
PRESENTATION TITLE GOES HERE Tom Talpey 
Microsoft 

Storage Architect 

Going Remote at Low Latency: a Future 
Networked NVM Ecosystem 

 

JANUARY 20, 2016, SAN JOSE, CA 



Problem Statement 

Provide applications with remote access to Non-
Volatile/Persistent Memory storage at ultra-low latency 
Examine storage protocol and RDMA protocol 
extensions in support of applications’ workload 

2 



RDMA-Aware Storage 
Protocols 

Ecosystem – Enterprise / Private Cloud-capable storage 
protocols 

Scalable, manageable, broadly deployed 
Provide authentication, security (integrity AND privacy) 
Natively support parallel and highly available operation 

SMB3 with SMB Direct 
NFS/RDMA 
iSER 
Others exist 

3 



Storage Latencies Decreasing 

Write latencies of storage 
protocols (e.g. SMB3) today 
down to 30-50us on RDMA 

Good match to HDD/SSD 
Stretch match to NVMe 
PM, not so much  

Storage workloads are 
traditionally highly parallel 

Latencies are mitigated 
But workloads are changing:  

Write replication adds a latency 
hop 
Write latency critical to reduce 
 

 

Technology Latency 
(high) 

Latency 
(low) 

IOPS 

HDD 10 msec 1 msec 100 

SSD 1 msec 100 µsec 100K 

NVMe 100 µsec 10 µsec (or 
better) 

500K+ 

PM < 1 µsec (~ memory 
speed) 

BW/size 
(>>1M/DIMM) 

Orders of magnitude decreasing 

4 



Writes, Replication, Network 

… 

Write 
Commit 

Erasure Code 

Writes (with possible erasure coding) 
greatly multiplies network I/O 
demand 

Small, random 
Virtualization, Enterprise applications 

MUST be replicated and durable 
A single write creates multiple network 
writes 

The “2-hop” issue 
All such copies must be made 
durable before responding 

Therefore, latency of writes is critical! 

5 

Reads 
Small, random are latency sensitive 
Large, more forgiving 

But recovery/rebuild are interesting/important 



APIs and Latency 

APIs also shift the latency requirement 
Traditional Block and File are often parallel 
Memory Mapped and PM-Aware APIs not so parallel 

Effectively a Load/Store expectation 
Memory latency, with possibly expensive Commit 
Local caches can improve Read (load) but not Write 
(store/remotely durable) 

6 



Many Layers Are Involved 

Storage layers 
SMB3 and SMB Direct 
NFS, pNFS and NFS/RDMA 
iSCSI and iSER 

RDMA Layers 
iWARP 
RoCE, RoCEv2 
InfiniBand 

I/O Busses 
Storage (Filesystem, Block e.g. SCSI, SATA, SAS, …) 
PCIe 
Memory 

7 



RDMA Transfers – Storage Protocols Today 

 Direct placement model 
(simplified and optimized) 
 Client advertises RDMA region in 

scatter/gather list 
 Server performs all RDMA 

 More secure: client does not 
access server’s memory 

 More scalable: server does 
not preallocate to client 

 Faster: for parallel (typical) 
storage workloads 

 SMB3 uses for READ and 
WRITE 
 Server ensures durability 
 NFS/RDMA, iSER similar 

 Interrupts and CPU on both sides 

8 

RDMA Read (with local invalidate) 

Send (with invalidate) 

Send 

DATA 

RDMA Write 
DATA 

Send (with invalidate) 

Send 

READ 

WRITE 

Client Server 

Register 

(Register) 

Register 



Latencies 

Undesirable latency contributions 
Interrupts     , work requests 

Server request processing 
Server-side RDMA handling 

CPU processing time 
Request processing 

I/O stack processing and buffer management 
To “traditional” storage subsystems 

Data copies 

Can we reduce or remove all of the above to PM? 
 

9 



RDMA Push Mode 
(Schematic) 

 Enhanced direct placement model 
 Client requests server resource of file, memory region, etc 

 MAP_REMOTE_REGION(offset, length, mode r/w) 
 Server pins/registers/advertises RDMA handle for region 
 Client performs all RDMA 

 RDMA Write to region 
 RDMA Read from region (“Pull mode”) 
 No requests of server (no server CPU/interrupt) 

 Achieves near-wire latencies 
 Client remotely commits to PM (new RDMA operation!) 

 Ideally, no server CPU interaction 
 RDMA NIC optionally signals server CPU 
 Operation completes at client only when remote 

durability is guaranteed 

Client periodically updates server via master 
protocol 
 E.g. file change, timestamps, other metadata 

Server can call back to client 
 To recall, revoke, manage resources, etc 

Client signals server (closes) when done 
10 

RDMA Read 

Send 

Send 

DATA 

RDMA Write 
DATA 

Send 

Send 

Remote Direct Access 

Unregister 

Register 

RDMA Write 
DATA 

RDMA Commit (new) 

Push 

Pull 



Storage Layers Push Mode 
(hypothetical) 

SMB3 (hypothetical) 
Setup – a new create context or FSCTL, 
registers and takes a lease 
Write, Read – direct RDMA access by client 
Commit – Client requests durability, 
SMB2_FLUSH-like processing 
Callback – Server manages client access, 
similar to oplock/lease break 
Finish – Client access complete, close or 
lease return 

NFSv4/RDMA (hypothetical) 
Setup – new NFSv4.x Operation, registers 
and offers delegation (or pNFS layout) 
Write, Read – direct RDMA access by client 
Commit – Client requests durability, 
NFS4_COMMIT-like processing 
Callback – via backchannel, Similar to current 
delegation or layout recall 
Finish – close or delegreturn/layoutreturn 

iSER (very hypothetical) 
Setup – a new iSER operation – registers and 
advertises buffers 
Write – a new Unsolicited SCSI-In operation 

Implement RDMA Write within initiator to target 
buffer 

– No Target R2T processing 
Read – a new Unsolicited SCSI-Out operation 

Implement RDMA Read within initiator from 
target buffer 

– No Target R2T processing 
Commit – a new iSER / modified iSCSI operation 

Perform Commit, via RDMA with optional Target 
processing 
Leverage FUA processing for signaling if 
needed/desired 

Callback – a new SCSI Unit Attention 
??? 

Finish – a new iSER operation 

11 



RDMA protocols  

 Need a remote guarantee of Durability 
 RDMA Write alone is not sufficient for this semantic 

 Completion at sender does not mean data was placed 
 NOT that it was even sent on the wire, much less received 
 Some RNICs give stronger guarantees, but never that data was stored 

remotely 
 Processing at receiver means only that data was accepted 

 NOT that it was sent on the bus 
 Segments can be reordered, by the wire or the bus 
 Only an RDMA completion at receiver guarantees placement 

 And placement != commit/durable 

 No Commit operation 
 Certain platform-specific guarantees can be made 

 But the remote client cannot know them 
 E.g. RDMA Read-after-RDMA Write (which won’t generally work) 

12 



RDMA protocol extension 

 Two “obvious” possibilities 
 RDMA Write with placement acknowledgement 

 Advantage: simple API – set a “push bit” 
 Disadvantage: significantly changes RDMA Write semantic, data path (flow 

control, buffering, completion). Requires creating a “Write Ack”. 
 Requires significant changes to RDMA Write hardware design 

 And also to initiator work request model (flow controlled RDMA Writes would 
block the send work queue) 

 Undesirable 

 RDMA “Commit” 
 New operation, flow controlled/acknowledged like RDMA Read or Atomic 
 Disadvantage: new operation 
 Advantage: simple API – “flush”, operates on one or more regions (allows 

batching), preserves existing RDMA Write semantic (minimizing RNIC 
implementation change) 

 Desirable 

13 



RDMA Commit (concept) 

RDMA Commit 
New wire operation 
Implementable in iWARP and IB/RoCE 

Initiating RNIC provides region list, other commit parameters 
Under control of local API at client/initiator 

Receiving RNIC queues operation to proceed in-order 
Like RDMA Read or Atomic processing currently 
Subject to flow control and ordering 

RNIC pushes pending writes to targeted regions 
Alternatively, NIC may simply opt to push all writes 

RNIC performs PM commit 
Possibly interrupting CPU in current architectures 
Future (highly desirable to avoid latency) perform via PCIe 

RNIC responds when durability is assured 
 14 



Other RDMA Commit 
Semantics 

Desirable to include other semantics with Commit: 
Atomically-placed data-after-commit 

E.g. “log pointer update” 

Immediate data 
E.g. to signal upper layer 

Entire message 
For more complex signaling 
Can be ordinary send/receive, only with new specific ordering requirements 

Decisions will be workload-dependent 
Small log-write scenario will always commit 
Bulk data movement will permit batching 
 

15 



Local RDMA API extensions 
(concept) 

New platform-specific attributes to RDMA registration 
To allow them to be processed at the server *only* 
No client knowledge – ensures future interop 

New local PM memory registration 
Register(region[], PMType, mode) -> Handle 

PMType includes type of PM 
– i.e. plain RAM, or “commit required”, or PCIe-resident, or any 

other local platform-specific processing 
Mode includes disposition of data 

– Read and/or write 
– Cacheable after operation (needed by CPU on data sink) 

Handle is processed in receiving NIC under control of original 
Mode 

16 



Local RDMA API Extensions 

Transparency is possible when upper layer provides 
Completions (e.g. messages or immediate data) 

Commit to durability can be piggybacked by data sink upon 
signaling 
Upper layer may not need to explicitly Commit 
Dependent on upper layer and workload 

Can apply to RDMA Write with Immediate 
Or … ordinary receives 

Ordering of operations is critical: 
Such RDMA Writes cannot be allowed to “pass” durability 

Therefore, protocol implications exist 

17 



Platform-specific Extensions 

PCI extension to support Commit 
Allow NIC to provide durability directly and efficiently 
To Memory, CPU, PCI Root, PM device, PCIe device, … 
Avoids CPU interaction 
Supports strong data consistency model 

Performs equivalent of: 
CLFLUSHOPT (region list) 
PCOMMIT 

 
Or if NIC is on memory bus or within CPU complex… 

Other possibilities exist 

18 



Latencies (expectations) 

 Single-digit microsecond remote Write+Commit 
 Push mode minimal write latencies (2-3us + data wire time) 
 Commit time NIC-managed and platform+payload dependent 

 Remote Read also possible 
 Roughly same latency as write, but without commit 

 No server interrupt 
 Once RDMA and PCIe extensions in place 

 Single client interrupt 
 Moderation and batching can reduce further when pipelining 

 Deep parallelism with Multichannel and flow control 
management 

19 



Open questions 

Getting to the right semantic? 
Discussion in multiple standards groups (PCI, RDMA, Storage, …) 
How to coordinate these discussions? 
Implementation in hardware ecosystem 
Drive consensus from upper layers down to lower layers! 

What about new API semantics? 
Does NVML add new requirements? 
What about PM-aware filesystems (DAX/DAS)? 

Other semantics – or are they Upper Layer issues? 
Authentication? 
Integrity/Encryption? 
Virtualization? 

20 


	Slide Number 1
	Problem Statement
	RDMA-Aware Storage Protocols
	Storage Latencies Decreasing
	Writes, Replication, Network
	APIs and Latency
	Many Layers Are Involved
	RDMA Transfers – Storage Protocols Today
	Latencies
	RDMA Push Mode (Schematic)
	Storage Layers Push Mode (hypothetical)
	RDMA protocols	
	RDMA protocol extension
	RDMA Commit (concept)
	Other RDMA Commit Semantics
	Local RDMA API extensions (concept)
	Local RDMA API Extensions
	Platform-specific Extensions
	Latencies (expectations)
	Open questions

