

Multi-Protocol Support in GlusterFS

Ira Cooper / Poornima G.
Red Hat Storage SMB/SMB2 Team
September 15, 2014

GlusterFS Overview . redhat

What is GlusterFS?

- Software Defined Storage
- "Shared Nothing" Clustered Filesystem
- Optimized for high throughput
- Common use cases:
 - HPC
 - Backup and Archival Storage
 - Virtual Machine Storage

GlusterFS Architecture

- GlusterFS is basically a stacked VFS.
- Each "layer" is called a translator
- Example translators:
 - Client/Server Network traversal
 - AFR Automatic File Replication
 - POSIX Back end to a POSIX file system
 - DHT Distributed Hash Table

Protocols Supported

- SMB/SMB2 Samba
 - 3.6.9 + Patches
 - Work in progress to support newer versions
- NFS
 - NFSv3 via GlusterFS specific server
 - NFSv4 work in progress with Ganesha
- FUSE
 - Linux
 - FreeBSD
 - OS X

NFS / FUSE Semantics

- Case sensitive
- Byte Range Locking is discretionary
- File Locking is discretionary
- Namespace operations have no locks
- Delegations / Layouts in NFSv4
 - Directory delegations in NFSv4.1+
 - "5 second rule" for NFSv3/FUSE

SMB/SMB2 Semantics

- Case Insensitive
- Byte Range Locking is enforced
- "Share Modes" exist, and are enforced
- Oplocks / Leases
- Directory Leases / Notify

Philosophy

- SMB Driven, mainly
 - Large differences in semantics
 - Not the way it is usually done
- FUSE + NFS kind of works already

Imperfection is Expected

- SMB, SMB2, FUSE, NFSv3, and NFSv4.x can not be perfectly mixed
 - This has been discovered through years of experience
- The goal is to give an acceptable user experience
 - No data loss/corruption
 - Minimal to no mishandled permissions
 - Semantics that are as good as possible
 - Allow the user to make tradeoffs.

General Design Principles

- State recovery as in SMB2+ will be built into the file system
- State replication will be assisted by replication / erasure coding translators
- Everything that follows is a translator or set of them
- Support will be added to Ganesha, Samba and FUSE for these new concepts

ACLs

- We've decided to accept the Rich ACL proposal
- NFSv4 ACLs and SMB look the same
 - NFSv4.1 was supposed to help here
- SIDs will not be stored in the filesystem
- Support for NFSv3 must be maintained
- Support for POSIX ACLs may be needed for FUSE and NFSv3

Locking

Byte Range

Share Modes

Oplocks, Leases and Delegations

Byte Range Locking

Two different types of locks

POSIX

- Discretionary
- Range merge and split
- Tend not to be trusted over NFS

• SMB/SMB2

- Mandatory
- Do not range merge or split
- Tend to be used/abused

Byte Range Locking (2)

- Separate state for mandatory and discretionary locks
- Kept in separate translators
 - Makes the semantics clearer, and easier to enforce
 - The locks will not interfere with each other
- Locking enforcement rules will be tunable

Share Modes/Reservations

- SMB/NFSv4 feature
- Permission on open to "allow/deny" others
 - To read
 - To write
 - To delete
- POSIX explicitly has no such concept

Goplocks

- GlusterFS Oplocks
- Mixes SMB, SMB2, and NFSv4 semantics, for opportunistic locking
- Requirements:
 - Reader, Writer, Handle, Once, None, file based caching
 - Callbacks are registered by clients

Future Directions

- Directory Goplocks
 - Will be need for full metadata consistency
- Improved ACLs
- Better atomicity for open/create
- Disconnected clients, dead clients, and other issues will have to be worked through

