Memory Channel Storage[™] (MCS[™]) Demystified

Jerome McFarland

Principal Product Marketer

+ INTRO AND ARCHITECTURE

- + PRODUCT DETAILS
- + APPLICATIONS

THE COMPUTE-STORAGE **DISCONNECT**

+ Compute And Data Have Far Outgrown Storage Advancements

Enterprises need a solution to close the gap...

2010

SSD

2020

2000

FLASH STORAGE EVOLUTION THUS FAR

TODAY'S SOLUTION...

- + Processor, memory and applications are tightly coupled
- + Storage not local to processor and application execution
- + SSDs deployed to minimize the disconnect, but critical issues remain:
 - Long trips required for data retrieval
 - Resource contention
 - <u>Response Time (Latency) suffers</u>

WHAT IS THE IMPACT OF RESPONSE TIME (A.K.A. LATENCY)?

THE PERFORMANCE TRADE-OFF

 Traditionally customers have faced a suboptimal trade-off in storage system design:

A Painful Workaround...

- + When SSD "IOPS vs. Latency" trade-offs are unacceptable, adding expensive RAM is a traditional recourse.
- However, adding RAM can create an imbalance between incremental performance requirements and rapidly growing solution cost.

MEMORY CHANNEL STORAGE SOLUTION

- MCS is coupled with the processor, application, and system memory
- + Distance and contention issues are eliminated
- + Data stays within memory subsystem for local access
 - + Achieves ultra-low latency
 - + Enables linear "performance vs. cost' scalability
- + Enabled by a unique architectural approach

MCS SYSTEM VIEW

Leveraging the **Power of Parallelism**...

+ Massive Flash capacity exposed through the low-latency memory subsystem.

SOFTWARE ARCHITECTURE

HARDWARE ARCHITECTURE

PERSISTENT MEMORY WITHIN NUMA

+ The best location for application data is within the NUMA architecture

 Highly parallel (threaded) applicatons running on parallel processors and cores, with highly parallel memory and storage access

SO, WHAT IS MEMORY CHANNEL STORAGE?

- + An Architecture (not a single product)
 - + Enables Flash Storage to Directly Interface on the Memory Channel
- + Presents as a Block I/O Device
 - + Can be Managed just like Existing Storage Devices
- + DDR3 Interface, Standard RDIMM Physical Form Factor
 - + Plugs into Standard DIMM Slots
 - + Self-contained, No External Connections Required

SYSTEM REQUIREMENTS & COMPATIBILITY

- + Hardware and BIOS Requirements
 - + Server enabled with MCS UEFI BIOS modifications
 - + DDR3-compatible processor
 - + MCS is compatible with standard JEDEC-compliant 240-pin RDIMMs
 - + Supports DDR3-800 through DDR3-1600
 - + 8GB of standard memory (RDIMM) installed in the system
 - + MCS follows standard server DIMM population rules

+ Initial OS Support

- + Linux (RHEL, SLES)
- + Windows Server
- + VMware ESXi

TECHNOLOGY COLLABORATION TO CREATE THE FIRST MCS-ENABLED PRODUCT

- + Reference architecture design+ DDR3 to SSD ASIC/firmware
- + Kernel and application level software development
- + OEM System Integration and enterprise application domain knowledge

SanDisk[®]

- + Guardian Technology for enterprise applications
- + SSD controller & FTL firmware development and test
- + Supply Chain and Manufacturing with flash partner
- + System Validation

SanDisk™ "ULLtraDIMM™" POWERED BY **MCS**

MEMORY CHANNEL INTERFACE

- + DDR3 PROTOCOL
- + CONFIGURABLE AS BLOCK DEVICE
- + STANDARD RDIMM FORM FACTOR

GUARDIAN™ TECHNOLOGY

- + 19nm MLC
- + 10 DRIVE WRITES PER DAY
- + 5 YEAR WARRANTY

ENTERPRISE CLASS RELIABILITY

+ BACKUP POWER CIRCUITRY + END-TO-END DATA PROTECTION

+ 2M HOURS MTBF

SCALABLE & COST EFFECTIVE MEDIA

- + 200, 400GB CAPACITIES
- + SCALABLE ARCHITECTURE
- + 19nm MLC NAND

ADDITIONAL FEATURES

- + S.M.A.R.T. MONITORING
- + SUPPORTS TRIM
- + MAINTENANCE TOOLS

SUPERIOR PERFORMANCE ACROSS WORKLOADS

4K Random 100% Write 0.1 0.09 0.08 **Latency (ms)** 0.05 0.04 0.03 0.03 0.02 0.01 0 200000 0 400000 600000 IOPS 8x 200G MCS PCIe Competitor A PCIe Competitor B

4K Random 70/30 Read/Write

diablo

technologies"

+ Enables standardization on a flexible, low-latency platform

Tested using MCS prototype modules.

IT'S ALL ABOUT THE **APPLICATIONS!**

LOW LATENCY	VIRTUAL	DATABASE/	BIG DATA	SERVER
APPLICATIONS	DESKTOP	CLOUD	ANALYTICS	VIRTUALIZATION
+ 3X MESSAGE RATE + 40X REDUCTION OF MAX LATENCY	+ LOW σ = CONSISTENT USER EXPERIENCE + MEET QoS/SLA REQUIREMENTS	+ 7X TPSE IMPROVEMENT + 3X REDUCTION OF AVERAGE LATENCY	 + MINIMIZE QUERY TIMES + EXTEND WORKING SET BEYOND RAM ALLOCATION 	+ 2X VMs PER NODE +USING 1/6 THE RAM PER VM

diablo technologies"

REDUCED LATENCY ENABLES REAL-TIME ANALYTICS

15% Read/Write Ratio Overview

■ PCIe ■ MCS™

■ PCle ■ MCS[™]

+ THE APPLICATION HAS BECOME THE BOTTLENECK IN E-TRADING

VIRTUAL DESKTOPS SCALABLE ARCHITECTURE

+ 200 SERVERS, 8x SAS SSD

VM

VM

VM

VMware ESXi

VM

VM

VM

+ 3 GB RAM / VM

VM

VM

VM

10,000 VIRTUAL DESKTOP DEPLOYMENT

+ 2X VIRTUAL DESKTOPS PER HOST

- + 75% DRAM REDUCTION PER HOST
- + MAINTAIN WORKLOAD PERFORMANCE

+ IT'S NOW EASY AND COST EFFECTIVE TO ADD USERS AND SCALE INFRASTRUCTURE

VM

VM

VM

VMware ESXi

VM

VM

VM

VM

VM

VM

MEMORY MAPPED I/O ACCELERATION

10 million records (20GB mmap) using synchronous msync calls

mmap Random Write: Write Latency Histogram

mmap Random Write: Write Latency Percentiles

+ MCS 99th-percentile latency is 2x lower than Competitor 2 and 10x lower than Competitor 1

+ MCS has the tightest latency distribution

TODAY'S Fragmented storage solutions

MCS-ENABLED O-HOMOGENOUS PLATFORM

SUMMARY

Memory Channel Storage

- + Leverages parallelism and scalability of the memory channel
- Significantly reduces data persistence latencies and improves single thread throughput

Benefits of MCS

200GB to tens of TB's of flash in standard
 DIMM form factor and DDR3-CPU interface

 Disruptive performance accelerates existing applications and enables new flash use cases

 Scalability facilitates economic, "right-sized" system solutions

 Form factor enables high-performance flash in servers, blades, and storage arrays

Future proofed with ability to utilize
 NAND-flash and future non-volatile memories

Thank You!

Jerome McFarland

jmcfarland@diablo-technologies.com

- 1. What is the difference between Memory Channel Storage and NVDIMMs?
- 2. What is the difference between Memory Channel Storage and SATADIMMs?

3. Though being on the memory channel will reduce latency to the CPU, isn't I/O performance still limited by the IOPS & BW of the SSD NAND flash and controller?

- 4. How do Enterprise customers purchase Memory Channel Storage?
- 5. Will Memory Channel Storage support DDR4?
- 6. Will the Linux driver be open sourced?
- 7. Is there a limit to the number of MCS modules that can be deployed in single system?
- 8. What is the cost per GB for a Memory Channel Storage device?

Thank You!

Jerome McFarland

jmcfarland@diablo-technologies.com

