

An Introduction to Key Management for Secure Storage

Walt Hubis, LSI Corporation

The material contained in this tutorial is copyrighted by the SNIA.

- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

An Introduction to Key Management for Secure Storage

As secure storage becomes more pervasive throughout the enterprise, the focus quickly moves from implementing encrypting storage devices to establishing effective key management policies. Without the proper generation, distribution, storage, and recovery of key material, valuable data will be eventually compromised. Worse, without proper management of key information, data can be completely lost.

This session explores the fundamental issues and technologies that impact key management for disk, tape, array, and other storage devices. Major issues associated symmetric encryption keys are presented, along with practical advice on effective key management issues and practices.

The Key Management Problem

The Key Management Problem

The Key Management Problem

Data At Rest

Random Access Devices

- Disk Drives
- Sequential Access Devices
 - Tape Drives

Other Media

Optical Media

Data in Flight is Still Important!

Data At Rest

			_	Storage Element	Description
	Data-At-Rest (DAR)			Data-At-Rest (DAR)	"Protecting the confidentiality, integrity and/or availability of data residing on servers, storage arrays, NAS appliances and other media"
Data-in-Flight (DIF)	Storage System Second		Storage Resource Management (SRM)	Storage Resource Management (SRM)	"Securely provisioning, monitoring, tuning, reallocation, and controlling the storage resources so that data may be stored and retrieved."
		orage n Security		Storage System Security (SSS)	"Securing embedded operating systems and applications as well as integration with IT and security infrastructure (e.g., external authentication services, centralized logging and firewalls"
(SSS) Source: Introduction to Storage Security, A SNIA Security Whitepaper, Oct 14, 2005				Data-in-Flight (DIF)	"Protecting the confidentiality, integrity and/or availability of data as they are transferred across the storage network, the LAN, and the WAN. Also applies to management traffic"

An Introduction to Key Management for Secure Storage

© 2008 Storage Networking Industry Association. All Rights Reserved.

Many Key Uses

- Private signature key
- Public signature verification key
- Symmetric authentication key
- Private authentication key
- Public authentication key
- Symmetric data encryption key
- Symmetric key wrapping key
- Symmetric and asymmetric random number generation keys
- Symmetric master key
- Private key transport key

- Public Key Transport Key
- Symmetric Key Agreement Key
- Private Static Key Agreement Key
- Public Static Key Agreement Key
- Private Ephemeral Key Agreement Key
- Public Ephemeral Key Agreement Key
- Symmetric Authorization Key
- Private Authorization Key
- Public Authorization Key

Source: NIST Special Publication 800-57: Recommendation for Key Management

Encryption Algorithms

- AES
 - > 128 Bit Key
 - > 192 Bit Key
 - > 256 Bit Key
- DES
 - > 56 Bit Key
- 3DES
 - > 168 Bit Key

Encryption Algorithm Modes

- Electronic Codebook Mode (ECB)
- Cipher Block Chaining Mode (CBC)
- Cipher Feedback Mode (CFB)
- Output Feedback Mode (OFB)
- Counter Mode (CTR)
- Galois/Counter Mode (GCM)
- LWR Encryption
- XOR-Encrypt-XOR (XEX)
- XEX-TCB-CTS (XTS)
- CBC-Mask-CBC (CMC)
- ECB-Mask-ECB (EME)

Key and Data Lifetime

- Forever
 - Assure Access to Data Years from Now
- For a Limited Time Period
 - > Ephemeral Milliseconds, Seconds
 - > Weeks, Months, Years

What Happens at End of Life?

- Mandatory Re-Encryption
- Destruction of Data
- Destruction of Key

Policies

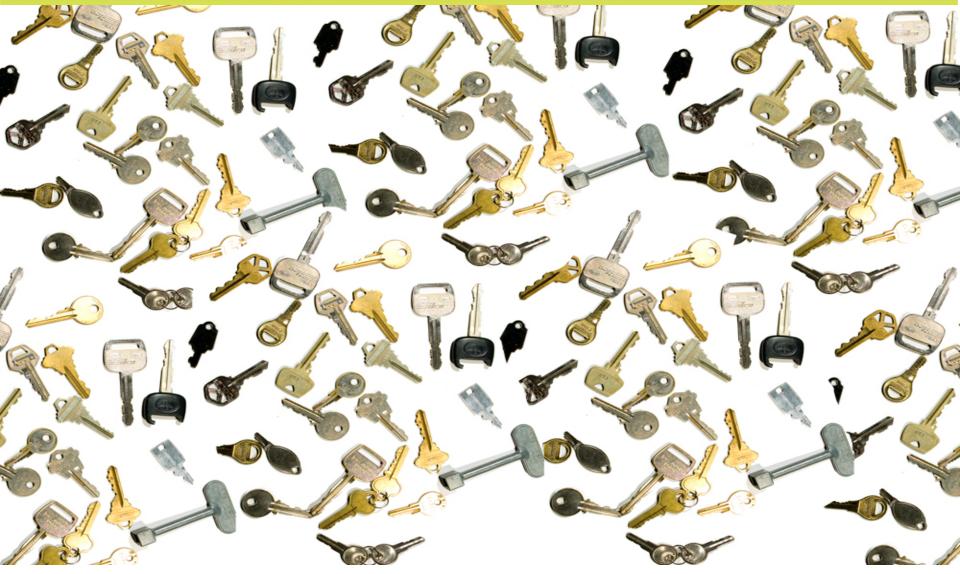
- Who Can Establish Keys?
- Who Can Delete Keys?
- What is the Lifetime of a Key?
- Can the Key be Archived?
- Are the Keys Changed Periodically?
- Are Keys Automatically Deleted or Archived?
- Who Else Can Use the Key?

Auditing

- Track the Key over it's Lifetime
- Who Created the Key and When?
- Who Changed the Key and When?
- Who Created a Copy of the Key and When?
- Where are the Copies of the Key
- Who Deleted the Key and When?

Threats

- Confidentiality
 - > Key Disclosure
 - > Data Accessible to Anyone
- Integrity
 - > Key has Been Modified
 - > Data Accessible by None
- Archive
 - › Key has Been Lost
- Availability
 - Key Cannot be Accessed


Key Management Goals

- Backup/Restore Key Material
- Archival and Retention of Key Material
- Distribution of Key Material
- Expiration, Deletion, and Destruction of Key Material
- Audit of Key's Life Cycle
- Reporting Events and Alerts

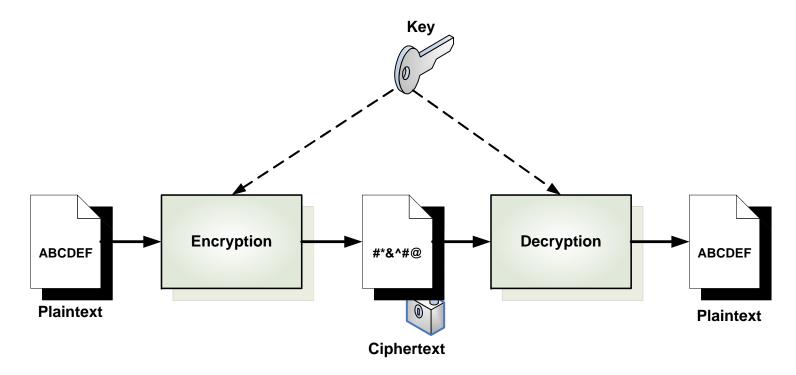
Keying Material

Two Major Types of Encryption

- Symmetric Keys
- Asymmetric Keys

Storage Systems May Use Both

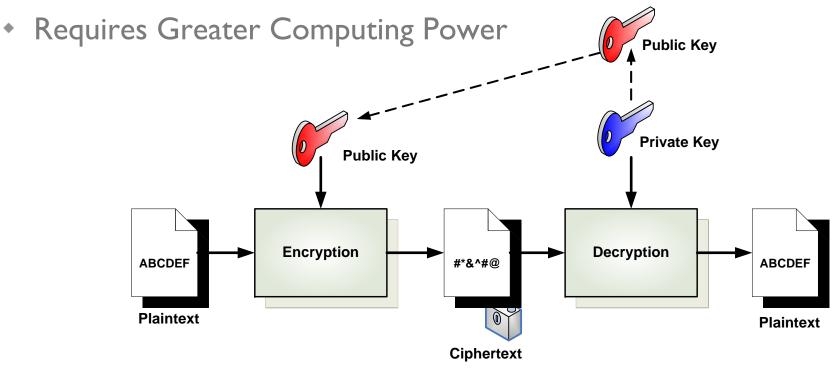
- Asymmetric Keys to Exchange Symmetric Keys
- Symmetric Keys to Encrypt/Decrypt Data


Check out SNIA Tutorial:

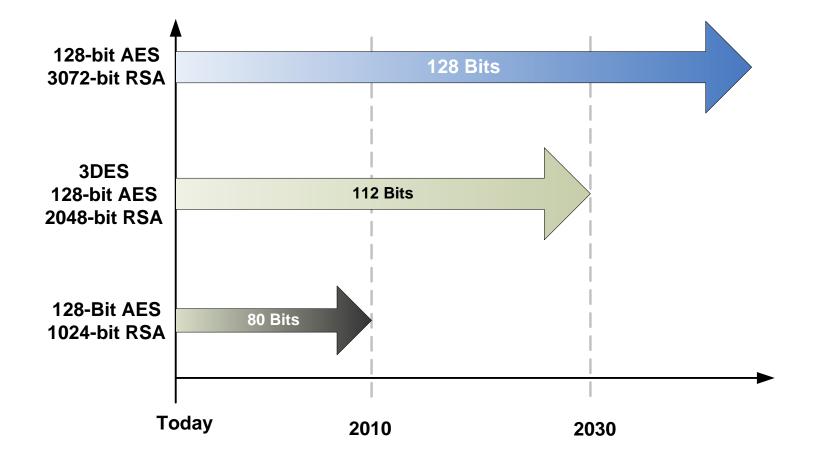
ABC's of Data Encryption

One Key

- Used for Both Encryption and Decryption
- Requires Lower Computing Power



Asymmetric Key


Uses Private and Public Key Pair

- Can't be Derived from Each Other
- Data Encrypted with One Can Only Be Decrypted With the Other

An Introduction to Key Management for Secure Storage © 2008 Storage Networking Industry Association. All Rights Reserved.

Key Formats

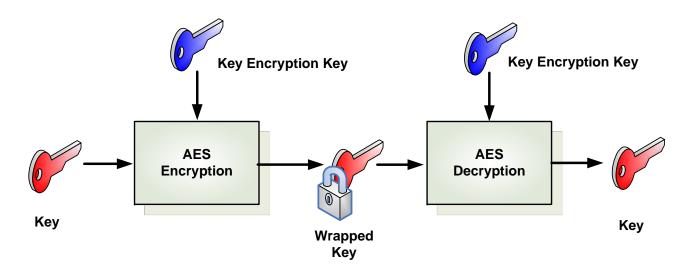
Key Formats

- Any and All Key Formats Must Be Managed
- Keys are Viewed as Objects

Key Material

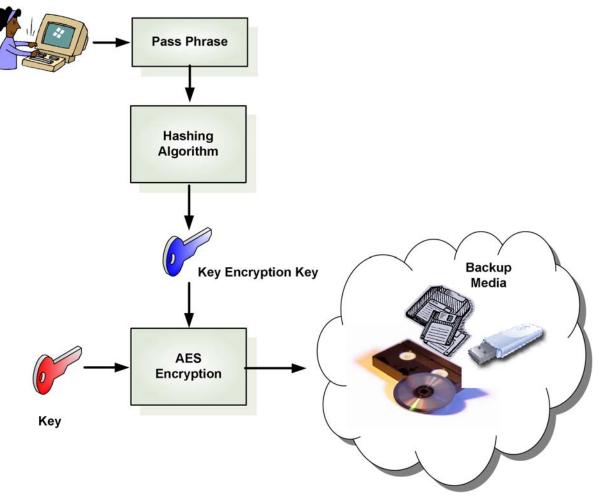
- Key Data
- Key Information: Metadata

Storage Generally Uses Symmetric Keys


- A Secure Key Exchange Assumed
- Easier to Implement
- Less Client Resources

Key Wrapping

Used to Move Keys


- Backup
- Archiving

Source: AES Key Wrap Specification (http://csrc.nist.gov/CryptoToolkit/kms/key-wrap.pdf)

Used to Generate Key Encryption Key

Basic Key Metadata

♦ Value

The Actual Key

Unique Identifier (GUID)

- Unique Within a Domain (Name Space)
 - > The Domain May be World Wide Unique
- May be a Globally Unique Identifier
 - › World Wide Unique Name
- May be a Hierarchy
- Important for Identifying Keys that are Moved
 - > Across Domains
 - > Across Companies
 - > Across Countries

Optional Key Metadata

Name

- User readable name, not necessarily Unique
- Creator name
- Domain name
- Parent GUID
- Previous version GUID
- Version string

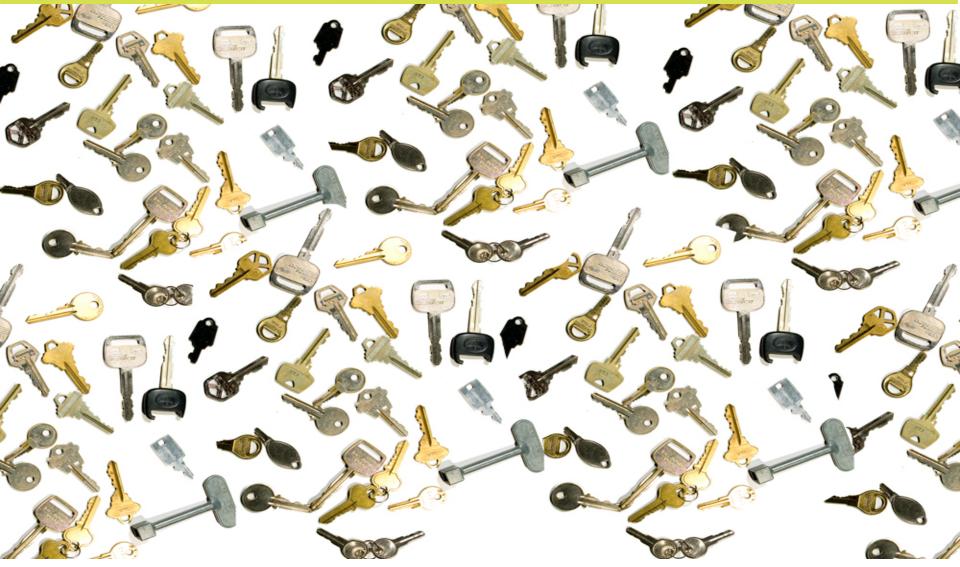
Optional Key Metadata

Timestamps

- Creation
- Modified
- Valid Time
- Expiration Time

Policies

- Use of key
- Key type


Access rights - who can:

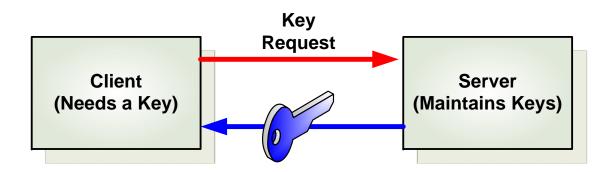
- Access
- Modify
- Disable
- Destroy

Vendor-Specific Metadata

Key Management Components

Key Management Components

- Client-Server View
- The Key
- The Key Server
- The Key Transport Channel
 - Secure Channel
 - Authentication
- Key Exchange Protocol

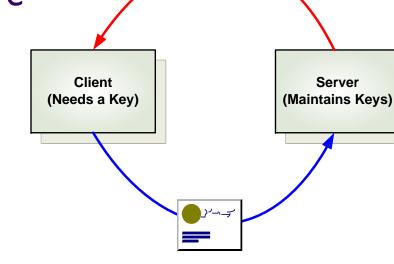


Client

User or Consumer of Keys

Server

Provider of Keys


Client-Server Authentication

Client and Server Must Authenticate

- Assures Identity
- Secrets or Certificates
- Pre-Shared Keys or PKI

Communications are Secure

Channel Encryption

Key Clients - Lightweight

Limited Resources

- Limited Computational Requirements
- Limited Memory Requirements

Communication

- Network Based: Out of Band
- Host Based: In Band

Applications

- Disk Drives
- Tape Drives, Libraries
- Array Controllers

Simple Protocol

- Fixed Fields and Values
- Similar to SCSI CDBs

Education

SNIA

Key Clients - Complex

Unlimited Resources

Applications

- Key Servers
- Data Bases
- Objects
- File Servers

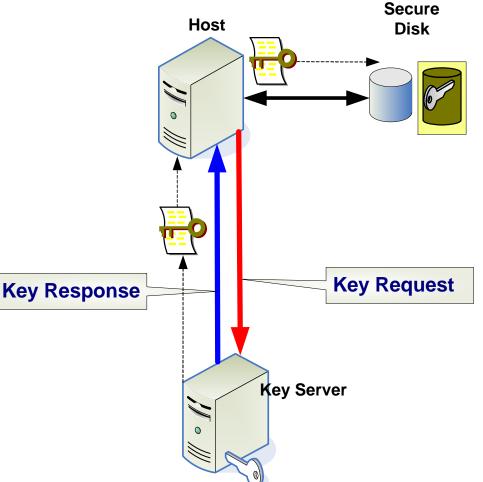
May Use a Complex Protocol

Requires Complex Protocol Parser

Key Server

- Software Application
 - > Generic Hardware Platform
- Dedicated Hardware Servers
 - > Hardened

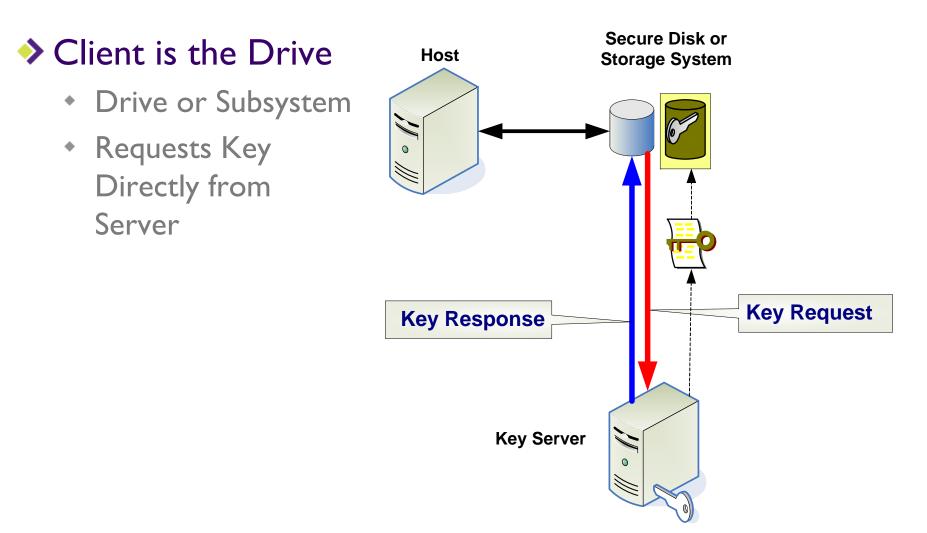
Multiple Key Servers


- Key Management Between Servers
- Policy Management
 - Accounting
 - Validation

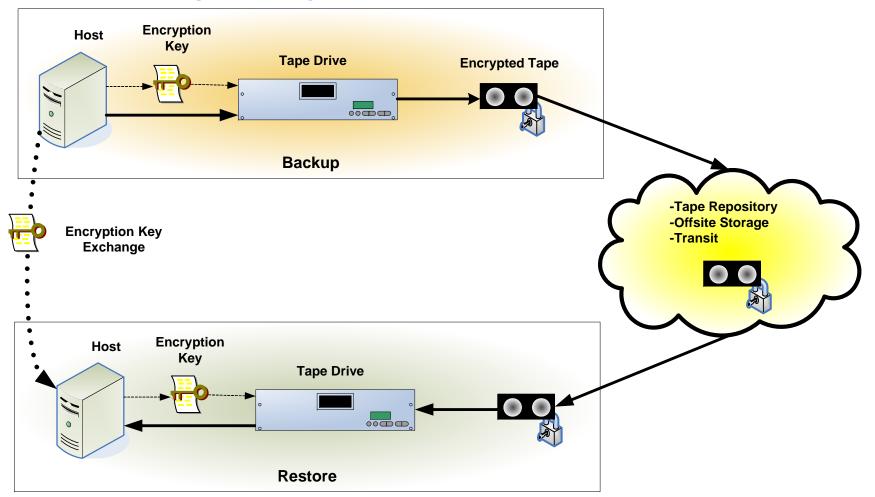
Backup

Key Clients and Servers - Disk

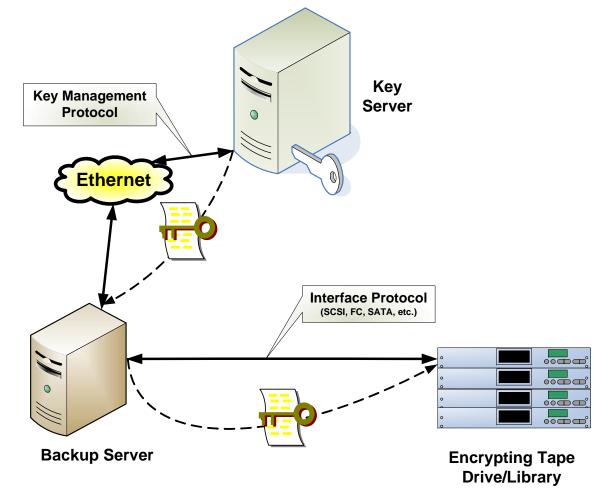
Typical KM Scenario


- Client: Host PC
- Passes Key to Drive

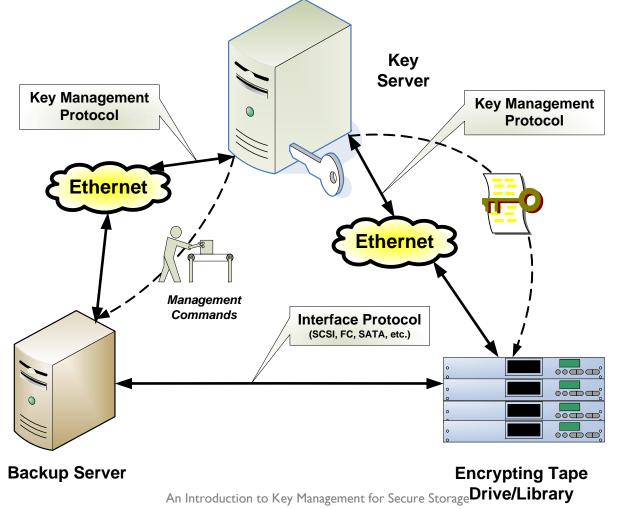
Key Clients and Servers - Disk



Key Clients and Servers - Tape


Manual Key Management

Key Clients and Servers - Tape


Automated Key Management

Key Clients and Servers - Tape

Automated Key Management

© 2008 Storage Networking Industry Association. All Rights Reserved.

Key Clients and Servers - Enterprise SNIA

KMS Protocol

Two Primary Operations

- Set key
 - > Server ⇒Client
- Get key
 - > Client Server

Optional Operations

- Find key
- Update key
- Replicate key
- Disable key
- Destroy key
- Access rights
- Get service info
- Audit log functions

Key Management Best Practices

An Introduction to Key Management for Secure Storage © 2008 Storage Networking Industry Association. All Rights Reserved. _

Education

SNIA

Important Key Properties

Use a Cryptographic Key for Only <u>One</u> Purpose

- Do Not use Key-Encrypting Keys or Wrapping Keys to Encrypt Data
- Do Not use Data-Encrypting Keys to encrypt other keys

Use <u>Randomly</u> Chosen Keys from the <u>Entire</u> Key Space

- Use Computer-Generated Keys Whenever Possible
- Enforce a Broad Range of Entries in the Key Space

Avoid Weak Keys

- "00000000" or "FFFFFF" or even "DEADBEEF"
- Dictionary Attacks (e,g., "password")

Avoid Plain Text Keys

- Always Encrypt Keys for Transfer
- Prevent Observation of Plaintext Keys

Key Management Safety

Automate Key Management Whenever Possible

- Authentication
- Key Generation

Observe and Enforce Cryptoperiod

Also, Limit Keys to Maximum Amount of Data

Limit Keys with Long Lifetime

Archived Keys Only

Separate Key Functions

Don't Mix Key Encryption and Data Encryption Keys

Key Management Safety

Document Objectives

- Authorization Objectives
- Protection Objectives
- Key Management Services Objectives
- Key Material Destruction

Enforce Strict Access Controls

- Limit User Capabilities
- Segregate Duties
 - > Audit
 - > User
 - > Management

Symmetric Keys

- Use an Approved Random Number Generator
- Use an Approved Key Update Procedure
- Use an Approved Key Derivation Function from a Master Key
- Don't Concatenate Split Keys to Generate Keys

Limit Distribution of Data Encryption Keys

- No Gratuitous Distribution
- Limit to Backups
- Limit to Authorized Entities

Protect Keys

- Wrap Keys Before Distribution
- Use Appropriate Physical Security

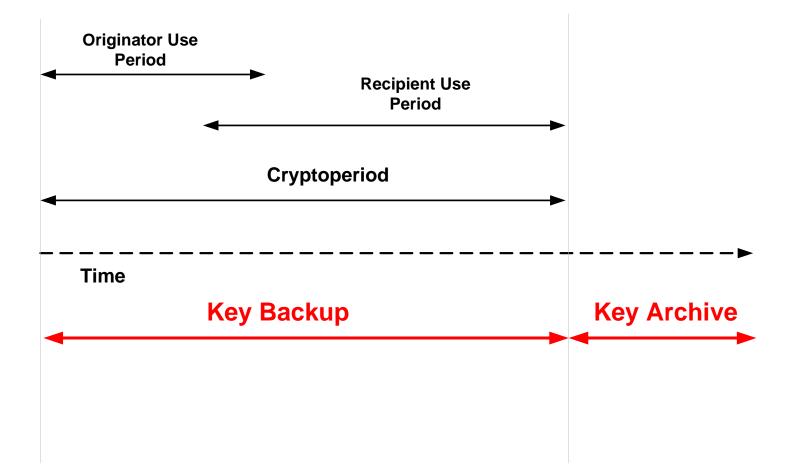
Secure Devices and Processes

- Insure that Installation does not Result in Key Leakage
- Insure that Device or Process Meets Key Best Practices

Secure Key Storage

- Cryptographic Security (e.g., Wrapping)
- Physical Security

Integrity


- Employ Methods to Detect Modifications
- Ability to Restore Key Material when Unauthorized Modifications Occur

Backup and Archive

- Backup Keys During the Key's Cryptoperiod
- Archive Keys after the Cryptoperiod has Expired As Needed.

Key Backup and Archive

Change Keys

- When a Compromise is Detected
- When the Key's Cryptoperiod Nears Expiration
- When the Key's Data Limit Approaches

Destroy Keys

- Remove Keys from Backups when Not Needed for Operational Use
- Destroy Keys When No Longer needed for Backup or Archive

Import and Export Controls

 Understand and Obey Government Import and Export Regulations

Plan for Problems

• Have a Recovery Plan in Place for a Key Compromise Event

Plan for Disaster

- Have a Recovery Plan in Place for Catastrophic Events
- Consider an Escrow Plan to Protect Mission Critical
 Information
- Archives May Need to Last for a Very Long Time

Active Archive

- Contains Some Data Subject to Retention Policies
- Retention Policies Driven by Governmental Compliance Requirements

Long Term Archive

- Data Life Exceeds the Life Span of Formats and Storage Mechanisms
- Preserve Data Long Periods of Time
- Wills, Land Records, Medical Data, Criminal Case Files, etc.

Active Archive Security

Active Archive Security

- Ensure Read-Only Enforcement is Adequate
- Ensure Data Privacy
 - > Access Controls
 - > Encryption
- Provide Appropriate Index and Search Capabilities
- Prepare for a Disaster
- Enforce Role and Access Policies

Governance and Compliance

- Data Retention Requirements
- Data Disposition Requirements
- Preserve Evidentiary Nature of the Data
 - > Rigorous Authenticity Checks
 - > Chain of Custody (Audits)

Long-Term Archive

Policies

- Establish Type of Data to be Accepted
- Determine Preservation Period
- Define Archived Data Object Maintenance Policy
- Establish Authorization Policy
- Specify the Preservation Activities
- Define a Cryptographic Maintenance Policy

Security

- Access Control Mechanisms Must be Appropriate to the Lifespan
- Perform Periodic Data Conversions and Revalidations
- Address Long-Term Non-Repudiation of Digitally Signed Data

For More Information

- NIST Special Publication 800-57: Recommendation for Key Management (<u>http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-</u> <u>revised2_Mar08-2007.pdf</u>)
- ISO/IEC 11770 Parts 1-3: Information technology Security techniques -Key management
- FIPS 140-2: SECURITY REQUIREMENTS MODULES (<u>http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf</u>)
- Trusted Computing Group (<u>https://www.trustedcomputinggroup.org/home</u>)
- IEEE P1619.3: Security in Storage Workgroup (SISWG) Key Management Subcommittee (<u>http://siswg.net/</u>)
- OASIS Enterprise Key Management Infrastructure (EKMI) Technical Committee (<u>http://www.oasis-</u> <u>open.org/committees/tc_home.php?wg_abbrev=ekmi</u>)
- IETF: Provisioning of Symmetric Keys (KEYPROV) (<u>http://www.ietf.org/html.charters/keyprov-charter.html</u>)

Please send any questions or comments on this presentation to SNIA: <u>tracksecurity@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Larry Hofer CISSP Eric Hibbard CISSP Mark Nossokoff Blair Semple SNIA SSIF SNIA Security TWG