VM Futures Panel: Are We Near the Beginning of a New Solid State Epoch, or Is That Just a Big <u>Fireball in the Sky?</u>

- Moderator: Tom Coughlin, Coughlin Associates
- Panelists:
 - Dave Eggleston, Intuitive Cognition Consulting
 - <u>Barry Hoberman, Spin Transfer Technologies</u>
 - <u>Tanmay Kumar, Crossbar</u>
 - Joseph O'Hare, Everspin
 - Saul Zales, Contour Semiconductor

STORAGE INDUSTRY

Realizing the Benefits of the Convergence of Storage and Memory

JANUARY 20, 2015, SAN JOSE, CA

David Eggleston Intuitive Cognition Consulting Principal Roadmap for New NVM

- Planar NAND scaling is drawing to a close
- 3D NAND succeeds planar NAND (until 2025)
- So how and where do new NVM technologies fit in?
- Role for new NVM before 2025?
- Requirements for new NVM on the memory bus:
 - 100's of GB's to TB's of capacity (per module)
 - Latencies in the high 100's of ns to low us
 - Cost <50% of DRAM
 - Bring non-volatility into the cache coherent network

Latency, Latency, Latency

- The best opportunity for new NVM over the next 10 years lies <u>between</u> NAND and DRAM, with latency in the low to sub microsecond range.
- With system changes, new NVM moves into the working memory space.

New NVM Contenders for this Memory Bus Opportunity Gap

Technologies:

- RRAM
 - > 1S-1R Conductive Bridging RAM (CBRAM)
 - Small cell size, but endurance limitations
 - > 1R Oxide RRAM (OxRAM)
 - Will be used for 3D data storage in 2021+
 - Dense, but too slow for low latency memory
- PCM
 - > 1S-1R Phase Change Memory
 - Scaling challenges, fallen out of favor?
- ST-MRAM
 - > 1T-1MTJ ST-MRAM
 - Great performance and endurance, but cell size limitations

- Lots of money to be made on NAND and DRAM.
- Investments are in 3D NAND manufacturing, not in new NVM manufacturing.
- Intense material science, takes a very long time.
- Process integration is challenging and expensive.
- New NVM will be imperfect memory, and will require controller technology
- New system architectures that accept memory nondeterministic behavior must be deployed.

Don't want to wait?

- Combinations of DRAM and Flash on modules solve some of these problems today!
 - NVDIMM-N, NVDIMM-F both available now
- Expect new NVM (low latency memory) to arrive on modules by 2018.
- SNIA NVM-PTWG is paving the way with the programming models – so applications can be aware and take advantage of non-volatility in the system.

Thank you!

DAVID EGGLESTON INTUITIVE COGNITION CONSULTING DAVE@IN-COG.COM

Spin Transfer Technologies An Allied Minds Company

Orthogonal Spin Transfer (OST) A Better Approach

SNIA NVM Summit January 2015

Company Background

 \triangleright

History

Technology

- Formed in 2007 by Allied Minds and NYU to commercialize Orthogonal Spin Transfer (OST) MRAM research led by Professor Andrew Kent
- In 2012, raised \$36 million financing, plus additional \$70 million in 2014, from Allied Minds, Invesco, & WIM, and established Silicon Valley headquarters

- OST-MRAM is a disruptive innovation in the field of spin transfer MRAM devices and offers advantages over other MRAM
- Higher speed, lower cost, lower power consumption, higher reliability, and enhanced lithographic scalability

Opportunity

- Served Market
 Opportunity of \$150
 Billion in 2015
- Targeted as a replacement for DRAM, SRAM or flash memory

 \succ

Markets in storage
systems, mobile
devices, computing,
microcontrollers and
SOCs in standalone or
embedded
configurations

OST MRAM Combining Orthogonal Spin Filter with Collinear MTJ

'Spin Balanced' Orthogonal Spin Transfer MTJ Structure

Not to scale

Magnetic Tunnel Junction with Collinear Spin Filter

Challenge getting the 'write' started in Collinear Spin Transfer

Collinear Spin Transfer – In a Performance Box

Write Error Rate (WER) →Cost, i.e. ECC Write Voltage \rightarrow Power and Endurance

Write Pulse Width
→Performance and Power

Magnetic Tunnel Junction with Orthogonal Spin Filter

Magnetic data...'left' or 'right'

Writing - 'orthogonal spin filter' @ high current

Strong perpendicular component to 'spin polarization field' *instantaneously* starts switching of magnetic data in free layer

"Reference" Layer Tunnel Barrier "Free" Layer

Orthogonal Spin Polarization Filter

Not to scale

OST Technology Benefits And Advantages

Crossbar Resistive RAM (RRAM)

Enabling New Generation of Extremely Dense and High Performance Solid-State Storage

Tanmay Kumar VP Device Engineering

www.crossbar-inc.com

© Crossbar, Inc. All rights reserved

From storage solutions to memory cell technology Peeling the onion of storage solutions

Storage solution *e.g. 24 SSDs in 2U server*

Solid-State Drives e.g. NVMe controller + DRAM + 8 memory chips

Memory chips e.g. 8 dies of 128Gbit 3D-NAND TLC

Memory cell technology e.g. Flash, RRAM, MRAM

2 Confidential

Challenges in Flash scalability path

- Information storage in Flash is based on charge density (C/cm²)
- At 20nm, ~100 electrons are stored in the FG (ΔVt = 1V)
- Losing a few electrons can cause severe reliability issues
- 3D Flash manufacturing challenges impact cost (2x Fab cost)
- Scaling causes exponentially increasing BER, reduced reliability and cycling and deteriorating performances

3 Confidential © Crossbar, Inc. All rights reser

Flash Technology is Running out of Steam

Technology Process Nodes

3D Flash Manufacturing Challenges

The investment in a 100k wpm 32 layer 3D NAND fab is 80-100% or more than a similar sized 16nm 2D NAND fab
 Forward Insights

3D NAND will replace 2D by 2016 3D NAND is already facing same scalability challenges as planar NAND

4 Confidential

Long-term Scalability Path with Crossbar RRAM

- CMOS Fab friendly materials and process
- Standard semiconductor manufacturing equipment
- Back-End-Of-Line standard CMOS integration
- RRAM layer(s) on top of CMOS logic wafers

5

- Information is stored in the form of metallic nano-filament in a nonconducting layer
- Below 10nm, on/off current ratio exceeds 10,000x
- Increasing on/off ratio enables reliable scaling path options: increasing memory effect with reduced operating voltage and faster switching
- Scaling improves increased on/off ratio therefore improved reliability

Crossbar RRAM Proven Advantages vs. NAND Flash

Characteristics	NAND	Crossbar RRAM	Comments
Effective Cell Size (SLC)	5.44F ²	4.28F ²	RRAM provides better array efficiency and smaller die size
Technology Scalability	Severe limitations below 20 nm	Scales <10nm	Scales since it is filament based memory
Page Size	8~32KBytes	2KBytes	Smaller page sizes improves system performance
Read Latency	50~75us	20ns Embedded 5us Mass Storage	RRAM supports code execution
Page Program	2.2ms per 16KBytes	16us per 2KBytes 128us per 16KBytes	RRAM has faster performance
Erase Block	10ms	Not Applicable	RRAM Improves system performance
Byte Program	Not Available	Available	RRAM Improves system performance
RBER	1E-03 ~ 1E-02	< 1E-06	RRAM scales without performance degradation
Data Retention	1 year	10 years	RRAM has significant advantages in retention
Endurance	<3K ~ <1K cycles	10K cycles	RRAM has significant advantages in endurance cycles
Process Complexity	Complex	Simpler	RRAM is stacked on standard
	FEOL. Periphery High Voltage transistors do not scale	BEOL Compatible with CMOS tech scaling	integrated and scale

Crossbar RRAM Ready for Commercialization

low power 3D Resistive RAM to market

7 Confidential © Crossbar, Inc. All rights reserv

MRAM TO THE MAINSTREAM

SNIA NVM Summit January 20, 2015

January 2015

Memory Industry Challenge, Everspin Solution, Market, & Customers

TECHNOLOGIES The MRAM Company

SNIA NVM Summit 1/20/2015

ST-MRAM Design-In Ecosystem

Ramping to Production with ST-MRAM

Mangstor accelerates Enterprise *ny* Storage devices with ST-MRAM from Everspin

Mangstor

Buffalo memory announced SATA III SSD with ST-MRAM cache

BUFFALO

- Delivered *NV*DIMM modules in a FPGA based evaluation platform
- Enabling system design with ST-MRAM compatible DDR3 controllers
 - Cadence Denali DDR3 supports Everspin ST-MRAM
 - Altera FPGA DDR3 controller available
 - Accelerated PCIe / NVMe Development through SMART
 - Working with major SSD controller IP providers and microprocessor solutions

SNIA NVM Summit 1/20/2015

ST-MRAM Use Cases

- Persistent DRAM for Storage Applications
 - Write Buffer for Flash Arrays/SSD
 - Small buffer of 40MB to 128MB provides inherent protection of data not committed to Flash
 - Table storage
 - RAID Cache
 - 512MB to 1GB of persistent write cache
 - Hybrid memory with DRAM on DDR3 or DDR4 channel
 - Storage Server Cache -1GB/4GB/8GB as ST-MRAM Gigabit+ chips emerge
 - Critical metadata, last write protection, fast reboot from the memory channel
 - Inherent NVDIMM without SuperCap or backup routine
 - Hybrid memory system ST-MRAM + DRAM, OS can use memory as storage
- Enterprise HDD data protection on power loss
 - **\square** Serial interface to μ P/SoC with very fast writes to capture data in flight

SNIA NVM Summit 1/20/2015

Confidential Information, Slide 6

THANK YOU

1/20/2015

SNIA NVM Summit

STORAGE INDUSTRY

Realizing the Benefits of the Convergence of Storage and Memory

JANUARY 20, 2015, SAN JOSE, CA

Saul Zales Contour Semiconductor President & CEO DTM™ Technology– Driving NVM Economics

- Founded in 2001
- 1st VC Funding in 2004
- Focused on Delivering Streamlined NVM
- N. Billerica, MA & San Jose, CA
- 3rd Generation Development 4Gb @ 52nm

- DTM = Diode Transistor Memory
- Innovative Low-Mask Count Architecture
- High Density NAND-like Memory
- Granular Cross-Point Array
- Proven Phase-Change Technology

- Epi Diode: 4F² Cell Size, Density
- Efficient Memory Cell: Very Low iReset
- Streamlined Architecture: Reduced CapEx
- Now Debugging 4Gb Component

Contour PCM Architecture – Big Leap Forward

	Contour Semi	Micron	
Technology Node	45/52nm	45/52nm	
# of Masks	16→14	>35??	
Select Device	Epi Diode	BJT	
lreset	35-100uA	200-400uA	
Density	4Gb	IGb	
Die Area/Gb	30mm ² /Gb	36mm ² /Gb	
Interface	Metallization GST Confined Cell Epitaxial Diode	LPDDR Mushroom- type"wall cell" Heater Connection to BJT	
	4x the Density, 3.3x the Area <1/4 Ireset, <1/2 the Masks		

Streamlining Production Drives NVM Economics

