Trusted Computing Group
Trusted Storage Specification
Jason Cox, Seagate Technology
The material contained in this tutorial is copyrighted by the SNIA.

Member companies and individuals may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced without modification
- The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.
Abstract

Trusted Computing Group (TCG) Trusted Storage Specification

The Trusted Computing Group (TCG) Storage Work Group recently published formal specifications for security and trust services on storage devices, including hard drives, flash, and tape drives. The majority of hard drive and other storage device manufacturers participated. Putting security directly on the storage device avoids the vulnerabilities of platform OS-based software security. The details of the Specification will be highlighted, as well as various use cases, including Full Disk Encryption with enterprise key/credential management.
General Risk Model: Storage

Trust = systems operate as intended

Objective: Exercise control over operations that might violate trust

Needed: Trusted Storage commands
Joint Work – T10 (SCSI) and T13 (ATA)

TRUSTED SEND/IN
(Protocol ID = xxxx)

TRUSTED RECEIVE/OUT

T10/T13 defined the “container commands”

TCG/Storage defining the “TCG payload”

Protocol IDs assigned to TCG, T10/T13, or reserved
Implementation Overview

TRUSTED STORAGE

Enterprise Support

ISV Application (on the Host)

TCG/T10/T13

ATA or SCSI

Firmwares/hardware enhancements for security and cryptography

Firmware

Hidden Storage

Security Providers

SP

Controller Storage

FDE

TRUSTED

Assign Hidden Memory to Applications

• (Partitioned) Hidden Memory
• Security firmware/hardware
• Trusted Send/Receive Commands
• Assign Hidden Memory to Applications

ISV Application (on the Host)

Enterprise Support

TCG/T10/T13

ATA or SCSI

Firmwares/hardware enhancements for security and cryptography

Firmware

Hidden Storage

Security Providers

SP

Controller Storage

FDE

TRUSTED

Assign Hidden Memory to Applications

• (Partitioned) Hidden Memory
• Security firmware/hardware
• Trusted Send/Receive Commands
• Assign Hidden Memory to Applications
System behaves as designed

Trust “Toolkit”:

Cryptographic **SIGNING**

CREDENTIALS (eg, signed X.509 Certificates)
Hardware that cannot change can digitally sign and therefore initiate a chain of trust.

TPM (trusted platform module) is a tiny processor on the motherboard that can sign and whose firmware cannot be modified.

Storage Devices can be roots of trust.
Extending Trust to Peripherals

TPer = Trusted Peripheral

Ability to interact with the Platform

Authentication/Attestation

Capability Level

LOW

HIGH
Trusted Storage

Secure Communications

Root Of Trust

TPM

OR

Trusted Element

Life Cycle: Manufacture, Own, Enroll, PowerUp, Connect, Use, …
3 Simple reasons

- **Storage for secrets with strong access control**
 - Inaccessible using traditional storage access
 - Arbitrarily large memory space
 - Gated by access control

- **Unobservable cryptographic processing of secrets**
 - Processing unit “welded” to storage unit
 - “Closed”, controlled environment

- **Custom logic for faster, more secure operations**
 - Inexpensive implementation of modern cryptographic functions
 - Complex security operations are feasible
TCG Storage Use Case Examples

Full Disc Encryption
- Laptop Loss or Theft
- Re-Purposing
- End of Life
- Rapid Erase

DriveLocking

Crypto Key Management
- ALL Encrypted
- Crypto Chip

Forensic Logging

DRM Building Blocks

Personal Video Recorders

Trusted Computing Group Trusted Storage Specification
© 2008 Storage Networking Industry Association. All Rights Reserved.
TCG Storage Workgroup

Specification Overview and Core Architecture Specification

Specification Version 1.0
Revision 0.9 (DRAFT)
19 June 2007
SPs (Security Providers)
- Logical Groupings of Features
- SP = Tables + Methods + Access Controls

Tables
- Like “registers”, primitive storage and control

Methods
- Get, Set – Commands kept simple with many possible functions

Access Control over Methods on Tables
Define an architecture that:

- Enables application of access control over select device features
- Permit configuration of these capabilities in conformance to the platform security policy
Core Architecture

MCTP = Multi-Component Trusted Platform
TPer = Trusted Peripheral (eg, Storage)
Communications Infrastructure

Methods

Transactions (optional)

Sessions

ATA/SCSI Interface Commands
Security Provider (SP)

- SPs have own storage, functional scope, and security domain

- Created by:
 1) manufacturer (during Storage Device creation) AND/OR
 2) Issuance Process

- **Tables**: rows = security associations, columns = related elements

- **Persistent State Information**: remains active through power cycles, reset conditions, and spin up/down cycles

- **Methods** are actions such as: table additions, table deletion, table read access, and table backup

- **Authorities** are authentication agents. Authorities specify passwords or cryptographic proofs required to execute the methods in the SP

- **Access Control Lists (ACLs)** bind methods to valid authorities
Issuance is the act of creating a new SP (exchange/validation of credentials)

Templates define the initial tables and methods. All SPs = **Base Template** tables and methods + other Templates: **Admin Template, Crypto Template, and Templates for Forensic Logging and Locking/Encryption etc**

Personalization is the customization of a newly created SP: modify initial table data and/or admin authority, customization of the default access control settings

Note: **Admin SP** manages Templates, creates other SPs under issuance control, and maintains information about other SPs and the TPer as a whole. Admin SP cannot be deleted or disabled.
Issuing an SP

Issuance Server

REQUEST

ISSUANCE CREDENTIAL

Admin SP

ISSUE SP

PERSONALIZE SP

USE SP

ISV SP

SP

ISV application

Admin SP

ISV SP
- Cryptographic methods: utilize public and symmetric key store tables

- Credential tables + additional tables provided by Base and other Templates

- Encryption, Decryption, Signing, Verifying, Hashing, HMAC, and XOR

- AES, RSA, SHA, HMAC, Elliptic Curve, Random Numbers
ComID: allow TPer to identify caller of IF-RECV command
ComPacket is the unit of communication transmitted as the payload of an Interface command. A ComPacket is able to hold multiple packets in its payload.

Packet is associated with a particular session and may hold multiple SubPackets.

SubPacket may hold multiple Tokens.
Access Control

Credentials: Permission “secrets”

Authentication Operation: proof of knowledge of a secret

The Authority table associates specific Credential-Operation pairs together in **Authority** objects

Access Control Lists (ACLs): lists of **Access Control Elements (ACEs)**

ACEs are Boolean combinations of Authorities.

```
SP, Table, or Object

Method 1

(or)

ACE1

AUTH1 and
(AUTH2 or AUTH3)

ACE2

AUTH4 or AUTH5

Method 2

(or)

ACE3

AUTH1 and AUTH3

ACE4

AUTH2 and AUTH4
```
Security Subsystem Classes

Class = SSC

- HDD SSC - Notebook
- HDD SSC - Enterprise
- Optical SSC (OSSC)
Optical Subsystem Class Goal

- Transparent
- Compatible

Separate control channel

- Ease of use
- Unobtrusive

✓ FDE
Enterprise Management of Full Disc Encryption (FDE) Drives

- Enterprise Server:
 - Key generation and distribution
 - Key/Password archive, backup and recovery

- Laptop (Application):
 - Master/User passwords, multi-factor authentication, TPM support
 - Secure log-in, “Rapid Erase”

- FDE Trusted Drive:
 - Disk or sector encryption, sensitive credential store, drive locking
Trusted Platform w/
Trusted Storage

- Multi-factor authentication: password, biometrics, dongles
- Secure/hardware storage of credentials, confidential financial/medical data
- Trusted life cycle management of personal information
- Integrity-checking of application software
- Cryptographic functions for storage and communications security
- Trusted/secure computation of high-value functions (protection from viruses/etc)
Thank You!

www.trustedcomputinggroup.org
Q&A/Feedback

Please send any questions or comments on this presentation to SNIA: tracksecurity@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Robert Thibadeau
Michael Willett
All Storage Manufacturers (contributors)