

Trusted Computing Group Trusted Storage Specification

Jason Cox, Seagate Technology

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Abstract

Trusted Computing Group (TCG) Trusted Storage Specification

The Trusted Computing Group (TCG) Storage Work Group recently published formal specifications for security and trust services on storage devices, including hard drives, flash, and tape drives. The majority of hard drive and other storage device manufacturers participated. Putting security directly on the storage device avoids the vulnerabilities of platform OS-based software security. The details of the Specification will be highlighted, as well as various use cases, including Full Disk Encryption with enterprise key/credential management.

Board of Directors

Scott Rotondo, Sun, President and Chairman

Marketing Workgroup Brian Berger, Wave

Technical Committee Graeme Proudler, HP

Best Practices Jeff Austin, Intel

Advisory Council Invited Participants

TRUSTED

COMPUTING GROUP™

Administration VTM, Inc.

Public Relations Anne Price, PR Works

Events Marketing Support VTM, Inc.

Conformance WG

Manny Novoa. HP

PC Client WG

Monty Wiseman, Intel

Mobile Phone WG Infrastructure WG Panu Markkanen, Nokia

Thomas Hardjono, SignaCert

PDA WG

Jonathan Tourzan, Sony

Server Specific WG Larry McMahan, HP

Peripherals WG

(dormant)

TPM Work Group

David Grawrock, Intel

TSS Work Group

David Challener, Lenovo

User Auth WG

Laszlo Elteto, Safenet

BOLD:

Most Relevant to Storage Work **Storage WG**

Robert Thibadeau Seagate

Key Management Services **Walt Hubis**

LSI

Storage Interface Interactions James Hatfield Seagate

Optical Storage Bill McFerrin DataPlay

oup Trusted Storage Specification rking Industry Association. All Rights Reserved.

General Risk Model: Storage

Trust = systems operate as intended

Objective: Exercise control over operations that might violate trust

Needed: Trusted Storage commands

Joint Work – T10 (SCSI) and T13 (ATA)

TRUSTED SEND/IN

(Protocol ID = xxxx)

TRUSTED RECEIVE/OUT

T10/T13 defined the "container commands"

TCG/Storage defining the "TCG payload"

Protocol IDs assigned to TCG, T10/T13, or reserved

Implementation Overview

Trust

System behaves as designed

Trust "Toolkit":

Cryptographic SIGNING

CREDENTIALS (eg, signed X.509 Certificates)

Root of Trust

- ♦ Hardware that
- cannot change
- can digitally sign
- and therefore initiate a chain of trust
- → TPM (trusted platform module) is a tiny processor on the motherboard that can sign and whose firmware cannot be modified
- Storage Devices can be roots of trust

Extending Trust to Peripherals

TPer = Trusted Peripheral

Ability to interact with the Platform

Authentication/Attestation

Capability Level

HIGH

Trusted Storage with Trusted Platform

Life Cycle: Manufacture, Own, Enroll, PowerUp, Connect, Use, ...

Why Security in STORAGE (i.e. hard drive)

3 Simple reasons

- Storage for secrets with strong access control
 - Inaccessible using traditional storage access
 - Arbitrarily large memory space
 - Gated by access control
- > Unobservable cryptographic processing of secrets
 - Processing unit "welded" to storage unit
 - "Closed", controlled environment
- Custom logic for faster, more secure operations
 - Inexpensive implementation of modern cryptographic functions
 - Complex security operations are feasible

TCG Storage Use Case Examples

Full Disc Encryption

- -Laptop Loss or Theft
- -Re-Purposing
- -End of Life
- -Rapid Erase

DriveLocking

Personal Video Recorders

Forensic Logging

DRM Building Blocks

TCG Storage Workgroup

Specification Overview and Core Architecture Specification

Specification Version 1.0

Revision 0.9 (DRAFT)
19 June 2007

Education SNA

TCG Storage WG Specification

- Logical Groupings of Features
- SP = Tables + Methods + Access Controls

Like "registers", primitive storage and control

Methods

- Get, Set Commands kept simple with many possible functions
- Access Control over Methods on Tables

Specification Purpose

Define an architecture that:

- Enables application of access control over select device features
- Permit configuration of these capabilities in conformance to the platform security policy

Core Architecture

MCTP = Multi-Component Trusted Platform

TPer = Trusted Peripheral (eg, Storage)

Communications Infrastructure

SNIA

Security Provider (SP)

- SPs have own storage, functional scope, and security domain
- Created by:
 - 1) manufacturer (during Storage Device creation) AND/OR
 - 2) Issuance Process
- •<u>Tables:</u> rows = security associations, columns = related elements
- Persistent State Information: remains active through power cycles, reset conditions, and spin up/down cycles
- Methods are actions such as: table additions, table deletion, table read access, and table backup
- <u>Authorities</u> are authentication agents. Authorities specify passwords or cryptographic proofs required to execute the methods in the SP
- Access Control Lists (ACLs) bind methods to valid authorities

SP Issuance/Personalization Overview

Issuance is the act of creating a new SP (exchange/validation of credentials)

<u>Templates</u> define the initial tables and methods. All SPs = <u>Base Template</u> tables and methods + other Templates: <u>Admin Template</u>, <u>Crypto Template</u>, and <u>Templates for Forensic Logging and Locking/Encryption etc</u>

<u>Personalization</u> is the customization of a newly created SP: modify initial table data and/or admin authority, customization of the default access control settings

Note: Admin SP manages Templates, creates other SPs under issuance control, and maintains information about other SPs and the TPer as a whole. Admin SP cannot be deleted or disabled.

Issuing an SP

- Cryptographic methods: utilize public and symmetric key store tables
- Credential tables + additional tables provided by Base and other Templates
- Encryption, Decryption, Signing, Verifying, Hashing, HMAC, and XOR
- AES, RSA, SHA, HMAC, Elliptic Curve, Random Numbers

Communications Architecture

ComID: allow TPer to identify caller of IF-RECV command

Host Interface: Packetization

<u>ComPacket</u> is the unit of communication transmitted as the payload of an Interface command. A ComPacket is able to hold multiple packets in its payload.

Packet is associated with a particular session and may hold multiple SubPackets.

SubPacket may hold multiple Tokens.

Access Control

Credentials: Permission "secrets"

<u>Authentication Operation:</u> proof of knowledge of a secret

The Authority table associates specific Credential-Operation pairs together in Authority objects

Access Control Lists (ACLs): lists of Access Control Elements (ACEs)

ACEs are Boolean combinations of Authorities.

Security Subsystem Classes

Security Subsystem

Class = SSC

Storage Architecture Core Specification

HDD SSC - Notebook

HDD SSC - Enterprise

Optical SSC (OSSC)

Education SNI

Optical Subsystem Class Goal

Separate control channel

- ✓ ease of use
- ✓ unobtrusive

Trusted Computing Group Trusted Storage Specification © 2008 Storage Networking Industry Association. All Rights Reserved.

Enterprise Management of Full Disc Encryption (FDE) Drives

Key generation and distribution

Key/Password archive, backup and recovery

-Laptop (Application):

Master/User passwords, multi-factor authentication, TPM support Secure log-in, "Rapid Erase"

-FDE Trusted Drive:

Disk or sector encryption, sensitive credential store, drive locking

Home Banking (or Remote Medical, or ...)

Trusted Storage

- Multi-factor authentication: password, biometrics, dongles
- Secure/hardware storage of credentials, confidential financial/medical data
- -Trusted life cycle management of personal information
- Integrity-checking of application software
- Cryptographic functions for storage and communications security
- -Trusted/secure computation of high-value functions (protection from viruses/etc)

Thank You!

www.trustedcomputinggroup.org

Q&A/Feedback

Please send any questions or comments on this presentation to SNIA: tracksecurity@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Robert Thibadeau
Michael Willett
All Storage Manufacturers (contributors)