Future Memories and Today’s Opportunities

Tom Coughlin, Coughlin Associates
Jim Handy, Objective Analysis
Cataclysmic Changes Coming Soon

• Scaling Limits
 – We can’t make transistors any smaller

• New Storage Hierarchies
 – You think SSDs were disruptive? Just wait!

• More Layers Will Be Added
 – It’s all about touch rates and response time

• Processors Must Adapt
SCALING LIMITS
Scaling Limits Create Opportunities for New Memories

![Graph showing relative cost vs. process geometry from 500nm to 2nm, with lines for Flash and New Tech technologies.]
No Shortage of Options
Today’s Memories Are Limited

<table>
<thead>
<tr>
<th>Feature</th>
<th>SRAM</th>
<th>DRAM</th>
<th>ROM</th>
<th>EEPROM</th>
<th>NOR</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonvolatile</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Erasable</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Programmable</td>
<td>Yes</td>
<td>Yes</td>
<td>Factory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Smallest Write</td>
<td>Byte</td>
<td>Byte</td>
<td>N/A</td>
<td>Byte</td>
<td>Byte</td>
<td>Page</td>
</tr>
<tr>
<td>Smallest Read</td>
<td>Byte</td>
<td>Page</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
<td>Page</td>
</tr>
<tr>
<td>Read Speed</td>
<td>V Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Write Speed</td>
<td>V Fast</td>
<td>Fast</td>
<td>N/A</td>
<td>Slow</td>
<td>Slow</td>
<td>Slow</td>
</tr>
<tr>
<td>Sleep Power</td>
<td>V Low</td>
<td>High</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Price/GB</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Med</td>
<td>V Low</td>
</tr>
<tr>
<td>Applications</td>
<td>Small Fast</td>
<td>Main Memory</td>
<td>Stable Code Volume</td>
<td>Serial #, Trim</td>
<td>Code</td>
<td>Data</td>
</tr>
</tbody>
</table>

© 2016 Coughlin Associates & Objective Analysis
Emerging Memories Perform Better

<table>
<thead>
<tr>
<th></th>
<th>MRAM</th>
<th>ReRAM</th>
<th>FRAM</th>
<th>PCM</th>
<th>XPoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonvolatile</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Erasable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Programmable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Smallest Write</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
</tr>
<tr>
<td>Smallest Read</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
<td>Byte</td>
</tr>
<tr>
<td>Read Speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Write Speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Active Power</td>
<td>Low</td>
<td>Med</td>
<td>Low</td>
<td>High</td>
<td>High?</td>
</tr>
<tr>
<td>Sleep Power</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Price/GB</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High?</td>
</tr>
<tr>
<td>Applications</td>
<td>Niche</td>
<td>TBD</td>
<td>Low Power</td>
<td>Obsolete</td>
<td>Main Memory</td>
</tr>
</tbody>
</table>

© 2016 Coughlin Associates & Objective Analysis
NEW STORAGE HIERARCHIES
Memory/Storage Hierarchy

From: Objective Analysis: Solid State Drives in the Enterprise
NAND Flash SSDs Today Make Sense

From: Objective Analysis: Solid State Drives in the Enterprise
Cost Brought Flash Into Computing

Average Price per Gigabyte

From: Objective analysis: Hybrid Drives: How, Why, & When?

© 2016 Coughlin Associates & Objective Analysis
3D XPoint Will Do The Same In 2017

Price per Gigabyte

Bandwidth (MB/s)

From: Objective Analysis: Solid State Drives in the Enterprise
Intel’s & Micron’s 3D XPoint Intro

3D XPoint™ Technology: An Innovative, High-Density Design

Cross Point Structure
Perpendicular wires connect submicroscopic columns. An individual memory cell can be addressed by selecting its top and bottom wire.

Stackable
These thin layers of memory can be stacked to further boost density.

Non-Volatile
3D XPoint™ Technology is non-volatile—which means your data doesn’t go away when your power goes away—making it a great choice for storage.

Selector
Whereas DRAM requires a transistor at each memory cell—making it big and expensive—the amount of voltage sent to each 3D XPoint™ Technology selector enables its memory cell to be written to or read without requiring a transistor.

High Endurance
Unlike other storage memory technologies, 3D XPoint™ Technology is not significantly impacted by the number of write cycles it can endure, making it more durable.

Memory Cell
Each memory cell can store a single bit of data.

Transforming the Memory Hierarchy
For the first time, there is a fast, inexpensive and non-volatile memory technology that can serve as system memory and storage.

~8x to 10x Greater Density than DRAM
3D XPoint™ Technology’s simple, stackable, transistor-less design packs more memory into less space, which is critical to reducing cost.

© 2016 Coughlin Associates & Objective Analysis
3D XPoint Slashes Latency

Source: Storage Technology Group, Intel

SSD NAND technology offers ~100X reduction in latency versus HDD

NVMe™ eliminates 20 μs of latency today

3D XPoint™ technology reduces NVM latency offering ~10x reduction in latency vs NAND SSD

© 2016 Coughlin Associates & Objective Analysis
WHY MORE STORAGE LAYERS
Mapping This To Storage Technologies

© 2016 Coughlin Associates & Objective Analysis
PROCESSORS MUST ADAPT
Context Switches Become The Issue

Doug Voigt, HP, 2015 FMS

Min, Max Latencies For Example Technologies

Context Switch

Non-Uniform Memory Access

Latency (Log)

2 uS

200 nS

HDD

SATA SSD

NVMe Flash

Persistent Memory

© 2016 Coughlin Associates & Objective Analysis
Persistent Memory Implications

• Retains data during a power loss
 – Instant recovery of state before power down
• Lower latencies than disk
• Lower power than DRAM
• Allows persistent states for Remote Direct Memory Access (RDMA)
• Supports “logic-in-memory architecture”
 – Could lead to new distributed computer architectures
Summary

• Scaling limits open doors to new memories
 – New architectures will create other opportunities

• NAND is **NOW**
 – 3D XPoint is coming soon

• Performance drives need for new layers

• New layers will drive new processor architectures
 – Application programs will also adapt
Thank You!

Tom Coughlin, Coughlin Associates
Jim Handy, Objective Analysis