirable conveyance, and as long as no alteration occurs, the data may
be reconstituted on the destination system.

15.1 Exporting Serialized Data

A canonical encoding of the data is obtained by creating a new data object and specifying that the source
for the creation is to serialize a given CDMI data object, container, or queue. On a successful serialization,
the result shall be a data object that is created with the serialized data as its value. If a container has an
exported block protocol, the serialized data may contain the block-by-block contents of that container
along with its metadata as if it were a data object.

The resulting data object that is produced is the canonical representation of the selected data object,
container, and children or queue.

• If the source specified is a data object, the canonical format shall contain the data object contents
and its metadata.

• If the source being specified is a queue, the queue contents and its metadata shall be included.

• If the source being specified is a container, all children containers, data objects, and queues of the
specified container shall be included.

Only objects that the user who is performing the serialization operation has permissions to read shall be
included in the resulting serialized object.

15.2 Importing Serialized Data

Canonical data may be deserialized back into the cloud by creating a new data object, container, or queue
and by specifying that the source for the creation is to deserialize a given CDMI data object.

The destination may or may not exist previously. If not, a "create" operation is performed. If a container
already exists, an "update" operation with serialized data is not permitted. Data objects are recreated as
specified in the canonical format, including all metadata and the data object identifier (OID). If the
serialized data object contains block-by-block data from a container that was exporting a block protocol,
the container shall be created with that data as its new value, but the exported block protocol shall be set
up with a separate update.

If the user who is deserializing a serialized data object has the "cross-domain" privilege and has not
specified a domainURI as part of the deserialize operation, the original domainURIs from the serialized
object shall be used. If any of the specified domainURIs are not valid in the context of the storage system
on which the deserialization operation is being performed, the entire deserialize operation shall fail.
CDMI 1.0.1h (March 30, 2011) Working Draft 134

Serialization/Deserialization © SNIA
If the user who is deserializing a serialized object specifies a domainURI as part of the deserialize
operation, the domainURI of every object being deserialized shall be set to the specified domainURI. If the
user does not have the "cross_domain" privilege, only the domainURI of the parent object may be
specified.

If the user who is deserializing a serialized object does not specify a domainURI and does not have the
"cross_domain" privilege, then the deserialization operation shall only be successful if all objects have the
same domainURI as the parent object on which the deserialization operation is being performed.

Deserialization operations shall restore all metadata from the specified source. If the original provider of
the serialized data-supported vendor extensions is through custom metadata keys and values, then these
customized requirements shall be restored when deserialized. However, the custom metadata keys and
values may be treated as user metadata (preserved, but not interpreted) by the destination provider.
Preservation allows custom data requirements to move between clouds without losing this information. For
more information on vendor extensions, see Annex B, "(informative) Extending the Interface".

15.2.1 Canonical Format

The canonical format shall represent specified data objects and containers, as they exist within the storage
system. Each object shall be represented by the metadata for the object, identifiers, and the data stream
contents of the data object. Because metadata is inherited from enclosing containers, all parent metadata
shall be represented in the canonical format (essentially flattening the hierarchy). To preserve the actual
metadata values that apply to the data object that is being serialized, the non-overridden metadata is
included from both the immediate parent container of the specified object and from the parent of each
higher-level container.

The canonical format shall have the following characteristics:

• Recursive JSON for the data object, consistent with the rest of CDMI

• User and data system metadata for each data object/container

• Data stream contents for each data object and queue

• Binary data is represented using escaped JSON strings

• Typing of data elements is consistent with CDMI JSON representations
135 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Serialization/Deserialization
15.2.2 Example JSON Canonical Serialized Format

In this example, a data object and a queue in a container have been selected for serialization.

{
 "objectURI" : "/MyContainer/",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Container/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
"exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "0000706D00101ADEBC119D1BFE98672A",
 "permissions" : "0000706D00107B85BFE6D20B84D603CA"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },
 "childrenrange" : "0-1",
 "children" : [
 {
 "objectURI" : "/MyContainer/MyDataObject.txt",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataObject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "valuerange" : "0-37",
 "value" : "This is the Value of this Data Object"
 },
{
 "objectURI" : "/MyContainer/MyQueue",
 "objectID" : "0000706D00101ADEBC119D1BFE98672A",
 "objectName" : "MyQueue",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/Queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "queueValues" : "0-1",
 "valuerange" : [
 "0-2",
 "0-4"
],
 "value" : [
 "red",
 "blue"
]
 }
]
}

CDMI 1.0.1h (March 30, 2011) Working Draft 136

Serialization/Deserialization © SNIA
To allow efficient deserialization in stream mode when serializing containers to JSON, the children array
should be the last item in the container JSON object.
137 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
16 Metadata

16.1 Access Control

Access control comprises the mechanisms by which various types of access to objects and containers are
authorized and permitted or denied. CDMI uses the well-known mechanism of an Access Control List
(ACLs). ACLs are lists of permissions-granting or permissions-denying entries called access control
entries (ACEs).

16.1.1 ACL and ACE Structure

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW
ACE grants some form of access to a principal. Principals are either users or groups, and are represented
by identifiers. A DENY ACE denies access of some kind to a principal. For instance, a DENY ACE may
deny the ability to write the metadata or ACL of an object, but may remain silent on other forms of access.
In that case, if another ACE ALLOWs write access to the object, the principal is allowed to write the
object's data, but nothing else.

ACEs are composed of five fields. In C, their declaration would look like this:

While the type, flags, and access_mask are specified as unsigned integers, for efficiency, each defined bit
in them has a corresponding string (in C, the label-pasted form of the macro), which may be used where
desired for readability.

16.1.2 ACE Type

The following ACE types are defined, following NFSv4:

Note: The reason that the string forms may be safely abbreviated is that they are local to the ACE
structure type, as opposed to constants, which are relatively global in scope.

/*
 * ACE structure
 */
typedef unsigned int uint_t;
typedef char utf8_t;
typedef char* utf8str_t;

struct cdmi_ace_t {
 uint_t type;
 utf8str_t who;
 uint_t flags;
 uint_t access_mask;
};

/*
 * ACE types
 *
 * macro/constant form bitwise form string form
 */
const CDMI_ACE_ACCESS_ALLOW = 0x00000000; "ALLOW"
const CDMI_ACE_ACCESS_DENY = 0x00000001; "DENY"
const CDMI_ACE_SYSTEM_AUDIT = 0x00000002; "AUDIT"
CDMI 1.0.1h (March 30, 2011) Working Draft 138

Metadata © SNIA
ACLs are customarily ordered with the DENY ACEs at the front of the list, but there are no known server
implementations which enforce this. The reason for the custom is that an ACL like this

would not have the desired effect of allowing access to everyone except Jim, as ACLs are evaluated in
order, and JIM, being a member of EVERYONE@, would be granted access before the DENY ACE was
ever encountered.

However, the client is responsible for ordering the ACEs in an ACL. This ordering conforms to both
Windows and NFSv4. The server shall not enforce any ordering, and shall store and evaluate the ACEs in
the order given by the client.

16.1.3 ACE Who

The special "who" identifiers need to be understood universally, rather than in the context of a particular
DNS domain (see Table 18, "Who Identifiers"). Some of these identifiers may not be understood when an
NFS client accesses the server, but have meaning when a local process accesses the file. The ability to
display and modify these permissions is permitted over NFS, even if none of the access methods on the
server understands the identifiers.

To avoid name conflicts, these special identifiers are distinguished by an appended "@" (with no domain
name).

16.1.4 ACE Flags

CDMI allows for nested containers and mandates that objects and subcontainers be able to inherit access
permissions from their parent containers. However, it is not enough to simply inherit all permissions from
the parent; it might be desirable, for example, to have different default permissions on child objects and
subcontainers of a given container. The following flags govern this behavior.

ALLOW EVERYONE@ NONE ALL_PERMS 200912250001

DENY JIM NONE ALL_PERMS 200912250002

Table 18 - Who Identifiers

Who Description

"OWNER@" The owner of the file.

"GROUP@" The group associated with the file.

"EVERYONE@" The world.

"ANONYMOUS@" Accessed without any authentication.

"AUTHENTICATED@" Any authenticated user (opposite of ANONYMOUS).

"ADMINISTRATOR@" A user with administrative status, e.g., root.

"ADMINUSERS@" A group whose members are given administrative status.

/*
 * ACE flag bits
 *
 * macro/constant form bitwise form string form
 */
139 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
• An ACE on which CDMI_ACE_FLAGS_OBJECT_INHERIT_ACE is set is inherited by objects in a
container, but not subcontainers. This effectively causes the inheritance to be one level deep.

• An ACE on which CDMI_ACE_FLAGS_CONTAINER_INHERIT_ACE is set is inherited by
subcontainers of a container, but not the objects.

• An ACE on which CDMI_ACE_FLAGS_NO_PROPAGATE_ACE is not inherited by any objects or
subcontainers. It applies only to the object or container on which it is set.

• An ACE on which CDMI_ACE_FLAGS_INHERIT_ONLY_ACE child objects or subcontainers. It is
ignored when evaluating access for the object or container on which it is set. This flag is
particularly useful for top-level containers, which may specify any kind of default permissions for
child objects, but themselves may only be writable by their owners or administrators, for instance.

16.1.5 ACE Mask Bits

The mask field of an ACE contains 32 bits. The following are defined in CDMI; their values are taken from
the IETF NFSv4 RFC 3530.

const CDMI_ACE_FLAGS_NONE = 0x00000000; "NO_FLAGS"
const CDMI_ACE_FLAGS_OBJECT_INHERIT_ACE = 0x00000001; "OBJECT_INHERIT"
const CDMI_ACE_FLAGS_CONTAINER_INHERIT_ACE = 0x00000002; "CONTAINER_INHERIT"
const CDMI_ACE_FLAGS_NO_PROPAGATE_ACE = 0x00000004; "NO_PROPAGATE"
const CDMI_ACE_FLAGS_INHERIT_ONLY_ACE = 0x00000008; "INHERIT_ONLY"
const CDMI_ACE_FLAGS_INHERITED_ACE = 0x00000100;

/*
 * ACE access_mask bits
 *
 * macro/constant form bitwise form string form
 */
const CDMI_ACE_READ_OBJECT = 0x00000001; "READ_OBJECT"
const CDMI_ACE_LIST_CONTAINER = 0x00000001; "LIST_CONTAINER"
const CDMI_ACE_WRITE_OBJECT = 0x00000002; "WRITE_OBJECT"
const CDMI_ACE_ADD_OBJECT = 0x00000002; "ADD_OBJECT"
const CDMI_ACE_APPEND_DATA = 0x00000004; "APPEND_DATA"
const CDMI_ACE_ADD_SUBCONTAINER = 0x00000004; "ADD_SUBCONTAINER"
const CDMI_ACE_READ_METADATA = 0x00000008; "READ_METADATA"
const CDMI_ACE_WRITE_METADATA = 0x00000010; "WRITE_METADATA"
const CDMI_ACE_EXECUTE = 0x00000020; "EXECUTE"
const CDMI_ACE_DELETE_OBJECT = 0x00000040; "DELETE_OBJECT"
const CDMI_ACE_DELETE_SUBCONTAINER = 0x00000040; "DELETE_SUBCONTAINER"
const CDMI_ACE_READ_ATTRIBUTES = 0x00000080; "READ_ATTRIBUTES"
const CDMI_ACE_WRITE_ATTRIBUTES = 0x00000100; "WRITE_ATTRIBUTES"

const CDMI_ACE_DELETE = 0x00010000; "DELETE"
const CDMI_ACE_READ_ACL = 0x00020000; "READ_ACL"
const CDMI_ACE_WRITE_ACL = 0x00040000; "WRITE_ACL"
const CDMI_ACE_WRITE_OWNER = 0x00080000; "WRITE_OWNER"
const CDMI_ACE_SYNCHRONIZE = 0x00100000; "SYNCHRONIZE"
const CDMI_ACE_SET_RETENTION = 0x10000000; "SET_RETENTION"
CDMI 1.0.1h (March 30, 2011) Working Draft 140

Metadata © SNIA
Several summary values are useful for routine work:

Note that CDMI_ACE_WRITE_OWNER is not included in CDMI_ACE_WRITE_ALL or CDMI_ACE_ALL.
This permission‚ to change the owner of an object‚ is generally only given to admins and the object's
owner.

Note that several constants are duplicated in the above list. This duplication is because several of the flags
apply to both objects and containers:

Implementations should use the correct string form for display of permissions, if the object type is known. If
the object type is unknown, the "object" version of the string should be used.

16.1.6 ACL Evaluation

When evaluating whether access to a particular object O by a principal P shall be granted, the server
traverses the object's logical ACL (its ACL after processing inheritance from ancestor containers) in list
order, using a temporary permissions bitmask m, initially empty (all zeroes).

• If the ACL timestamp is nonexistent or is older than that of some parent (see foregoing discussion
in previous section), use get_acl(O, P) to set the physical ACL equal to the logical ACL.

• If the object still does not contain an ACL, the algorithm terminates and access is denied for all
users and groups. This condition is not expected, as CDMI implementations should require an
inheritable default ACL on all root containers.

• ACEs that do not refer to the principal P requesting the operation are ignored.

• If an ACE is encountered that denies access to P for any of the requested mask bits, access is
denied and the algorithm terminates.

• If an ACE is encountered that allows access to P, the permissions mask m for the operation is
XORed with the permissions mask from the ACE. If m is sufficient for the operation, access is
granted and the algorithm terminates.

const CDMI_ACE_READ = 0x00000009; "READ"
const CDMI_ACE_READ_ALL = 0x00020089; "READ_ALL"
const CDMI_ACE_WRITE = 0x00000016; "WRITE"
const CDMI_ACE_WRITE_ALL = 0x00040156; "WRITE_ALL"
const CDMI_ACE_RW = 0x0000001F; "RW"
const CDMI_ACE_RW_ALL = 0x0006006F; "RW_ALL"
const CDMI_ACE_ALL = 0x1007FFFF; "ALL_PERMS"

Object type constant string form

object 0x01 "READ_OBJECT"

container 0x01 "LIST_CONTAINER"

object 0x02 "WRITE_OBJECT"

container 0x02 "ADD_OBJECT"

object 0x04 "APPEND_DATA"

container 0x04 "ADD_SUBCONTAINER"

object 0x40 "DELETE_OBJECT"

container 0x40 "DELETE_SUBCONTAINER"
141 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
• If the end of the ACL list is reached and permission has neither been granted nor explicitly denied,
access is denied and the algorithm terminates, unless the object is a container root. In this case,
the server shall:

— Allow access to the container owner, ADMINISTRATOR@, and any member of
ADMINUSERS@

— Log an event indicating what has happened

When permission for the desired access is not explicitly given, even ADMINISTRATOR@ and equivalents
are denied for objects that aren't container roots. When an admin needs to access an object in such an
instance, the root container shall be accessed and its inheritable ACEs changed in a way as to allow
access to the original object. The resulting log entry then provides an audit trail for the access.

When a root container is created and no ACL is supplied, the server shall place an ACL containing the
following ACEs on the container:

As ACLs are metadata, they are PUT and GOTTEN through the metadata field of a PUT or GET request.
The syntax is as follows:

{
 [
 {
 "ALLOW",
 "OWNER@",
 "NO_FLAGS",
 "ALL_PERMS",
 } ,
 {
 "ALLOW",
 "AUTHENICATED@",
 "NO_FLAGS",
 "READ",
 }
]
}

ACL = { ACE [, ACE ...] }
ACE = { acetype , identifier , aceflags , acemask , acetime }
acetype = uint_t | acetypeitem
identifier = utf8string_t
aceflags = uint_t | aceflagsstring
acemask = uint_t | acemaskstring

acetypeitem = aceallowedtype |
 acedeniedtype |
 aceaudittype
aceallowedtype = "CDMI_ACE_ACCESS_ALLOWED_TYPE" | 0x0
acedeniedtype = "CDMI_ACE_ACCESS_DENIED_TYPE" | 0x01
aceaudittype = "CDMI_ACE_SYSTEM_AUDIT_TYPE" | 0x02

aceflagsstring = aceflagsitem [| aceflagsitem ...]
aceflagsitem = aceobinherititem |
 acecontinherititem |
 acenopropagateitem |
 aceinheritonlyitem
CDMI 1.0.1h (March 30, 2011) Working Draft 142

Metadata © SNIA
When ACE masks are presented in numeric format, they shall, at all times, be specified in hexadecimal
notation with a leading "0x". This format allows both servers and clients to quickly determine which of the
two forms of a given constant is being used. When masks are presented in string format, they shall be
converted to numeric format and then evaluated using standard bitwise operators.

16.1.7 Example ACE Mask Expressions

evaluates to 0x09 | 0x02 == 0x0B

evaluates to 0x000FFFFF == CDMI_ACE_ALL

evaluates to 0x0060006F | 0x00100000 == 0x0070006F

16.1.8 Canonical Format for ACE Hexadecimal Quantities

ACE mask expressions shall always be evaluated and converted to a single hexadecimal value before
transmission in an HTTP protocol datagram. Applications or utilities that display them to users should
convert them into a text expression prior to display and accept user input in text format as well. The C
bitwise operators "|" and "&" should be used for textual representations of bitmask entities.

aceobinherititem = "CDMI_ACE_OBJECT_INHERIT_ACE" | 0x01
acecontinherititem = "CDMI_ACE_CONTAINER_INHERIT_ACE" | 0x02
acenopropagateitem = "CDMI_ACE_NO_PROPAGATE_INHERIT_ACE" | 0x04
aceinheritonlyitem = "CDMI_ACE_INHERIT_ONLY_ACE" | 0x08

acemaskstring = acemaskitem [| acemaskitem ...]
acemaskitem = acereaditem | acewriteitem |
 aceappenditem | acereadmetaitem |
 acewritemetaitem | acedeleteitem |
 acedelselfitem | acereadaclitem |
 acewriteaclitem | acewriteowneritem

acereaditem = "CDMI_ACE_READ_OBJECT" |
 "CDMI_ACE_LIST_CONTAINER" | 0x01
acewriteitem = "CDMI_ACE_WRITE_OBJECT" |
 "CDMI_ACE_ADD_OBJECT" | 0x02
aceappenditem = "CDMI_ACE_APPEND_DATA" |
 "CDMI_ACE_ADD_SUBCONTAINER" | 0x04
acereadmetaitem = "CDMI_ACE_READ_METADATA" | 0x08
acewritemetaitem = "CDMI_ACE_WRITE_METADATA" | 0x10
acedeleteitem = "CDMI_ACE_DELETE_OBJECT" |
 "CDMI_ACE_DELETE_SUBCONTAINER" | 0x40
acedelselfitem = "CDMI_ACE_DELETE" | 0x10000
acereadaclitem = "CDMI_ACE_READ_ACL" | 0x20000
acewriteaclitem = "CDMI_ACE_WRITE_ACL" | 0x40000
acewriteowneritem = "CDMI_ACE_WRITE_OWNER" | 0x80000

"READ_ALL" | 0x02

0xFFFFF

"RW_ALL" | DELETE
143 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
The following technique should be used to decompose masks into strings. A table of masks and string
equivalents should be maintained and ordered from greatest to least:

Given an access mask M, the following is repeated until M == 0:

1 Select the highest mask m from the table such that M & m == m

2 If the object is a container, select the string from the 3rd column; otherwise select the string from
the 2nd column.

3 Bitwise subtract m from M, i.e. set M = M xor m

The complete textual representation is then all the selected strings concatenated with " | " between them,
e.g. "ALL_PERMS | WRITE_OWNER". The strings should appear in the order they are selected.

A similar technique should be used for all other sets of hex/string equivalents.

Note that this algorithm, properly coded, requires only one (often partial) pass through the corresponding
string equivalents table.

16.1.9 JSON Format for ACLs

ACE flags and masks are members of a 32-bit quantity that is widely understood in its hexadecimal
representations. The JSON data format does not support hexadecimal integers, however. For this reason,
all hexadecimal integers in CDMI ACLs shall be represented as quoted strings containing a leading "0x".

ACLs containing one or more ACEs shall be represented in JSON as follows:

0x1007FFFF "ALL_PERMS""ALL_PERMS"
0x0006006F "RW_ALL""RW_ALL"
0x0000001F "RW""RW"
 ...
0x00000002 "WRITE_OBJECT""ADD_OBJECT"
0x00000001 "READ_OBJECT""LIST_CONTAINER"

{
 "cdmi_acl" : [
 {
 "acetype" : "0xnn",
 "identifier" : "<user-or-group-name>",
 "aceflags" : "0xnn",
 "acemask" : "0xnn",
 },
 {
 "acetype" : "0xnn",
 "identifier" : "<user-or-group-name>",
 "aceflags" : "0xnn",
 "acemask" : "0xnn",
 }
]
}

CDMI 1.0.1h (March 30, 2011) Working Draft 144

Metadata © SNIA
ACEs in such an ACL shall be evaluated in order as they appear. An example of an ACL embedded in a
response to a GET request is as follows:

16.2 Support for User Metadata

All objects that support metadata shall permit the inclusion of arbitrary user-defined metadata items, with
the restriction that the name of a user-defined metadata item shall not start with the prefix "cdmi_".

• The maximum number of user-defined metadata items is specified by the capability
"cdmi_metadata_maxitems".

• The maximum size of each user-defined metadata item is specified by the capability
"cdmi_metadata_maxsize".

16.3 Support for Storage System Metadata

Once an object has been created, the storage system metadata, as described in Table 19, "Storage
System Metadata", shall be generated by the cloud storage system and shall immediately be made

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/MyContainer/MyDataItem.txt",
 "objectID" : "0000706D0010734CE0BAEB29DD542B51",
 "objectName" : "MyDataItem.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/DataItem/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17",

 "cdmi_acl" : [
 {
 "acetype" : "0x00",
 "identifier" : "EVERYONE@",
 "aceflags" : "0x00",
 "acemask" : "0x00020089",
 }
]
 },
 "valuerange" : "0-17",
 "value" : "Hello CDMI World!"
}

145 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
available to a CDMI client in the metadata that is returned as a result of the create operation and any
subsequent retrievals.

16.4 Support for Data System Metadata

When specified, data system metadata provides guidelines to the cloud storage system on how to provide
storage data services for data managed through the CDMI interface.

Table 19 - Storage System Metadata

Metadata Name Type Description Requirement

cdmi_size JSON
String

The number of bytes stored in the data item. Optional

cdmi_ctime JSON
String

The time when the data item was created, in [ISO-8601] point-
in-time format, as described in Section 5.14.

Optional

cdmi_atime JSON
String

The time when the data item was last accessed in [ISO-8601]
point-in-time format, as described in Section 5.14. The access
or modification of a child is not considered an access of a
parent container (access/modify times do not propagate up the
tree).

Optional

cdmi_mtime JSON
String

The time when the data item was last modified, in [ISO-8601]
point-in-time format, as described in Section 5.14. The
modification of a child is not considered a modification of a
container (modification times do not propagate up the tree).

Optional

cdmi_acount JSON
String

The number of times that the object has been accessed since
it was originally created. Accesses include all reads, writes,
and lists.

Optional

cdmi_mcount JSON
String

The number of times that the object has been modified since it
was originally created. Modifications include all value and
metadata changes. Modifications to metadata resulting from
reads (such as updates to atime) do not count as a
modification.

Optional

cdmi_hash JSON
String

The hash of the value of the object, encoded as a base64
string. This metadata field shall be present when the
"cdmi_value_hash" data system metadata for the object or a
parent object indicates that the value of the object should be
hashed.

Optional

cdmi_owner JSON
String

The cdmi_member_name of the principal that has owner
privileges for the object.

Optional

cdmi_acl JSON
Array

Standard ACL metadata. If not specified when the object is
created, this metadata shall be filled in by the system.

Optional
CDMI 1.0.1h (March 30, 2011) Working Draft 146

Metadata © SNIA
As described in Table 20, data system metadata is inherited from parent objects to any children. If a child
explicitly contains data system metadata, the metadata value of the child data system shall override the
metadata value of the parent data system.

Table 20 - Data Systems Metadata

Metadata Name Type Description Requirement

cdmi_data_redundancy JSON
String

Contains the desired number of complete copies of
the data item to be maintained. This number
determines the minimum number of primary copies
of the data that the cloud shall maintain. Additional
primary copies may be made to satisfy demand for
the value.

Optional

cdmi_immediate_redundancy JSON
String

If present and set to the value "true", indicates that
at least a cdmi_data_redundancy number of copies
shall contain the newly written value before the
operation completes. This metadata is used to
make sure that multiple copies of the data are
written to permanent storage to prevent possible
data loss.

Optional

cdmi_assignedsize (only valid for
a container.) See Chapter 9,
"Container Object Resource
Operations".

JSON
String

Contains the number of bytes that are reported via
exported protocols (and may be thin provisioned by
the system). This number may limit cdmi_size for
the container. This metadata is the size that shall be
shown through any number of data path protocols
that are used to export a container. If the container
is thin provisioned, this may be greater than the
actual storage consumed.

Optional

cdmi_infrastructure_redundancy JSON
String

Contains the number of desired independent
storage infrastructures supporting the data. This
metadata is used to convey that, of the primary
copies specified in cdmi_data_redundancy, these
copies shall be stored on this many separate
infrastructures. Any two infrastructures may not
share common elements, such as a network or
power source.

Optional

cdmi_data_dispersion JSON
String

Contains the desired distance (km) between the
infrastructures supporting the multiple copies of
data. This metadata is used to separate the
(cdmi_infrastructure_redundancy number of)
infrastructures by a minimum geographic distance
to prevent data loss due to site disasters.

Optional

cdmi_geographic_placement JSON
Array
of
JSON
Strings

Contains a list of geopolitical identifiers, each
specifying a region where the object is permitted or
not permitted to be stored. Geopolitical boundaries
are a list of ISO-3166 country codes. A "!" in front of
a country code excludes that country from the
previous list of geopolitical boundaries. This
metadata limits where the data may be placed
physically and constrains all cloud movement of the
data within the cloud. It does not apply to data once
it leaves the cloud. This metadata takes precedent
over other metadata, such as
cdmi_data_dispersion.

Optional
147 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
cdmi_retention_id JSON
String

Contains a user-specified retention identifier. This
metadata is a user-specified text field that is used to
tag a given object as being managed by a specific
retention policy. It is not required to place an object
under retention but is useful when needing to be
able to perform a query to find all objects under a
specific retention policy.

Optional

cdmi_retention_period JSON
String

Contains an [ISO-8601] time interval (as described
in Section 5.14) during which the object is under
retention. Only the end-date may be altered when
updated. If an object is under retention, the object
may not be deleted and its value may not be
altered. After the retention date has passed, the
object may be deleted.

Optional

cdmi_retention_autodelete JSON
String

This metadata is used to indicate if the object is to
be automatically deleted when retention expires.
The value of this metadata item shall be "true" when
set.

Optional

cdmi_hold_id JSON
Array
of
JSON
Strings

This metadata is used to indicate if the object is to
be placed under a retention hold. If the array is not
empty, the object is under a hold, with each string in
the array containing a user-specified hold identifier.
If an object is under one or more holds, the object is
completely immutable.

Optional

cdmi_encryption JSON
String

This metadata is used to indicate if the object is to
be encrypted and indicates the desired encryption
algorithm, the mode of operation, and the key size.
This metadata is the desired encryption support
that the client is requesting of the cloud. All data
related to the data item/container shall be
encrypted when this value is set, including
metadata. This metadata is the desired encryption
support that the client is requesting of the cloud.
Using the template,
ALGORITHM_MODE_KEYLENGTH, the client is
able to specify the encryption where:

• "ALGORITHM" is the encryption algorithm (e.g.,
"AES" or "3DES").

• "MODE" is the mode of operation (e.g., "XTS",
"CBC", or "CTR").

• "KEYLENGTH" is the key size (e.g., "128", "192",
"256").

Optional

Table 20 - Data Systems Metadata

Metadata Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 148

Metadata © SNIA
To improve interoperability between CDMI
implementations, the following designators should
be used for the more common encryption
combinations:

• “3DES_ECB_168” for the three-key Triple DES
algorithm, the Electronic Code Book (ECB) mode
of operation, and a key size of 168 bits.

• “3DES_CBC_168” for the three-key Triple DES
algorithm, the Cipher Block Chaining (CBC)
mode of operation, and a key size of 168 bits.

• "AES_CBC_128" for the AES algorithm, the CBC
mode of operation, and a key size of 128 bits.

• "AES_CBC_256" for the AES algorithm, the CBC
mode of operation, and a key size of 256 bits.

• "AES_XTS_128" for the AES algorithm, the XTS
mode of operation, and a key size of 128 bits.

"AES_XTS_256" for the AES algorithm, the XTS
mode of operation, and a key size of 256 bits.

cdmi_value_hash JSON
String

If present, this capability lists the hash algorithm/
lengths supported. If absent, objects shall not
present a hash value as system metadata. Values
are in the form of "Algorithm Length”, for example,
"SHA256". When a CDMI implementation supports
hashing, the system-wide capability of
“cdmi_security_data_integrity” specified in Table 10
of Section 12.1.1, "Cloud Storage System-Wide
Capabilities" shall be set to “true”. Otherwise, it
shall not be present, indicating that there is no
hashing support.

Optional

cdmi_latency JSON
String

Contains the desired maximum time to first byte, in
milliseconds. This metadata is the desired latency
(in milliseconds) to the first byte of data in a primary
copy, as measured from the edge of the cloud and
factoring out any propagation latency between the
client and the cloud. For example, this metadata
may be used to determine, in an interoperable way,
from what type of storage medium the primary
copy(s) of the data may be served.

Optional

cdmi_throughput JSON
String

Contains the desired maximum data rate on
retrieve, in bytes per second. This metadata is the
desired bandwidth (in Mbits/sec) to the primary
copy of data, as measured from the edge of the
cloud and factoring out any bandwidth capability
between the client and the cloud. This metadata is
used to stage the primary data copies in locations
where there is sufficient bandwidth to
accommodate a maximum usage.

Optional

cdmi_sanitization_method JSON
String

If present, this metadata specifies the sanitization
method selected from the list in the
cdmi_sanitization_method capability list. If absent,
objects shall not be securely sanitized.

Optional

Table 20 - Data Systems Metadata

Metadata Name Type Description Requirement
149 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Metadata
16.5 Support for Data Copies

CDMI envisions a cloud storage system where multiple primary copies of data are stored and distributed
geographically for both availability and performance reasons. All of these primary copies may be accessed
through the URI for the object, and the system determines which copy may best satisfy the request. CDMI
also envisions secondary copies that are not accessible immediately through the URI but may be used to
restore the primary copies, if they were destroyed. The metadata for CDMI data copies are described in
Table 20, "Data Systems Metadata".

16.6 Support for Provided Data System Metadata

For each metadata element in a data system, there is an actual value that the offering is able to achieve at
this time, as shown in Table 21.

cdmi_RPO JSON
String

Contains the largest acceptable duration in time
between an update and when the update may be
recovered, specified in seconds. This metadata is
used to indicate the desired backup frequency from
the primary copy(s) of the data to the secondary
copy(s). It is the maximum acceptable duration
between a write to the primary copy and the backup
to the secondary copy during which a failure of the
primary copy(s) shall result in data loss.

Optional

cdmi_RTO JSON
String

Contains the largest acceptable duration in time to
restore data, specified in seconds. This metadata is
used to indicate the desired maximum acceptable
duration to restore the primary copy(s) of the data
from a secondary backup copy(s).

Optional

Table 21 - Provided Values of Data Systems Metadata Elements

Metadata Name Type Description Requirement

cdmi_data_redundancy_provided JSON
String

Contains the current number of complete
copies of the data item at this time.

Optional

cdmi_immediate_redundancy_provided JSON
String

If present and set to "true", indicates if
immediate redundancy is provided for the
object.

Optional

cdmi_infrastructure_redundancy_provided JSON
String

Contains the current number of
independent storage infrastructures
supporting the data currently operating.

Optional

cdmi_data_dispersion_provided JSON
String

Contains the current lowest distance (km)
between any two infrastructures hosting
the data.

Optional

cdmi_geographic_placement_provided JSON
Array
of
JSON
Strings

Each string contains an ISO-3166
identifier that corresponds to a
geopolitical region where the object is
stored.

Optional

Table 20 - Data Systems Metadata

Metadata Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 150

Metadata © SNIA
cdmi_retention_period_provided JSON
String

Contains an [ISO-8601] time interval (as
described in Section 5.14) specifying the
period the object is protected by retention.

Optional

cdmi_retention_autodelete_provided JSON
String

Contains "true" if the object will
automatically be deleted when retention
expires.

Optional

cdmi_hold_id_provided JSON
Array
of
JSON
Strings

Contains the user-specified hold identifier
for active holds.

Optional

cdmi_encryption_provided JSON
String

Contains the algorithm used for
encryption, the mode of operation, and
the key size. (See cdmi_encryption in
Table 20, "Data Systems Metadata" for
the format.)

Optional

cdmi_value_hash_provided JSON
String

Contains the algorithm and length being
used to hash the object value.

Optional

cdmi_latency_provided JSON
String

Contains the provided maximum time to
first byte.

Optional

cdmi_throughput_provided JSON
String

Contains the provided maximum data rate
on retrieve.

Optional

cdmi_sanitization_method_provided JSON
String

Contains the sanitization method used. Optional

cdmi_RPO_provided JSON
String

Contains the provided duration, in
seconds, between an update and when
the update may be recovered.

Optional

cdmi_RTO_provided JSON
String

Contains the provided duration, in
seconds, to restore data.

Optional

Table 21 - Provided Values of Data Systems Metadata Elements

Metadata Name Type Description Requirement
151 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Logging
17 Logging

Data that is stored in a cloud-based storage system is governed by a similar set of policy, process, and
governance regulations, as if the data were being stored on site or in a private cloud. The obligations to a
user of cloud-based storage to satisfy regulating agencies, auditors, and IT oversight functions need to be
part of the CDMI standard. As the data stored in clouds may span geo-political boundaries, multiple
regulations often need to be satisfied to oversight agencies. To accomplish this, CDMI logging is divided
into three functional areas, each with differing levels of detail. These include:

• Logging of CDMI object functions

• Logging of security events

• Logging of data management events

Information contained in these logs shall be for CDMI operations. Logging of non-CDMI operations is
optional, but may be provided through a CDMI logging interface.

17.1 Access to Log Data

A CDMI client may access log data by creating a logging queue that indicates the scope of log messages
that they wish to receive, as described in Section 17.5, "Logging Queues". If the user has sufficient
permissions to create a log queue, all log messages that he or she has subscribed to shall be enqueued
into the queue, which may be accessed for processing and archival storage.

If multiple logging queues are defined, each shall get the log entry for a subscribed event. If there are no
logging queues defined that subscribe to a given log message or class of log messages, these messages
do not have to be retained by the system.

17.2 Object Logging

If logging is supported by the storage system, all operations performed on CDMI objects (data objects,
containers, domains, queues, and capabilities) shall be persistently stored into all defined logging queues.

Log messages shall contain a minimum of the following information:

• A timestamp in [ISO-8601] format (see Section 5.14)

• The domain in which the operation was performed

• The operation being performed

• The URI of the object against which the operation was performed

• The principal of the entity by which the operation was performed

• The result of the operation

It is anticipated that a standardized format and set of log messages for CDMI operations will be added to a
future release of the standard.

Operations logged shall include serializations and de-serializations, snapshots, export actions, and
mappings of exports to file systems. Operations logged should include operations performed to a CDMI-
exported file system.
CDMI 1.0.1h (March 30, 2011) Working Draft 152

Logging © SNIA
Any storage consumed by the logging queues should count as part of the overall storage consumed by a
domain.

CDMI object logging is a superset of object notifications. Notifications are intended to provide high-level
information about changes to objects, to provide less detail than object logging, and to be available to a
wider group of end users.

17.3 Security Logging

All security-sensitive events, including session establishment, authentication and authorization, and
domain modifications and delegation shall be logged as security events. Security logging includes user
and domain management, credential-related actions (i.e., revocation list validation) and should include out-
of-band operations that affect the security of a CDMI system (such as modifications of security properties
of a CDMI domain via an administrative GUI).

If the cloud storage system supports a queue type of "cdmi_logging_queue" and a “cdmi_logging_class” of
“cdmi_security_logging” as shown in Section 17.5, "Logging Queues", this indicates that the system
supports audit logging. Consequently, the system-wide capability of “cdmi_security_audit” specified in
Table 10 of Section 12.1.3, "Data System Metadata Capabilities" shall be set to “true”. Otherwise, it shall
not be present.

17.4 Data Management Logging

In addition to log messages associated with the alteration of metadata when changing data system
metadata, logging should also include all conditions where the specified or actual data system metadata
for objects change. For example, if the number of requested replicas was changed by a client, this change
shall generate a log message indicating this change. A corresponding change in the actual number of
replicas by the system shall also generate a log message.

This class of logging shall also contain object holds and retention policy log messages.

17.5 Logging Queues

Logging queues allow CDMI clients to obtain detailed logging information about the actions related to the
operation of a CDMI storage system. As queue data is persistent, no session state needs to be retained by
the client, and clients can operate in a disconnected and casual manner. For example, a logging analysis
application might use logging queues to obtain information about actions performed to a cloud, and it may
receive only logging messages that are relevant to a domain or set of objects.

Logging queues differ from notification queues in that the information provided is at a much more detailed
level than notifications and is typically restricted to a smaller, privileged subset of clients.

When a client wishes to receive logging information, it may first check if the system is capable of providing
logging by checking for the presence of the "cdmi_logging" capability in the root capabilities container. If
this capability is not present, creating a logging queue shall be successful, but no logging entries shall be
enqueued into the logging queue.
153 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Logging
When creating a logging queue, the metadata described in Table 22 shall be provided.

An example of the metadata associated with a logging queue is as follows:

When logging messages are enqueued into a logging queue, each enqueued value consists of a JSON
array of JSON objects, with each JSON object representing a single log message.

Log messages are only included in a logging queue if the user who created the logging queue is able to
access the object associated with the log message. (User has any ACE from Section 16.1.5, "ACE Mask
Bits".)

Example: If the logging queue was created by the administrator, then all matching objects that the
administrator is allowed to read are included in the results. If the notification queue was
created by user "jdoe", then only logging messages for objects that "jdoe" is allowed to read
are included in the results.

Table 22 - Required Metadata for a Logging Queue

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage system
shall manage the queue object. The type of
"cdmi_logging_queue" is defined for logging queues.

Mandatory

cdmi_logging_class JSON
Array of
JSON
Strings

Contains a JSON array that indicates which log messages
are to be enqueued. Defined values are:

• cdmi_object_logging - Receive logging messages
related to object operations.

• cdmi_datasystem_logging - Receive logging messages
related to data system metadata state changes.

• cdmi_security_logging - Receive logging messages
related to security events.

Mandatory

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines the set of objects that
operations trigger the generation of log messages. If
logging is desired for all objects, include an empty JSON
array. For security logging, the scope specification is
ignored. See Section 20.1 for how to construct a scope
specification.

Mandatory

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_logging_queue",
 "cdmi_logging_class" : [
 "cdmi_object_logging",
 "cdmi_security_logging"
],
 "cdmi_scope_specification" : [
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]
 }
}

CDMI 1.0.1h (March 30, 2011) Working Draft 154

Logging © SNIA
Table 21, "Logging Status Metadata" describes the system-created metadata that provides details on the
completion status of the logging queue.

When logging results are stored in a logging queue, each enqueued value shall consist of a JSON object
of MIME-type "application/json".

17.6 Logging Security Considerations

The accuracy and integrity of the log entries depend on the accuracy and integrity of the clock that is used
to set their timestamp values. Accurate timestamps are essential to troubleshooting, forensic analysis of
distributed attacks, dispute resolution, and proof of time-sensitive transactions. In essence, debugging,
security, audit, and authentication are founded on the basis of event correlation (knowing exactly what
happened in what order and on which side), and these security considerations depend on good time
synchronization.

While specifying the accuracy and integrity of time keeping is not within the scope of the CDMI standard, to
demonstrate that log timestamps are trustworthy, timestamps should be traceable to NIST standard time,
and it should be demonstrated that system time may not be arbitrarily changed.

To ensure that log messages have not been changed, log messages should be signed, such that any
changes may be detected and the log integrity may be verified. Log verification also requires the
demonstration that messages have not been inserted or removed, requiring the presence of sequence
counts or similar methods that demonstrate continuity.

Table 23 - Logging Status Metadata

Metadata Name Type Description Requirement

cdmi_logging_status JSON
String

Indicates if the query is in progress or complete. The three
values defined are "Error", "Processing", and "Complete".

Mandatory
155 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Retention and Hold Management
18 Retention and Hold Management

A CDMI system may optionally implement retention management disciplines into the system management
functionality of the cloud-based storage system. The implementation of retention and hold capabilities is
governed by the presence of the CDMI system-wide capabilities for retention and hold capabilities.

Retention management includes implementing a retention policy, defining a hold policy to enable objects
to be held for specific purposes (typically litigation), and defining how the rules for deleting objects are
affected by placing either a retention policy and/or a hold on an object. CDMI object deletion is not a
capability of retention management, per se, but rather is a general system capability. However, this section
describes what happens when placing either a retention policy and/or a hold on an object

Retention management may be applied to the following object types:

• Data items

• Queues

• Containers

18.1 Retention Management Disciplines

CDMI retention, deletion, and hold management apply to any CDMI application that creates or deletes
CDMI objects, as these disciplines mandate how a CDMI system manages CDMI objects when they are
created and until they are deleted.

CDMI retention management is comprised of three management disciplines: retention, hold, and deletion:

• CDMI retention uses retention time criteria to determine the time period during which object
deletion from the CDMI-based system is prohibited. No changes to the object are allowed;
however, extensions of the object metadata are allowed.

• A CDMI-based system shall not allow the deletion of a CDMI object before the CDMI retention
time criteria are met, and any deletion tries (e.g., by a CDMI application) shall generate non-fatal
errors.

• After the CDMI retention time criteria have been met, CDMI retention shall no longer be a reason
to prohibit object deletion.

18.2 CDMI Retention

CDMI retention only allows one concurrent retention policy to be applied to an object at a time.

Retention management uses time criteria to determine the time period during which CDMI object deletion
from the CDMI-based system shall be prohibited. CDMI retention criteria shall be specified by:

• A retention criteria identifier: a CDMI application-specified string that shall identify the retention
records class (cdmi_retention_id)

• A retention start time and retention duration time: the start time, when used together with duration,
indicating when retention shall no longer be enforced (cdmi_retention_duration)

When a CDMI application tries to delete an object, the CDMI system shall evaluate all such retention
criteria and return a non-fatal error, if any retention criteria have not been met.
CDMI 1.0.1h (March 30, 2011) Working Draft 156

Retention and Hold Management © SNIA
Figure 11, "Object Retention" shows how to establish time-based retention with a retention identifier.
Object metadata may be extended but not modified.

A specific HTTP error code (403) shall be returned on operations to objects that are under retention period
when the CDMI system tries to change or delete the object before the retention duration criteria are met.
This failure should be a non-fatal error to the application.

It is not the responsibility of a CDMI system to enforce value changes to the retention duration, as there
are valid business reasons to change a retention duration for an object.

18.3 CDMI Hold

CDMI hold enforces read-only data item access and prohibition of object deletion. A CDMI system shall
allow multiple holds to be applied to a single object to satisfy multiple hold orders.

While an object is on hold, a CDMI system shall:

• Strictly enforce read-only access to the object

• Prohibit object deletion

When copying objects that are on hold, hold properties shall not be transferred from the existing CDMI
object to the new object, and the new object shall not be on hold.

Hold management uses a hold indicator to determine the time period(s) during which CDMI object revision
(data and metadata) and deletion from the CDMI-based system shall be prohibited. CDMI hold criteria
shall be specified by data system metadata, specifically, a hold criteria identifier that is an application-
specified string that shall identify the holds and their order.

A CDMI application may place an object on hold by adding a hold id to the cdmi_retention_hold data
system metadata item. When an object is on hold, CDMI applications shall be subject to failures or
unexpected state changes on operations, which would otherwise be successful if the object was not on
hold.

Figure 11 - Object Retention

Retention enabled, ID,
start time, and duration

set

Changes are not
allowed; deletion

is allowed
1/1/2011 1/1/2012

Example: Retention start date of 4/18/2010 with
 a duration of 730 days. No holds.

4/28/2010 4/27/2012

Changes and deletion are
not allowed
157 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Retention and Hold Management
Figure 12, "Object Hold" shows how placing a hold on an object affects its read-only and deletion
capability.

Figure 13, "Object Hold on Object with Retention" shows how to establish time-based retention with a
retention identifier that has a hold placed on the object. Object metadata for the retention duration may be
extended but not modified.

Figure 12 - Object Hold

Figure 13 - Object Hold on Object with Retention

No retention information
is set; object stored on

4/28/2010

Changes and
deletion of object is

allowed

Changes and
deletion of object

is allowed Object
deleted on
4/28/2014

Hold placed 1/1/2012

1/1/2011 1/1/2012 1/1/2013 1/1/2014

Object is read
only; deletion is

not allowed

Example: Hold placed on the object on 1/1/2012
 and removed on 1/1/2013

Hold removed 1/1/2013

4/28/2010 4/28/2014

Retention enabled, ID,
start time, and duration

set

Changes are not
allowed; deletion

is allowed

Hold placed 10/21/2011

1/1/2011 1/1/2012 1/1/2013 1/1/2014

Object is read only;
deletion is not allowed

Example: Start date of 4/28/2010 with a duration of
 730 days; hold placed on the object

Hold removed 10/21/2013

4/28/2010 4/28/2014

Changes and
deletion are not

allowed

Retention duration
completed 4/27/2012
CDMI 1.0.1h (March 30, 2011) Working Draft 158

Retention and Hold Management © SNIA
Figure 14, "Object with Multiple Holds" shows how placing multiple holds on an object affects its read-only
and deletion capability.

A CDMI system shall maintain an on-hold object in read-only mode with respect to the application access
to data and metadata and shall prohibit deletion, either automated or explicit.

• CDMI applications shall tolerate these object on-hold failures or state changes.

• Releases from hold are performed out-of-band or by vendor extension, and are not part of the
CDMI standard.

A specific HTTP error code (403) shall be returned on operations to objects that are under a hold when the
system tries to change the object or tries to delete the object before the hold is removed. This failure
should be a non-fatal error to the application.

18.4 CDMI Deletion

CDMI deletion controls CDMI system actions with respect to object deletion. A CDMI system may
automatically delete a CDMI object once the retention time and hold criteria have been met. (See
cdmi_retention_autodelete in Table 20, "Data Systems Metadata".

CDMI objects shall be automatically deleted by the system by setting the data system metadata flag,
cdmi_retention_autodelete, at the retention duration expiration. The cdmi_retention_autodelete flag
indicates to the system that the object shall be made unavailable for access once the retention criteria
have been satisfied. The system shall ensure that the object is no longer available through the CDMI
interface. If the system has satisfied the retention requirement and a hold is established for the object, the
object shall not be made unavailable or deleted. When a hold and retention have been applied to an
object, both need to be satisfied (retention duration expired and no holds existing) for objects to be
automatically deleted from the system.

The autodeletion flag is used with the retention/hold capability of a CDMI system.

Figure 14 - Object with Multiple Holds

No retention
information is set;
object stored on

4/28/2010

Changes
and deletion
are allowed

Hold #1
placed

1/1/2011

1/1/2011 1/1/2012 1/1/2013 1/1/2014

Object is read only; deletion is not
allowed

Example: Object created on 4/28/2010.
 Hold #1 is placed on 1/1/2011 and removed on 1/1/2013.
 Hold #2 is placed on 3/1/2012 and removed on 1/1/2014.

Hold #1
removed
1/1/2013

4/28/2010 4/28/2014

Changes &
deletion are

allowed Object
deleted on
4/28/2014

Hold #2
placed

3/1/2012

Hold #2
removed
1/1/2014
159 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Retention and Hold Management
18.5 Retention Security Considerations

The accuracy and integrity of the retention start and elapsed times depend on the accuracy and integrity of
the clock that is used to set their values. Equally important is the relative accuracy and integrity of the
clock, which determines if retention duration has elapsed, to the clock, which sets the start time property.
Relative time differences between these two clocks may lead to undesirable retention and deletion
management behavior.

It is important to have a reliable source from which the system clock is set. A stratum 1 time is directly
connected to a reference clock and is at the top of the time server hierarchy. Relative time differences
between the system clock and the reference clock may lead to undesirable retention timestamps and
difficulties with time action events. For example, an object is created in an CDMI system at time 0 with
duration of 8 years and autodelete of TRUE. At time 1 year, the system clock is adjusted forward to 9
years. Now, because the system time is 9 years, the retention time criterion is satisfied, even though only 1
year has actually elapsed. And, since autodelete is TRUE, the system automatically deletes the object.

The specification for accuracy and integrity of timekeeping is not within the scope of CDMI. However, to
prevent undesirable retention and deletion management consequences, systems are strongly encouraged
to maintain accurate clock time, with zero or minimal deviation to clock integrity.
CDMI 1.0.1h (March 30, 2011) Working Draft 160

Notification Queues © SNIA
19 Notification Queues

A CDMI system may optionally implement notification functionality. The implementation of notification is
indicated by the presence of the CDMI system-wide capabilities for notification and requires support for
CDMI queues.

Notification queues allow CDMI clients to efficiently discover what changes have occurred to the system.
As queue data is persistent, no session state needs to be retained by the client, and clients may operate in
a disconnected and casual manner. For example, an application might use notification queues to keep its
database current without having to do full scans of a container to discover what objects have been added,
modified, or removed.

When a client wishes to receive notifications, it may first check if the system is capable of providing
notifications by checking for the presence of the "cdmi_notifications" capability in the root capabilities
container. If this capability is not present, creating a notification queue shall be successful, but no
notifications shall be enqueued into the notification queue.

To create a notification queue, the client creates a regular CDMI queue and adds metadata instructing the
storage system to treat the queue as a notification queue. This added metadata also instructs the system
about what types of notifications shall be generated and what information shall be included with each
notification.

Once the notification queue is created, all subsequent matching events after the queue creation time shall
result in notification results being enqueued into the queue. CDMI does not mandate any specific ordering
of events, and clients must be able to handle events that arrive out of order.

When creating a notification queue, the metadata described in Table 24 shall be provided. Attempts to
alter metadata in this table will result in an HTTP 403 Forbidden HTTP status code. Once a notification
queue has been created, with the exception of cdmi_queue_type, the metadata items in this table cannot
be altered. cdmi_queue_type can only be removed, indicating to the system that the notification queue
shall no longer receive notifications and shall be treated as a regular CDMI queue object.

Table 24 - Required Data for a Notification Queue

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage
system shall manage the queue object. The type of
"cdmi_notification_queue" is defined for notification
queues.

Mandatory

cdmi_notification_events JSON
Array of
JSON
Strings

Contains a JSON array that indicates which events
generate notifications. Defined values are:

• cdmi_create_processing - Notifications are
generated when a new object is created, but is still
in the processing completion status.

• cdmi_create_complete - Notifications are
generated when a new object is created and is in
the complete completion status. This notification is
also generated when a new object being created
transitions from “Processing” to “Complete”.

• cdmi_read - Notifications are generated when an
object is read.

• cdmi_modify_processing - Notifications are
generated when an existing object is modified, but
is still in the processing completion status.

Mandatory
161 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Notification Queues
• cdmi_modify_complete - Notifications are
generated when an existing object is modified and
is in the complete completion status. This
notification is also generated when an existing
object being modified transitions from
“Processing” to “Complete”.

• cdmi_rename - Notifications are generated when
an object is renamed.

• cdmi_copy - Notifications are generated when an
object is copied.

• cdmi_reference - Notifications are generated when
an object is referenced.

• cdmi_delete - Notifications are generated when an
object is deleted.

• cdmi_export - Notifications are generated when an
container is exported.

• cdmi_snapshot - Notifications are generated when
an container is snapshotted.

• <implementor-specific events>

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines the set of
objects that on which operations trigger the
generation of notifications. If notifications are desired
for all objects, include an empty JSON array

See Section 20.1 for how to construct a scope
specification.

Mandatory

cdmi_results_specification JSON
Object

Contains the JSON fields to be returned for each
object that matches the notification scope
specification. See Section for how to construct a
results specification.

In addition to the fields defined in Section , for
notifications, two additional fields are defined:

• cdmi_event - Indicates the event as specified in
the cdmi_notification_events field that triggered
the notification.

• cdmi_event_result - Indicates the status result of
the event that triggered the notification. The status
is the same as the status that was returned over
the HTTP request, i.e., 200 OK, 404 Not
Found, etc.

• cdmi_event_time - Indicates the time of the event
that triggered the notification. The time will be
formatted in [ISO-8601] time (see Section 5.14).

• cdmi_event_user - Indicates the principal (acl
name) of the user that caused the event that
triggered the notification. If the system triggered
the event, the name will be left as an empty string.

Mandatory

Table 24 - Required Data for a Notification Queue

Metadata Name Type Description Requirement
CDMI 1.0.1h (March 30, 2011) Working Draft 162

Notification Queues © SNIA
An example of the metadata associated with a notification queue is as follows:

When notification results are stored in a notification queue, each enqueued value shall consist of a JSON
object of MIME-type "application/json". This JSON object contains the specified values requested in the
cdmi_results_specification of the notification queue metadata.

An example of a notification result JSON object is as follows:

Objects shall only be included in the notification results if the user who created the notification queue is
able to read the matching object.

Example: If the notification queue was created by the administrator, then all matching objects that the
administrator is allowed to read are included in the results. If the notification queue was
created by user "jdoe", then only matching objects that "jdoe" is allowed to read are included in
the results.

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_notification_queue",
 "cdmi_notification_events" : [
 "cdmi_create_complete",
 "cdmi_read",
 "cdmi_modify",
 "cdmi_delete"
],

 "cdmi_scope_specification" : [
 {
 "domainURI" : "== /cdmi_domains/MyDomain/",
 "objectURI" : "starts /sandbox",
 "metadata" : {
 "cdmi_size" : "> 100000"
 }
 }
],
 "cdmi_results_specification" : {
 "cdmi_event" : "",
 "cdmi_event_result" : "",
 "cdmi_event_time" : "",
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
 }
}

{
 "cdmi_event" : "cdmi_read",
 "cdmi_event_result" : "200 OK",
 "cdmi_event_time" : "2010-11-15T13:12:52.342324",
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

163 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Notification Queues
Table 25, "Notification Status Metadata" describes the system-created metadata that provides details on
the completion status of the notification queue.

Table 25 - Notification Status Metadata

Metadata Name Type Description Requirement

cdmi_notification_status JSON
String

Indicates if the query is in progress or complete. The
two values defined are "Error", "Processing",
and "Complete".

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 164

Query Queues © SNIA
20 Query Queues

A CDMI system may optionally implement metadata and/or full-text query functionality. The
implementation of query is indicated by the presence of the CDMI system-wide capabilities for query and
requires support for CDMI queues.

Query queues allow CDMI clients to efficiently discover what content matches a given set of metadata
query criteria or full-content search criteria. Clients create or update a query queue by specifying metadata
that defines the matching criteria (known as the query scope), along with what results should be returned
for matching objects (known as the query results). The CDMI offering shall then perform the query, storing
the query results in the query queue. As query results are found, they are added to the queue, and when
the query is complete, the query_status metadata of the queue is changed to indicate that the query has
completed.

When a client wishes to perform queries, it may first check if the system is capable of providing query
functionality by checking for the presence of the "cdmi_query" capability in the root capabilities container. If
this capability is not present, creating a query queue shall be successful, but no query results shall be
enqueued into the query queue.

When creating a query queue, the metadata described in Table 26, "Required Metadata for a Query
Queue" shall be provided. Attempts to alter metadata in this table will result in an HTTP 403 Forbidden
HTTP status code. Once a query queue has been created, with the exception of cdmi_queue_type, the
metadata items in this table cannot be altered. cdmi_queue_type can only be removed, indicating to the
system that the query queue shall no longer receive query results and shall be treated as a regular CDMI

queue object.

An example of the metadata associated with a query queue is as follows:

Table 26 - Required Metadata for a Query Queue

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage system
shall manage the queue object. The type of
"cdmi_query_queue" is defined for query queues.

Mandatory

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines which objects are
included in the query results. This is equivalent to a
"WHERE" clause in SQL-like languages. See
Section 20.1 for how to construct a scope specification.

Mandatory

cdmi_results_specification JSON
Object

Contains the JSON fields to be returned for each object
that matches the query. This is equivalent to a "SELECT"
clause in SQL-like languages . See Section for how to
construct a results specification.

Mandatory

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_query_queue"
 "cdmi_scope_specification" : [
 {
 "domainURI" : "== /cdmi_domains/MyDomain/",
 "objectURI" : "starts /sandbox",
 "metadata" : {
 "cdmi_size" : "> +100000"
 }
 }
],
165 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Query Queues
When results are stored in a query queue, each enqueued value shall consist of a JSON object of MIME-
type "application/json". This JSON object contains the specified values requested in the
cdmi_results_specification of the query queue metadata.

An example of a query result JSON object is as follows:

Table 27, "Query Status Metadata" describes the system-created metadata that provides details on the
completion status of the query queue.

Objects shall only be included in the query results if the user who created the query queue is able to read
the matching objects or metadata.

Example: If the query queue was created by the administrator, then all matching objects that the
administrator is allowed to read are included in the results. If the query queue was created by
user "jdoe", then only matching objects that "jdoe" is allowed to read are included in the
results.

20.1 Scope Specification

Each JSON object within the scope specification represents a set of conditions that shall all be true in
order for the query to return an object as part of the query results (a logical AND relationship). Multiple
JSON objects are used to express logical OR relationships.

 "cdmi_results_specification" : {
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
 }
}

{
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

Table 27 - Query Status Metadata

Metadata Name Type Description Requirements

cdmi_query_status JSON
String

A string indicating if the query is in progress or has
completed. The value shall be the string
“Processing”, the string “Complete”, or an error
string starting with the value “Error”.

Mandatory
CDMI 1.0.1h (March 30, 2011) Working Draft 166

Query Queues © SNIA
Each JSON object is constructed using the same structure that CDMI objects use. To show this, assume
the following result from a CDMI GET for a data object:

Each field inside a scope specification JSON object represents a condition that shall be met for a field. For
example, a query to find all objects belonging to the domain /cdmi_domains/MyDomain/ is structured
as follows:

To query for all objects belonging to the domain /cdmi_domains/MyDomain/ AND are also located
within the container MyContainer, the scope specification is structured as follows:

To query for all objects that belong to the domain MyDomain OR are located within the container
MyContainer, the query is structured as follows:

Queries may match on any field within an object that a CDMI system is capable of returning as a result of
an object GET.

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.0

{
"objectURI" : "/MyContainer/MyDataObject.txt",
"objectID" : "0000706D0010B84FAD185C425D8B537E",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/DataObject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "108263"

},
"valuerange" : "0-108262",
"value" : "..."

}

[
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

[
 {
 "parentURI" : "== /MyContainer/",
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

[
 {
 "parentURI" : "== /MyContainer/",
 },
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

167 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Query Queues
To query metadata items, the metadata object is included as an object within the query request. This query
is shown as follows:

This approach allows the matching against arbitrarily nested metadata structures.

Table 28 defines the query matching expressions.

[
 {
 "metadata" : {
 "colour" : "== blue"
 }
 }
]

Table 28 - Query Matching Expression

Matching Expression Description

"field" : "*” The exists matching expression tests for the existence of the field. If the field is
present, even if empty, the condition is considered to be met.

"field" : "!*” The not exists matching expression tests for the non-existence of the field. If the
field is absent, the condition is considered to be met.

"field" : "== constant” The equals matching expression tests for the equality of the value of the field and a
specified constant value. The equality test is case sensitive.

The leading space after the "==" and before the constant value is not included in the
comparison. If the constant value matches the value of the field, the condition is
considered to be met.

"field" : "!= constant” The not equals matching expression tests for the non-equality of the value of the
field and a specified constant value. The not-equals test is case sensitive.

The leading space character after the "!=" and before the constant value is not
included in the comparison. If the constant value does not match the value of the
field, the condition is considered to be met.

"field" : "> constant” The greater than matching expression tests if the value of the field is
lexicographically greater than a specified constant value. The greater than test is
case sensitive.

The leading space character after the ">" and before the constant value is not
included in the comparison.

If the constant value is greater than the value of the field, the condition is considered
to be met. If the constant starts with a "+" or "-" sign, the value of the field is
considered to be numeric for the purposes of comparison.

"field" : ">= constant” The greater than or equals to matching expression tests if the value of the field is
lexicographically greater than or equal to a specified constant value. The greater
than or equals to test is case sensitive.

The leading space character after the ">=" and before the constant value is not
included in the comparison.

If the constant value is greater than or equal to the value of the field, the condition is
considered to be met. If the constant starts with a "+" or "-" sign, the value of the
field is considered to be numeric for the purposes of comparison.
CDMI 1.0.1h (March 30, 2011) Working Draft 168

Query Queues © SNIA
"field" : "< constant” The less than operator tests if the value of the field is lexicographically less than a
specified constant value. The less than test is case sensitive.

The leading space character after the "<" and before the constant value is not
included in the comparison.

If the constant value is less than the value of the field, the condition is considered to
be met. If the constant starts with a "+" or "-" sign, the value of the field is considered
to be numeric for the purposes of comparison.

"field" : "<= constant” The less than or equals to matching expression tests if the value of the field is
lexicographically less than or equal to a specified constant value. The less than or
equal test is case sensitive.

The leading space character after the "<=" and before the constant value is not
included in the comparison.

If the constant value is less than or equal to the value of the field, the condition is
considered to be met. If the constant starts with a "+" or "-" sign, the value of the
field is considered to be numeric for the purposes of comparison.

"field" : "starts constant” The starts with matching expression tests if the field value starts with a specified
constant value. The leading space character after the "starts" and before the
constant value is not included in the comparison. The starts with test is case
sensitive.

If the constant value is equal to the start of the value of the field, the condition is
considered to be met.

"field" : "!starts constant” The not starts with matching expression tests if the field value does not start with a
specified constant value. The leading space character after the "!starts" and before
the constant value is not included in the comparison.The not starts with test is case
sensitive.

If the constant value is not equal to the start of the value of the field, the condition is
considered to be met.

"field" : "ends constant” The ends with matching expression tests if the field value ends with a specified
constant value. The leading space character after the "ends" and before the
constant value is not included in the comparison. The ends with test is case
sensitive.

If the constant value is equal to the end of the value of the field, the condition is
considered to be met

"field" : "!ends constant” The not ends with matching expression tests if the field value does not end with a
specified constant value. The leading space character after the "!ends" and before
the constant value is not included in the comparison. The not ends with test is case
sensitive.

If the constant value is not equal to the end of the value of the field, the condition is
considered to be met.

"field" : "contains constant” The contains matching expression tests if the field value contains a specified
constant value. The leading space character after the "contains" and before the
constant value is not included in the comparison. The contains test is case
sensitive.

If the constant value is found as a substring within the value of the field, the
condition is considered to be met. The contains operator is only supported if the
"cdmi_query_contains" capability is present.

Table 28 - Query Matching Expression

Matching Expression Description
169 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Query Queues
"field" : "!contains constant” The not contains matching expression tests if the field value does not contain a
specified constant value. The leading space character after the "!contains" and
before the constant value is not included in the comparison. The not contains test is
case sensitive.

If the constant value is not found as a substring within the value of the field, the
condition is considered to be met. The not contains operator is only supported if the
"cdmi_query_contains" capability is present.

"field" : "tag constant" The tag matching expression tests if the field value contains a specified constant tag
value. The leading space character after the "tag" and before the constant value is
not included in the comparison. The tag test is not case sensitive.

If the constant value is found as a tag substring within the value of the field, the
condition is considered to be met. Tag substrings start at the beginning of the value
or a ",", and end at the next "," or the end of the string. Whitespace before and after
"," characters shall be stripped for the purpose of comparisons.

Tag matching expressions are only supported if the "cdmi_query_tags" capability is
present.

"field" : "!tag constant" The not tag matching expression tests if the field value does not contain a specified
constant tag value. The leading space character after the "!tag" and before the
constant value is not included in the comparison. The not tag test is not case
sensitive.

If the constant value is not found as a tag substring within the value of the field, the
condition is considered to be met. Tag substrings start at the beginning of the value
or a ",", and end at the next "," or the end of the string. Whitespace before and after
"," characters shall be stripped for the purpose of comparisons.

Tag matching expressions are only supported if the "cdmi_query_tags" capability is
present.

"field" : "=~ constant" The regular expression matching expression tests if the field value matches a
specified constant regular expression value.

The leading space character after the "=~" and before the constant value is not
included in the comparison. If the regular expression evaluates to true against the
value, the condition is considered to be met.

Regular expression strings shall be processed according to the POSIX Extended
Regular Expression (ERE) standard, as specified in The Open Group Base
Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.

Regex matching expressions are only supported if the "cdmi_query_regex"
capability is present.

"field" : "!~ constant" The not regular expression matching expression tests if the field value does not
match a specified constant regular expression value.

The leading space character after the "!~" and before the constant value is not
included in the comparison. If the regular expression evaluates to false against the
value, the condition is considered to be met.

Regular expression strings shall be processed according to the POSIX Extended
Regular Expression (ERE) standard, as specified in The Open Group Base
Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.

Regex matching expressions are only supported if the "cdmi_query_regex"
capability is present.

Table 28 - Query Matching Expression

Matching Expression Description
CDMI 1.0.1h (March 30, 2011) Working Draft 170

Query Queues © SNIA
All fields in objects that are not included in the scope specification shall be ignored for the purpose of
matching objects.

When a URI is used as the constant for the equals and not equals operators against objectURI, parentURI,
domainURI, and capabilitiesURI, either a URI by path or URI by Object ID can be specified and are
considered interchangeable. For example, in a query to find all objects belonging to a specific domain, the
following two query scopes are considered identical:

and

Likewise, a query to find all objects with a given parent container would have two equivalent forms:

and

If an Object ID is used in a query scope, such as in the objectID field, in the objectName field, when the
objectPath is set to "/cdmi_objectid/", and as part of a URI compared against the objectURI,
parentURI, capabiliesURI and domainURI fields, all object IDs shall be processed such that they are case
insensitive.

20.2 Results Specification

Each JSON object within the results specification represents a set of fields that are returned for each
matching object.

[
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

[
 {
 "domainURI" : "== /cdmi_objectid/0000706D0010171EADF15DE7BC0917D3/"
 }
]

[
 {
 "parentURI" : "== /myContainer/"
 }
]

[
 {
 "parentURI" : "== /cdmi_objectid/0000706D0010E0981215538EE7D19E5E/"
 }
]

171 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA Query Queues
The results JSON object shall be constructed using the same structure as is used for CDMI objects. To
show this, assume the following result from a CDMI GET for a data object:

Each field inside a results specification JSON object indicates that the field shall be included in the results.
For example, the following results specification requests that the objectID and cdmi_size metadata fields to
be returned in the results:

If an object matched, the result JSON enqueued is as follows:

For most common use cases, either the Object ID or Object URI will be requested in the
cdmi_results_specification. If the Object URI is included, it is up to the implementation to choose when a
Object URI by path or an Object URI by ID should be returned, and both are equally valid. If the Object
Name and/or parent URI are included, and paths are supported, the implementation shall return the object
name and object path, respectively. If the Object URI is included in the results and the object has a path,
then the path shall be returned in this field.

If a client wants to have all metadata fields returned for each matching object, the following
cdmi_results_specification shall be used:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0

{
"objectURI" : "/MyContainer/MyDataObject.txt",
"objectID" : "0000706D0010B84FAD185C425D8B537E",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/DataObject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "108263"

},
"valuerange" : "0-108262",
"value" : "..."

}

{
 "cdmi_results_specification" : {
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
}

{
 "objectID" : "0000706D0010B84FAD185C425D8B537E",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

{
 "cdmi_results_specification" : {
 "metadata" : ""
 }
}

CDMI 1.0.1h (March 30, 2011) Working Draft 172

Query Queues © SNIA
If a client wants to have all fields and metadata returned for each matching object, the following
cdmi_results_specification shall be used:

20.3 Extending CDMI Query

An implementor of a CDMI server may extend CDMI query by adding vendor-specific matching
expressions. When an implementor adds vendor-specific metadata fields, these fields shall be queried
using the standard query queue functionality.

An implementor of a CDMI server may extend CDMI query by allowing the creation of vendor-specific
query queues with a type other than "cdmi_query_queue".

{
 "cdmi_results_specification" : ""
}
173 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
Annex A
(normative)

Transport Security

For most CDMI implementations, the Hypertext Transfer Protocol (HTTP) is the underlying
communications protocol used to transfer CDMI messages. This appendix identifies the details associated
with securing this underlying transport.

A.1 General Requirements for HTTP Implementations

The security requirements for HTTP implementations apply to both CDMI servers and clients. A CDMI
client shall comply with all security requirements for HTTP that apply to clients. The following general
requirements support security when using HTTP.

• Either HTTP basic authentication or HTTP digest authentication should be implemented.

• To minimize compromising user identities and credentials, such as passwords, implementations
should use HTTP basic authentication ONLY in conjunction with Transport Layer Security (TLS).

• A user identity and credential used with one type of HTTP authentication (i.e., basic or digest)
should never be subsequently used with the other type of HTTP authentication. To avoid
compromising the integrity of a stronger scheme, established good security practices avoids the
reuse of identity and credential information across schemes of different strengths.

• TLS 1.0 shall be implemented by CDMI entities and a more current version of TLS (for example,
v1.1 and v1.2) is strongly encouraged. The use of TLS by CDMI entities is optional, but should be
used to protect sensitive data.

• Although HTTP shall be implemented by all CDMI entities, its use is optional.

The following requirements for implementations and optional use of HTTP over TLS (HTTPS) apply:

• The following cipher suites shall be supported to ensure a minimum level of security and
interoperability between implementations:

— TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (mandatory for TLS 1.0)

— TLS_RSA_WITH_AES_128_CBC_SHA (mandatory for TLS 1.1/1.2)

— TLS_RSA_WITH_NULL_SHA (for TLS without encryption)

Note: Implementors are free to include additional cipher suites, but there is no guarantee of
interoperability when they are used.

• For clients and servers to communicate, they need to be using a consistent approach to security.
Properly configured clients and servers may fail to communicate, if one is relying on port 80 and
the other on port 443. Clients that fail to connect to a CDMI server via HTTP over TLS on TCP port
443 should retry with HTTP on TCP port 80 if their security policy allows it.

• Servers may accelerate discovery that a secure channel is needed by responding to HTTP
contacts on TCP port 80 with a HTTP REDIRECT to the appropriate HTTPS: URL (HTTP over
CDMI 1.0.1h (March 30, 2011) Working Draft 174

© SNIA
TLS on TCP port 443) to avoid the need for clients to timeout the HTTP contact attempt. Clients
should honor such redirects in this situation.

— All certificates, including CA Root Certificates used by clients for certificate validation, shall be
replaceable.

— The DER encoded X.509, Base64 encoded X.509, and PKCS#12 certificate formats shall be
supported.

— Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64
encoded X.509 formats.

Note: Since there are no absolutes when it comes to security, when specified versions are found
to be vulnerable and/or inadequate, CDMI implementations should move to a newer
version of TLS and stronger cipher suites as soon as possible.

A.2 Basic HTTP Security

HTTP is the mandatory transport mechanism for this version of CDMI. It is important to note that HTTP, by
itself, offers no confidentiality or integrity protections.

CDMI clients may be responsible for initiating user authentication for each CDMI server that a user
accesses. The CDMI server functions as the authenticator, and it receives the user credentials from the
HTTP authentication operations.

IETF RFC 2616 and IETF RFC 2617 define requirements for HTTP authentication, which generally starts
with an HTTP client request, such as GET Request-URI (where Request-URI is the resource
requested). If the client request does not include an "Authorization" header line and authentication is
required, the server responds with a 401 Unauthorized status code, and a WWW-Authenticate
header line. The HTTP client shall then respond with the appropriate Authorization header line in a
subsequent request. The format of the WWW-Authenticate and Authorization header lines varies
depending on the type of authentication required‚ basic authentication, or digest authentication. If the
authentication is successful, the HTTP server shall respond with a status code of 200 OK.

Basic authentication involves sending the user name and password in the clear, and it should only be used
on a secure network or in conjunction with a mechanism that ensures confidentiality, such as Transport
Layer Security (TLS). (See Section A.3, "HTTP over TLS (HTTPS)"). Digest authentication sends a secure
digest of the user name and password (and other information including a nonce value), so that the
password is not revealed. 401 Unauthorized responses should not include a choice of authentication.

Client authentication to the CDMI server is based on an authentication service (local and/or external).
Differing authentication schemes may be supported, including host-based authentication, Kerberos, PKI,
or other; the authentication service is out scope of this standard.

A.3 HTTP over TLS (HTTPS)

CDMI may also include a mechanism to secure HTTP communications, such that data sent between the
clients and servers are encrypted before being sent over the network. This security is achieved by
transmitting HTTP over TLS (also known as HTTPS); the URL of a secure connection shall begin with
https:// instead of http://. It is also important to note that a CDMI client communicates with a CDMI
server via HTTPS on TCP port 443 (TCP port 80 is used for HTTP). Section A.3.1, "Transport Layer
Security (TLS)" provides important details on TLS.

When TLS is used to secure HTTP, the client and server typically perform some form of entity
authentication. However, the specific nature of this entity authentication depends on the cipher suite
negotiated; a cipher suite specifies the encryption algorithm and digest algorithm to use on a TLS
175 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
connection. A very common scenario involves the use of server-side certificates, which the client trusts, as
the basis for unidirectional entity authentication. It is possible that no authentication will occur (e.g.,
anonymous authentication) or on the other extreme, mutual authentication involving both client-side and
server-side certificates may be required.

A.3.1 Transport Layer Security (TLS)

CDMI servers shall implement the TLS protocol; however, its use by clients is optional. TLS 1.0, which
shall be implemented, is specified in [RFC2246], and the TLS 1.1 and TLS 1.2 should be implemented as
specified in [RFC4346] and [RFC5246], respectively.

The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating
applications. TLS allows client/server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, or message forgery. TLS is layered on top of some reliable transport protocol
(e.g., TCP) and is used for encapsulating various higher-level protocols (e.g., HTTP).

TLS provides endpoint authentication and communications privacy over the network using cryptography.
Typically, only the server is authenticated (i.e., its identity is ensured), while the client remains
unauthenticated; this means that the end user (whether an individual or an application) has a measure of
assurance with whom they are communicating. Mutual authentication (the identities of both endpoints are
verified) requires, with few exceptions, the deployment of digital certificates on the client.

TLS involves three basic phases:

• Peer negotiation for algorithm support

• Key exchange and authentication

• Symmetric cipher encryption and message authentication

During the first phase, the client and server negotiate cipher suites (see Section A.3.1.1, "Cipher Suites"),
which determine the ciphers to be used, the key exchange, authentication algorithms, and the message
authentication codes (MACs). The key exchange and authentication algorithms are typically public key
algorithms. The MACs are made up from a keyed-Hash Message Authentication Code, or HMAC.

A.3.1.1 Cipher Suites

TLS packages one key establishment, confidentiality, signature and hash algorithm into a "cipher suite." A
registered 16-bit (4 hexadecimal digit) number, called the cipher suite index, is assigned for each defined
cipher suite. For example, RSA key agreement, RSA signature, Advanced Encryption Standard (AES)
using Cipher Block Chaining (CBC) confidentiality, and the Secure Hash Algorithm (SHA-1) hash are
assigned the hexadecimal value {0x000F} for TLS.

The client always initiates the TLS session and starts cipher suite negotiation by transmitting a handshake
message that lists the cipher suites (by index value) that it will accept. The server responds with a
handshake message indicating which cipher suite it selected from the list or an "abort" as described below.
Although the client is required to order its list by increasing "strength" of cipher suite, the server may
choose ANY of the cipher suites proposed by the client. Therefore, there is NO guarantee that the
negotiation will select the strongest suite. If no cipher suites are mutually supported, the connection is
aborted. When the negotiated options, including optional public key certificates and random data for
developing keying material to be used by the cryptographic algorithms, are complete, messages are
exchanged to place the communications channel in a secure mode.

To ensure a minimum level of security and interoperability between implementations:

• All CDMI clients and servers shall support TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher
suite (hexadecimal value {0x0013}), which is also the mandatory cipher suite for TLS 1.0 (see
[RFC2246] Section 9, Mandatory Cipher Suites).
CDMI 1.0.1h (March 30, 2011) Working Draft 176

© SNIA
• TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (hexadecimal value {0x002F}) shall be
implemented, which is the mandatory cipher suite for both TLS 1.1 and TLS 1.2.

• TLS_RSA_WITH_NULL_SHA cipher suite (hexadecimal value {0x0002}) shall be supported by
both CDMI clients and servers to implement authenticated, non-encrypted communications.

• TLS_RSA_WITH_AES_128_CBC_SHA256 cipher suite (hexadecimal value {0x003C}) should be
included with all recommended TLS 1.2 implementations to meet the transition to a security
strength of 112 bits (guidance is provided in NIST Special Publication 800-57 and NIST Special
Publication 800-131A).

Implementors are free to include additional cipher suites, but must prefer the mandatory ones in
negotiation.

A.3.1.2 Digital Certificates

CDMI clients and servers may be attacked by setting up a false CDMI server to capture userids and
passwords or to insert itself as an undetected proxy between a CDMI client and server. The most effective
countermeasure for this attack is the controlled use of server certificates with TLS, matched by client
controls on certificate acceptance on the assumption that the false server will be unable to obtain an
acceptable certificate. Specifically, this may be accomplished by configuring clients to always use TLS
underneath HTTP authentication, and only accept certificates from a specific local certificate authority.

When used by CDMI, TLS shall use X.509 version 3 public key certificates that conform to the Certificate
and Certificate Extension Profile defined in Section 4 of [RFC3280] (X.509v3 Certificate and CRL). This
certificate and certificate revocation list (CRL) profile specifies the mandatory fields that shall be included
in the certificate, as well as optional fields and extensions that may be included in the certificate.

Server certificates shall be supported by all CDMI servers, and client certificates may be supported by
CDMI clients. The server presents a server certificate to authenticate the server to the client; likewise, the
client presents a client certificate to authenticate itself to the server. For public web sites offering secure
communications via TLS, server certificate usage is quite common, but client certificates are rarely used,
because the client is typically authenticated by other means. For example, an e-commerce site will
authenticate a client by a credit card number, user name/password, etc., when a purchase is made. It is
much more of a trust issue that the client (purchaser) be assured of the identity of the e-commerce site,
and for this reason, server certificates are much more commonly encountered in practice.

These X.509 certificates use a digital signature to bind together a public key with an identity. These
signatures will often be issued by a certification authority (CA) that is associated with an internal or external
public key infrastructure (PKI); however, an alternate approach uses self-signed certificates (the certificate
is digitally signed by the very same key-pair whose public part appears in the certificate data). The trust
models associated with these two approaches are very different. In the case of PKI certificates, a hierarchy
of trust and a trusted third party may be consulted in the certificate validation process, which enhances
security at the expense of increased complexity. The self-signed certificates may be used to form a web of
trust (trust decisions are in the hands of individual users/administrators), but is considered less secure, as
there is no central authority for trust (e.g., no identity assurance or revocation). This reduction in overall
security, which may still offer adequate protections for some environments, is accompanied by an easing
of the overall complexity of implementation.

With PKI certificates, it is often necessary to traverse the hierarchy or chain of trust in search of a root of
trust or trust anchor (a trusted CA). This trust anchor may be an internal CA, which has a certificate signed
by a higher ranking CA, or it may be the end of a certificate chain as the highest ranking CA. This highest
ranking CA is the ultimate attestation authority in a particular PKI scheme, and its certificate, known as a
root certificate, may only be self-signed. Establishing a trust anchor at the root certificate level, especially
for commercial CAs, may have undesirable side effects resulting from the implicit trust afforded all
certificates issued by that commercial CA. Ideally the trust anchor should be established with the lowest
ranking CA that is practical.
177 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
A.3.1.2.1 Certificate Validation

CDMI clients and servers shall perform basic path validation, extension path validation, and Certificate
Revocation List (CRL) validation as specified in Section 6 of [RFC3280] for all presented certificates.
These validations include, but are not limited to, the following:

• The certificate is a validly constructed certificate.

• The signature is correct for the certificate.

• The date of its use is within the validity period (i.e., it has not expired).

• The certificate has not been revoked (applies only to PKI certificates).

• The certificate chain is validly constructed (considering the peer certificate plus valid issuer
certificates up to the maximum allowed chain depth (applies only to PKI certificates).

When CDMI clients and servers use CRLs, they shall use X.509 version 2 CRLs that conform to the CRL
and CRL Extension Profile defined in Section 5 of [RFC3280]. (This requirement also only applies to PKI
certificates.)

When PKI certificates and self-signed certificates are used together in a single management domain, it is
important to recognize that the level of security is lowered to that afforded by self-signed certificates. Self-
signed certificates by themselves only offer the keying materials to allow confidentiality and integrity in
communications. The only identity assurances for self-signed certificates lie in the processes governing
their acceptance as described below.

A.3.1.2.2 Certificate Formats

All interfaces for certificate configuration (import in particular) shall support the following certificate formats:

• DER encoded X.509. See [ITU-T509] for specification and technical corrigenda.

International Telecommunications Union Telecommunication Standardization Sector (ITU-T),
Recommendation X.509: Information technology - Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks, May 2000. Specification and technical corrigenda
may be obtained from: http://www.itu.int/ITU-T/publications/recs.html

• Base64 encoded X.509 (often called PEM). See Section 6.8 of [RFC2045].

N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies, IETF RFC 2045, November 1996, Section 6.8. Available at: http://
www.ietf.org/rfc/rfc2045.txt

• PKCS#12. See [PKS12] for specification and technical corrigenda.

All certificate validation software shall support local certificate revocation lists, and at least one list per CA
root certificate supported. Support is required for both DER encoded X.509 and Base64 encoded X.509
formats, but this support may be provided by using one format in the software and providing a tool to
convert lists from the other format. OCSP and other means of immediate online verification of certificate
validity are optional, as connectivity to the issuing Certificate Authority may not be assured.

A.3.1.2.3 Certificate Management

All certificates identifying CDMI entities and their associated private keys shall be replaceable. CDMI
clients and servers shall either 1) have the ability to import an externally generated certificate and
corresponding private key or 2) have the ability to generate and install a new self-signed certificate along
with its corresponding private key.
CDMI 1.0.1h (March 30, 2011) Working Draft 178

© SNIA
When CDMI clients and servers use PKI certificates, the implementations shall include the ability to import,
install/store, and remove the CA root certificates; support for multiple trusted issuing CAs shall be included.
CA certificates are used to verify that a certificate has been signed by a key from an acceptable
certification authority.

All certificate interfaces required above shall support access restrictions that permit access only by suitably
privileged administrators. A suitably privileged security administrator shall be able to disable functionality
for acceptance of unrecognized certificates described in Section A.3.1.2.1, "Certificate Validation" and
Section A.3.1.2.2, "Certificate Formats".

The above requirements may be satisfied via appropriate use of the readily-available OpenSSL toolkit
software (www.openssl.org). Support for PKCS#7 certificate format was deliberately omitted from the
requirements. This format is primarily used for online interaction with certificate authorities; such
functionality is not appropriate to require of all CDMI software, and tools are readily available to convert
PKCS#7 certificates to or from other certificate formats.

A.3.1.2.4 Digital Certificate Guidance for TLS

To facilitate the use of certificates, CDMI implementations should include configurable mechanisms that
allow for one of the following mutually exclusive operating modes to be in force at any time for end-entity
certificates (i.e., not CA certificates):

• Unverifiable end-entity (self-signed) certificates are automatically installed as trust anchors when
they are presented; such certificates shall be determined to not be CA root certificates prior to
being installed as trust anchors and shall not serve as trust anchors to verify any other certificates.
If a CA certificate is presented as an end-entity certificate in this mode, it shall be rejected. For
CDMI clients, a variant of this option, which consults the user before taking action, should be
implemented and used when possible.

Note: The use of this operating mode should be limited to a learning or enrollment period during
which communication is established with all other CDMI systems with which security
communication is desired. Use of a timeout to force automatic exit from this mode is
recommended.

• Unverifiable end-entity (self-signed) certificates may be manually imported and installed as trust
anchors (in a fashion similar to manually importing and installing a CA root certificate), but they are
not automatically added when initially encountered. Administrative privilege may be required to
import and install an end-entity certificate as a trust anchor.

This is considered the normal operating mode. All certificate acceptance policies for CDMI clients
and servers shall be configurable. The configurable mechanisms determine how the CDMI
implementation handles presented certificates. Under normal operating mode, CDMI servers
should not accept certificates from unknown trust authorities (i.e., the CA root certificate has not
been installed).

Interactive clients should provide a means to query the user about acceptance of a certificate from an
unrecognized certificate authority (no corresponding CA root certificate installed in client), and accept
responses allowing use of the certificate presented, or all certificates from the issuing CA. Servers should
not support acceptance of unrecognized certificates; it is expected that a limited number of CAs will be
acceptable for client certificates in any site that uses them.

Pre-configuring root certificates from widely used CAs is optional, but simplifies initial configuration of
certificate-based security, as certificates from those CAs will be accepted. These CA root certificates may
be exported from widely available web browsers.
179 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
Annex B
(informative)

Extending the Interface

The CDMI standard is designed to allow implementor-specific functions to be added. Vendor extensions
are added by providing capabilities, where the capability name starts with an implementor name, instead of
the "cdmi" value reserved for standardized capabilities.

The vendor extension for data object versioning, as described in this section, is written with the intention
that it will be added as part of a future version of the CDMI standard, if so approved by the technical
working group. Such a vendor extension should be written so that the implementor name may be replaced
with "cdmi_" when added to the standard.

B.1 Data Object Versioning

Data object versioning provides a standard method for requesting versioning to be enabled, thereby
retaining previous versions of data objects and providing a standardized method for accessing previous
versions of data objects. How data object versioning is enabled and the interactions with other CDMI
features, such as retention and serialization, is discussed in this section.

The primary goal of data object versioning is to allow CDMI clients to specify that some data objects shall
have their previous contents retained when changed and to enable CDMI clients to access the previous
contents of versioned data objects. The secondary goal is to ensure that a non-version-aware CDMI client
is unaffected when versioning is enabled.

B.2 Terms

• Versioned object - A CDMI data object with versioning enabled.

• Versions container - A CDMI container that stores the versions of a versioned object.

• Object version - A CDMI data object that represents a specific version of a versioned object.

B.3 Versioning System Capabilities

The following system-wide capability is defined (as per Section 12.1.1, "Cloud Storage System-Wide
Capabilities"):

The following data system metadata capability is defined (as per Section 12.1.3, "Data System Metadata
Capabilities"):

Capability Definition

com.netapp.versioning If present and true, indicates that the cloud storage system supports
versioning of data objects.

Capability Definition

com.netapp.versions If present, this capability defines the maximum number of versions that may
be requested for a given data object.
CDMI 1.0.1h (March 30, 2011) Working Draft 180

© SNIA
B.4 Versioning Data System Metadataw

The following data system metadata is defined (as per Section 16.4, "Support for Data System Metadata"):

The following provided data system metadata item is defined (as per Section 16.6, "Support for Provided
Data System Metadata"):

B.5 Conditions for Versioning

Two conditions shall be met for previous versions to be retained for a given data object:

• Versioning shall be supported by the system, as indicated by the presence of the
"com.netapp.versioning" system capability.

• Versioning shall be enabled for the data object, as indicated by the presence of the
"com.netapp.versions" data system metadata in the data object or as inherited from a parent
container.

If these conditions are met, the storage system shall store versions of the data object and provide access
to these versions. Every change to a versioned object (data or metadata) shall result in a new version
being retained, up to the specified or supported maximum number of versions.

Version objects created by the system are immutable, and versions shall not have nested versions.

B.6 Access to Versions

Previous versions of data objects are accessed in the same manner as snapshots are accessed for
containers.

If versioning is enabled for a data object, the data object shall contain a JSON field named versions. This
field shall contain a string that specifies a URI to a versions container. For example, if a data object with
the URI “/document.txt” has versioning enabled, the contents of the versions field may be 
“/documents.txt/versions/”.

Metadata Name Description

com.netapp.versions JSON string containing the number of previous versions of the data object
to be stored.

Metadata Actual Value Description

com.netapp.versions_provided JSON string containing the number of previous versions of the data object
that are being stored.
181 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
The children of the versions container are data objects that correspond to the versions of the data object.
Each version data object has the name set to its object ID. This relationship between the versioned object,
the versions container, and the object versions is shown in Figure 15.

For example, if a data object “document.txt” has versioning enabled and two subsequent changes are
made to the data object, the following children shall be present:

When present, the versions container shall always have a minimum of one version child data object, which
represents the current version. As changes are made, additional versions are created, incorporating all
changes.

In the above example, the 8FE object is the original version, the 97B object is the first revision, and the
847 object is the second and current revision. The list of the children objects of the versions container shall
be returned and ordered from the newest to the oldest version.

If the number of versions supported by the cloud is limited, or if the value specified in the
"com.netapp.versions" data system metadata has been reached, the oldest version is automatically
removed by the system.

For example, if the "com.netapp.versions" data system metadata is set to the value "1", then the same
operations as performed in the above example shall result in the following:

If the "com.netapp.versions" data system metadata is set to "0", then only the current (newest) version is
accessible through the versions container.

Only if the "com.netapp.versions" data system metadata item is absent is the versions container absent.

Figure 15 - Relationship Between Versioned Object, Versions Container, and Object Version

/document.txt/versions/
/document.txt/versions/0000706D0010201DA76AAE16879EB847
/document.txt/versions/0000706D001011CCC130940D93F8D97B
/document.txt/versions/0000706D00104E935A9B4F95242538FE

/document.txt/versions/
/document.txt/versions/0000706D0010201DA76AAE16879EB847
/document.txt/versions/0000706D001011CCC130940D93F8D97B

capabilitiesURI

0000706D0010201D...

versionsURI

cdmi_capabiliites/
com.netapp.versioning = true

mydataobject/

mycontainer/
com.netapp.versions = 10

capabilitiesURI

capabilitiesURI

0000706D001011CC...

versions/

“/” Root URI

version_container/
(immutable)

version_dataobject/
(immutable)

container/
com.netapp.versions = 20

dataobject/
com.netapp.versions = 20

capabilitiesURI

capabilitiesURI

capabilitiesURI
CDMI 1.0.1h (March 30, 2011) Working Draft 182

© SNIA
Individual versions of an object are subject to the same ACL and retention characteristics of the original
object; therefore, clients shall only be permitted to delete a version if they are permitted to delete the
original data object.

B.6.1 The Current Version

If an object is modified and versioning is enabled for that object, a new version of the object shall be
created. If the X-CDMI-PARTIAL header is used, the new version shall only be created when the object is
complete.

The newest version object (the first child returned) shall have the same contents as the versioned object,
except when partial updates are being performed. In this scenario, the contents of the newest version
object shall differ from the object being versioned.

To illustrate this, assume a newly created versioned object with the value "This". The versioned object
shall have the following versions:

This version is the newest version and has the value "This". Note that the object ID of the newest version
is different from the object ID of the versioned object.

If the value " is" is appended to the object, the contents of the versions container is updated as a new
version is added:

If the value " a" is appended to the object with the X-CDMI-PARTIAL flag, no new versions are added:

If the value " test" is appended to the object without the X-CDMI-PARTIAL flag, to complete the update,
new versions are added:

B.6.2 Eventual Consistency

Given eventual consistency, at any time, the version list may be incomplete. Versions may appear
between versions as consistency is restored within a system.

B.6.3 Audit of Versions

No new log messages or notifications are defined for versioning. Access of versions is logged and notified
using standard messages. Attempts to delete retention-controlled versions are logged using standard
messages.

If a limited number of versions are requested in the "com.netapp.versions" data system metadata, a
modification of a versioned object that results in the deletion of a historical version results in an additional
deletion audit message for the version deleted.

/document.txt "This"
/document.txt/versions/0000706D001006A1D4534CF0DFDC1289"This"

/document.txt"This is"
/document.txt/versions/0000706D001089F999BB0B087D30B340"This is"
/document.txt/versions/0000706D001006A1D4534CF0DFDC1289"This"

/document.txt "This is a"
/document.txt/versions/0000706D001089F999BB0B087D30B340"This is"
/document.txt/versions/0000706D001006A1D4534CF0DFDC1289"This"

/document.txt "This is a test"
/document.txt/versions/0000706D0010CCB1FCDD87D9CA762065"This is a test"
/document.txt/versions/0000706D001089F999BB0B087D30B340"This is"
/document.txt/versions/0000706D001006A1D4534CF0DFDC1289"This"
183 Working Draft CDMI 1.0.1h (March 30, 2011)

© SNIA
B.6.4 Serialization

Versions are serialized as children of the data object. If a serialized data object containing versions is
attempted to be deserialized to a system that does not support versioning, the operation shall ignore the
versions.

B.6.5 Exports

The versions container and object versions are not visible as part of the file hierarchy in file system
exports. Implementors may use protocol-specific features, such as the "Previous Versions" feature in
Windows/SMB to provide access to object versions.

B.6.6 Copy and Move

A copy operation for a versioned data object shall copy the object and all versions, unless the copy is to a
system that does not support versions, in which case it shall only copy the data object. A copy operation
with the source being a version of a data object shall copy that version to the specified destination as a
data object.

A move operation for a versioned object shall move the object and all versions, unless the move is to a
system that does not support versions, in which case it shall only move the data object. A move operation
for a version shall fail, as the version is immutable and may not be deleted.

If a version of a data object is copied out to become a normal data object, it is no longer immutable and
may have versions maintained for all subsequent modifications.
CDMI 1.0.1h (March 30, 2011) Working Draft 184

	Contents
	Figures
	Tables

	Foreword
	Introduction
	Table 1 - Chapter Contents
	1 Scope
	2 References
	2.1 Normative References
	2.2 Informative References

	3 Terms
	4 Conventions
	4.1 Interface Format
	Table 2 - Interface Format Descriptions

	4.2 Typographical Conventions
	Table 3 - Typographical Conventions

	5 Overview of Cloud Storage
	5.1 Introduction
	5.2 What is Cloud Storage?
	5.3 Data Storage as a Service
	Figure 1 - Existing Data Storage Interface Standards
	Figure 2 - Storage Interfaces for Database/Table Data
	Figure 3 - Storage Interfaces for Object Storage Client Data

	5.4 Data Management in the Cloud
	Figure 4 - Using the Resource Domain Model

	5.5 Data and Container Management
	5.6 Reference Model for Cloud Storage Interfaces
	Figure 5 - Cloud Storage Reference Model

	5.7 SNIA Cloud Data Management Interface
	5.8 Object Model for CDMI
	Figure 6 - CDMI Interface Model

	5.9 CDMI Metadata
	Table 4 - Creation/Consumption of Storage System Metadata

	5.10 Object ID
	5.11 CDMI Object ID Format
	Figure 7 - Object ID Format

	5.12 Security
	5.13 Required HTTP Support
	5.13.1 Content-Type Negotiation
	5.13.2 Range Support

	5.14 Time Representations

	6 Common Operations
	6.1 Discover the Capabilities of a Cloud Storage Provider
	6.2 Create a New Container
	6.3 Create a Data Object in a Container
	6.4 List the Contents of a Container
	6.5 Read the Contents of a Data Object
	6.6 Read Only the Value of a Data Object
	6.7 Delete a Data Object

	7 Interface Standard
	7.1 HTTP Status Codes
	Table 5 - HTTP Status Codes

	7.2 Types of Objects in the Model
	Table 6 - Types of Objects in the Model

	7.3 Object References

	8 Data Object Resource Operations
	8.1 Overview
	8.1.1 Data Object Metadata
	8.1.2 Data Object Consistency
	8.1.3 Data Object Representations

	8.2 Create a Data Object (CDMI Content Type)
	8.3 Create a Data Object (Non-CDMI Content Type)
	8.4 Read a Data Object (CDMI Content Type)
	8.5 Read a Data Object (Non-CDMI Content Type)
	8.6 Update a Data Object (CDMI Content Type)
	8.7 Update a Data Object (Non-CDMI Content Type)
	8.8 Delete a Data Object

	9 Container Object Resource Operations
	9.1 Overview
	9.1.1 Container Metadata
	9.1.2 Container Object Addressing
	9.1.3 Container Object Representations

	9.2 Create a Container (CDMI Content Type)
	9.3 Create a Container (Non-CDMI Content Type)
	9.4 Read a Container Object (CDMI Content Type)
	9.5 Read a Container Object (Non-CDMI Content Type)
	9.6 Update a Container (CDMI Content Type)
	9.7 Delete a Container Object
	9.8 Create (POST) a New Data Object (CDMI Content Type)
	9.9 Create (POST) a New Data Object (Non-CDMI Content Type)
	9.10 Create (POST) a New Queue Object (CDMI Content Type)

	10 Domain Object Resource Operations
	10.1 Overview
	10.1.1 Domain Metadata
	10.1.2 Domain Summaries
	Table 7 - Contents of Domain Summary Objects

	10.1.3 Domain Membership
	Table 8 - Required Settings for Domain Member User Objects
	Table 9 - Required Settings for Domain Member Delegation Objects

	10.1.4 Domain Object Representations

	10.2 Create a Domain Object (CDMI Content Type)
	10.3 Read a Domain Object (CDMI Content Type)
	10.4 Update a Domain (CDMI Content Type)
	10.5 Delete a Domain (CDMI Content Type)

	11 Queue Object Resource Operations
	11.1 Overview
	11.1.1 Queue Object Metadata
	11.1.2 Queue Object Addressing
	11.1.3 Queue Object Representations

	11.2 Create a Queue Object (CDMI Content Type)
	11.3 Read a Queue Object (CDMI Content Type)
	11.4 Update a Queue Object (CDMI Content Type)
	11.5 Delete a Queue Object (CDMI Content Type)
	11.6 Enqueue a New Queue Value (CDMI Content Type)
	11.7 Delete a Queue Value (CDMI Content Type)

	12 Capability Object Resource Operations
	12.1 Overview
	Figure 8 - Hierarchy of Capabilities
	12.1.1 Cloud Storage System-Wide Capabilities
	Table 10 - System-Wide Capabilities

	12.1.2 Storage System Metadata Capabilities
	Table 11 - Capabilities for Storage System Metadata

	12.1.3 Data System Metadata Capabilities
	Table 12 - Capabilities for Data System Metadata

	12.1.4 Data Object Capabilities
	Table 13 - Capabilities for Data Objects

	12.1.5 Container Capabilities
	Table 14 - Capabilities for Containers

	12.1.6 Domain Capabilities
	Table 15 - Capabilities for Domains

	12.1.7 Queue Object Capabilities
	Table 16 - Capabilities of Queue Objects

	12.2 Read a Capabilities Object (CDMI Content Type)

	13 Exported Protocols
	Figure 9 - CDMI and OCCI in an Integrated Cloud Computing Environment
	13.1 Exported Protocol Structure
	13.2 OCCI Exported Protocol
	13.3 iSCSI Export Modifications
	13.3.1 Read Container
	13.3.2 Create Container
	13.3.3 Modify an Export

	13.4 NFS Exported Protocol
	13.5 WebDAV Exported Protocol

	14 Snapshots
	Figure 10 - Snapshot Operation
	Table 17 - Snapshot Parameter of the Container Update Operation

	15 Serialization/Deserialization
	15.1 Exporting Serialized Data
	15.2 Importing Serialized Data
	15.2.1 Canonical Format
	15.2.2 Example JSON Canonical Serialized Format

	16 Metadata
	16.1 Access Control
	16.1.1 ACL and ACE Structure
	16.1.2 ACE Type
	16.1.3 ACE Who
	Table 18 - Who Identifiers

	16.1.4 ACE Flags
	16.1.5 ACE Mask Bits
	16.1.6 ACL Evaluation
	16.1.7 Example ACE Mask Expressions
	16.1.8 Canonical Format for ACE Hexadecimal Quantities
	16.1.9 JSON Format for ACLs

	16.2 Support for User Metadata
	16.3 Support for Storage System Metadata
	Table 19 - Storage System Metadata

	16.4 Support for Data System Metadata
	Table 20 - Data Systems Metadata

	16.5 Support for Data Copies
	16.6 Support for Provided Data System Metadata
	Table 21 - Provided Values of Data Systems Metadata Elements

	17 Logging
	17.1 Access to Log Data
	17.2 Object Logging
	17.3 Security Logging
	17.4 Data Management Logging
	17.5 Logging Queues
	Table 22 - Required Metadata for a Logging Queue
	Table 23 - Logging Status Metadata

	17.6 Logging Security Considerations

	18 Retention and Hold Management
	18.1 Retention Management Disciplines
	18.2 CDMI Retention
	Figure 11 - Object Retention

	18.3 CDMI Hold
	Figure 12 - Object Hold
	Figure 13 - Object Hold on Object with Retention
	Figure 14 - Object with Multiple Holds

	18.4 CDMI Deletion
	18.5 Retention Security Considerations

	19 Notification Queues
	Table 24 - Required Data for a Notification Queue
	Table 25 - Notification Status Metadata

	20 Query Queues
	Table 26 - Required Metadata for a Query Queue
	Table 27 - Query Status Metadata
	20.1 Scope Specification
	Table 28 - Query Matching Expression

	20.2 Results Specification
	20.3 Extending CDMI Query

	Annex A (normative) Transport Security
	A.1 General Requirements for HTTP Implementations
	A.2 Basic HTTP Security
	A.3 HTTP over TLS (HTTPS)
	A.3.1 Transport Layer Security (TLS)

	Annex B (informative) Extending the Interface
	B.1 Data Object Versioning
	B.2 Terms
	B.3 Versioning System Capabilities
	B.4 Versioning Data System Metadataw
	B.5 Conditions for Versioning
	B.6 Access to Versions
	Figure 15 - Relationship Between Versioned Object, Versions Container, and Object Version
	B.6.1 The Current Version
	B.6.2 Eventual Consistency
	B.6.3 Audit of Versions
	B.6.4 Serialization
	B.6.5 Exports
	B.6.6 Copy and Move

