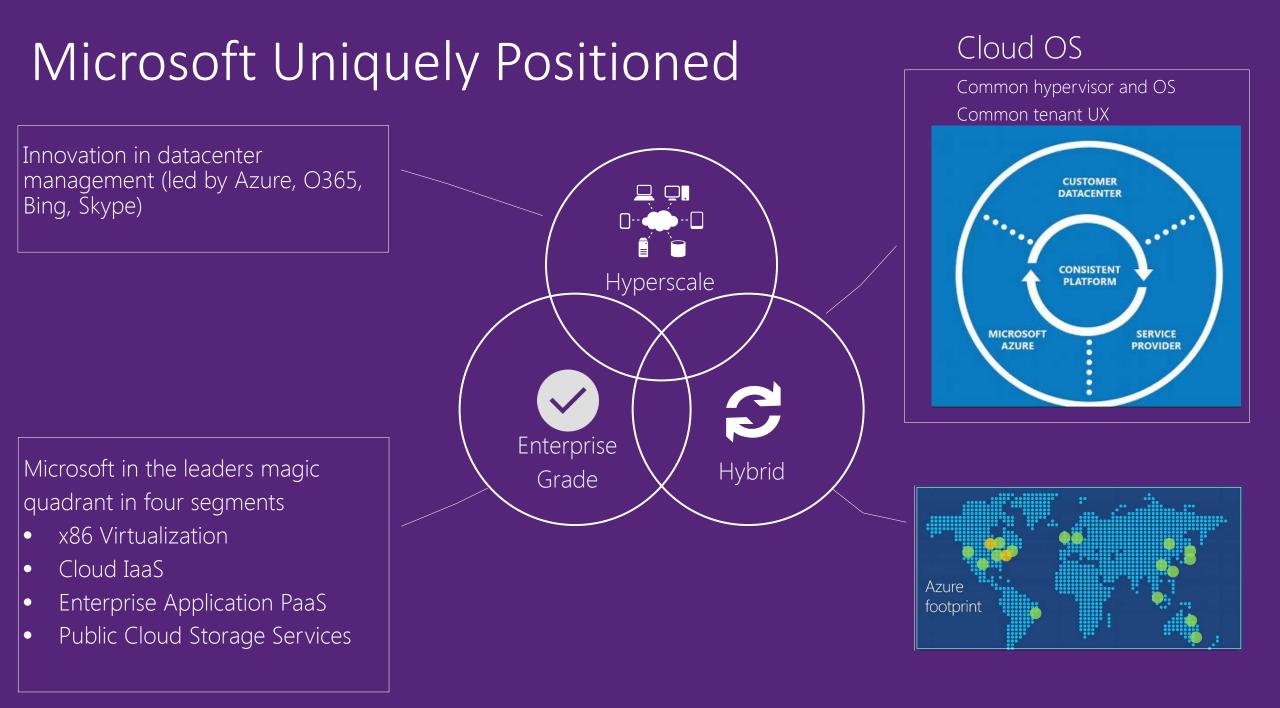
Bringing the Public Cloud to Your Data Center

Jim Pinkerton Partner Architect Lead 1/20/2015 Microsoft Corporation

A Dream...


- Hyper-Scale Cloud efficiency is legendary
 - Reliable, available services using high volume, failure prone, hardware
- But... enterprises do not operate at the same scale

If only I could have cloud efficiency for ... Networking Storage Compute Management ...in my enterprise/SP

200+ Cloud Services

1+ billion customers · 20+ million businesses · 90+ markets worldwide

But what is a "cloud"?

- A new paradigm for managing servers

• Provides tenant services

- IaaS solution host tenant VMs
- PaaS solution host tenants on "less than a VM"
- SaaS solution multi-tenant end-user services

• Extreme computing

- Extreme virtualization compute, networking, storage
- Extreme automation
 - Tenant self-service
 - Self-healing fabric
- Extremely efficient use of high-volume hardware
- Extreme dynamic scaling of services

Requirement: Software Defined Everything

- Integrated multi-machine management
 - Tenant self service
 - "Fabric" management networking, compute, storage
- Software Defined Everything
 - Virtualized
 - Networking each tenant believes they are on a private network
 - Storage each tenant believes they own all the storage resources
 - Compute each tenant believes they own the server
 - Make tenant services reliable, scalable, available ... on top of high volume, fault prone hardware

But SDI requires a lot of work to put the pieces together

Microsoft Cloud Platform System - powered by Dell Azure-consistent Cloud in a Box

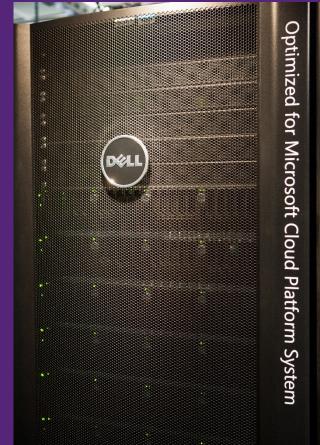
Microsoft

Windows Server 2012 R2, System Center 2012 R2, Windows Azure Pack

Microsoft-designed architecture based on Public Cloud learning

Microsoft-led support & orchestrated updates

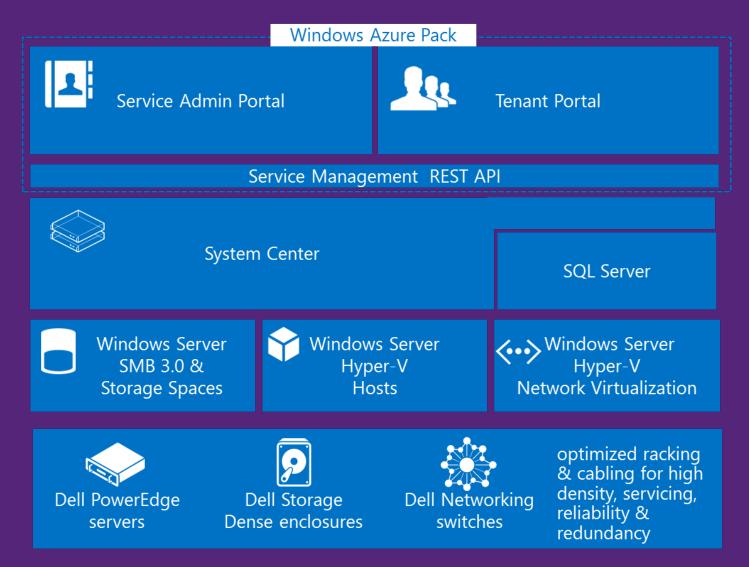
Optimized run-books for Microsoft applications


Dell PowerEdge servers Dell dense Storage enclosures Dell Networking switches Tightly integrated components

Microsoft-led support & orchestrated updates

Built on standard, high volume hardware

pre-packaged, pre-wired


standard servers, switches

JBODs

Cloud Platform System - Capabilities

- Pre-deployed infrastructure
 - Switches, load balancer, storage, compute, network edge
 - N+2 fault tolerant (N+1 networking)
- Pre-configured as per best practices
- Integrated Management
 - Configure, deploy, patching
 - Monitoring
 - Backup and DR
 - Automation
- Up to 8000 VM's* and 1.1 PB of total storage
- Optimized deployment and operations for Microsoft and other standard workloads

* VM Topology - 2vCPU, 1.75 GB Ram, 50 GB Disk

CPS – Cloud in a Box

Per Rack (1-4 racks)

512 Cores8TB RAM262 TB usable storage

1360 Gb/s internalrack connectivity560 Gb/s inter-rackconnectivity

60 Gb/s external

2322 Lbs 42U 16.6 KW Maximum

Azure Consistent

- Same tenant self service portal integrated with SDN/SDS/SDC Same management APIs
- Same extremely efficient packing of compute and storage

Software Defined Compute (SDC)

Virtualized compute (virtual cores, virtual memory, etc)

Software Defined Networking (SDN)

Hyper-V Network Virtualization overlay network for isolation Integrated load balancer for dynamic service scaling

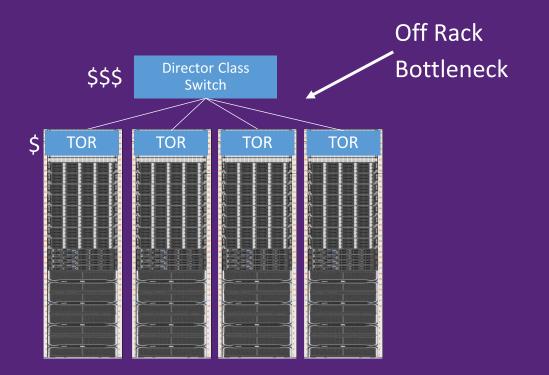
Software Defined Storage (SDS)

Reliable, Available, Servicable storage on high volume hardware JBOD based storage

Advanced storage configurations (dedup, tiering, write-back-cache, SMB3)

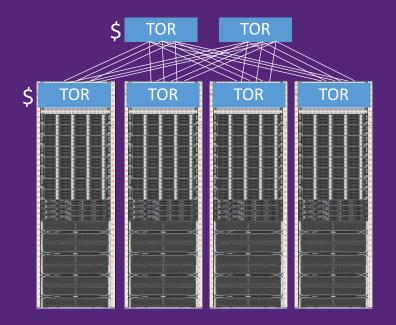
CPS – An Azure Consistent Innovative Architecture

- Same hypervisor
 - In CPS, all management functions have been virtualized


- IaaS and PaaS solution
 - Azure Portal
 - Azure Web Sites

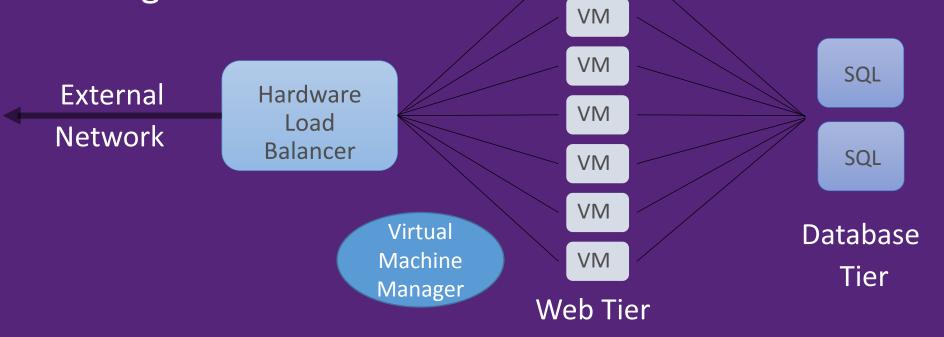
- Efficient use of hardware
 - Efficient packing of VMs
 - Efficient packing of storage
 - State of the art network offloads
- Dynamic scaling
 - Dynamic VM scaling
 - Integrated load balancer
 - Incremental Hardware scaling

Flat Network – Efficient Resource Packing


Traditional Deployment

- Within rack: 1360 gb/sec
- Off-rack typically 10-20 gb/sec
- VM and storage placement is critical
 - Orphaned resources are common

CPS Deployment


- Flat network between racks
 - 560 gb/sec off-rack connectivity
- Equal Cost Multi-Path Routing (ECMP)
 - Network fault tolerance
- VMs and storage can be placed anywhere resources are available

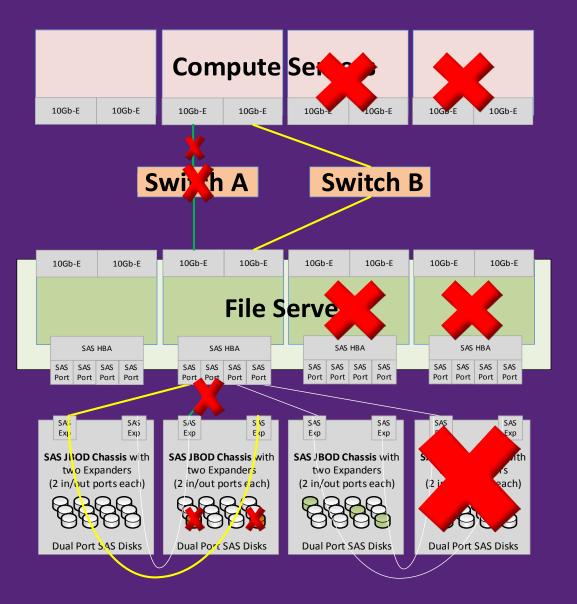
Dynamic Scaling

- VM Role enables dynamic VM scaling
- Load Balancer automatically reconfigured as VMs scale

VM Role Instance "ResourceDefinition": { "ScaleOutSettings": { "InitialInstanceCount": "1", "MaximumInstanceCount": "5", "MinimumInstanceCount": "1", "UpgradeDomainCount": "1" },

VM

Optimized for Enterprise and Hosters


- Low operational overhead
 - Transparent patching
 - Integrated management
 - Integrated and tested at full scale

Cloud Reliability: Cloud Operations Simulation: Storage 1 year in 7 days		
Cloud Learnings	Profile	Metric
 Design for loosely coupled system > Validate E2E Fault Tolerance → MTTR Continuous monitoring and measurements TOPOLOGY & TENANT WORKLOADS CPS Full Rack or Stamp Configuration laaS VM Roles & variety workloads TRIGGER FAULTS & ADMIN ACTIONS Actions: Deploy, Live Migrate, VM Meta Ops CSU Faults: Patching, Node drain/crash SSU Actions: Rebuilds, Backup, Tiering SSU Faults: Power, NIC, HBA, JBOD MEASURE SUCCESS CRITERIA / SLA Zero downtime for tenant workloads Failover within minutes; zero app errors Meet data consistency & resiliency SLA 	Cloud Topology	Tenant VMs: 2000 VM Profile: 1 vCPU, 1.75GB Compute Nodes: 30 Storage Nodes: 4 (SOFS+SPACES)
	Failures: Compute Node Storage Node JBOD Power Shared Disk NIC, Cable, Switch SAS HBA & Cable	376 node drain & failovers 244 unplanned failovers 1 JBOD failure per day 2 drive failures per pool per day 28 NIC/Cable & 2 Switch failures 8 SAS Cable Pulls & 2 HBA failures
	Tenant Workloads & SLA VM Live Migrations Storage Migrations	Variety workloads always running SLA: Zero impact on workloads SLA: Zero IO errors or timeouts SLA: Failovers within a minute 10,152 VMs live migrated 5,734 VMs storage migrated

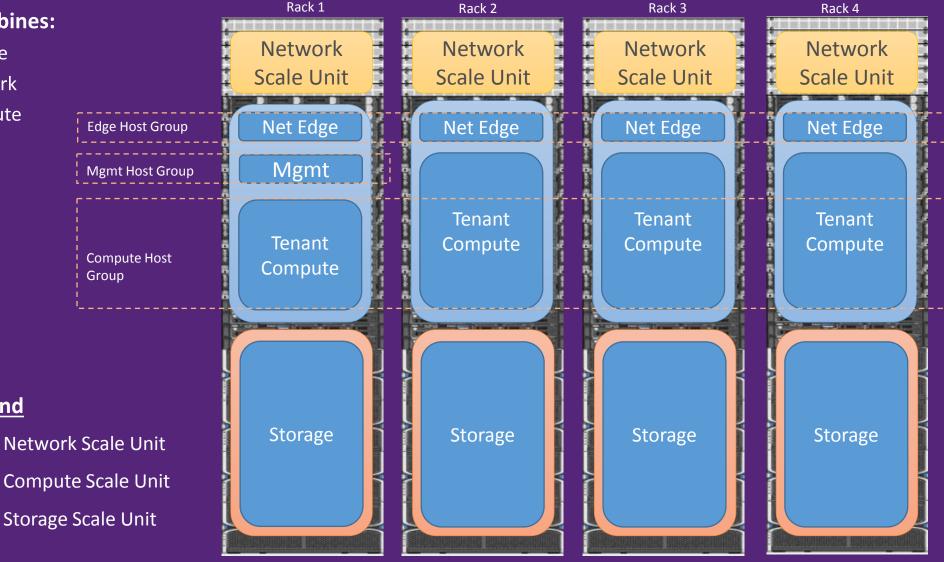
• Converged Infrastructure

- Storage, Compute, Networking, Management
- Highly fault tolerant
 - N+2 for compute and storage
 - N+1 for networking

Highly Fault Tolerant

- N+2 Fault Tolerant for
 - HDD and SSD
 - Storage Servers
 - Compute Servers
- N+1 Fault Tolerant for:
 - SAS network (cable, HBA)
 - JBOD
 - Ethernet network (cable, switch)

Illustrative of the CPS Architecture All links not shown for clarity


Converged Infrastructure

Converged Solution Combines:

- Software Defined Storage
- Software Defined Network
- Software Defined Compute

Legend

• Integrated Management

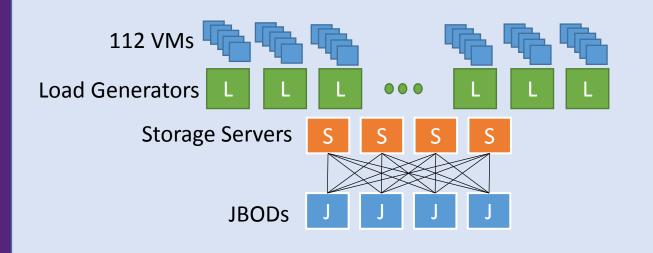
Storage Scale Unit (SSU) Performance - Reads

Test Configuration

Load: 112 VMs, on 14 servers generating load
Diskspd Load generator in each VM, single threaded
Random 4 KB IO, using RDMA offload NICs
Single SSU (4 servers),
14* tenant volumes, 3-way mirror
2 pools, 20 SSD per pool (capacity of 2 in reserve)

Spaces tiering placed all IOs in SSD Tier

Random 4K Read Performance - 112 VMs 1,400,000 1,200,000 1,000,000 (ms) 1,013,721 800,000 IOPS encv 600.000 IOPS 400,000 Avg Read Latency 0.90 200,000 Ω 112 224 896 1792 3584 448 Aggregate Request Depth (112 VMs x Per VM Depth)


Variables

Queue depth (number of outstanding IOs per VM) Total IO queued to SSU is 112*QD

Single SSU Results (IOPs, Latency)

100% Read (non-saturated) 1M IOPs, queue depth of 8 per VM, 0.86 ms avg latency, 4 ms 95th percentile

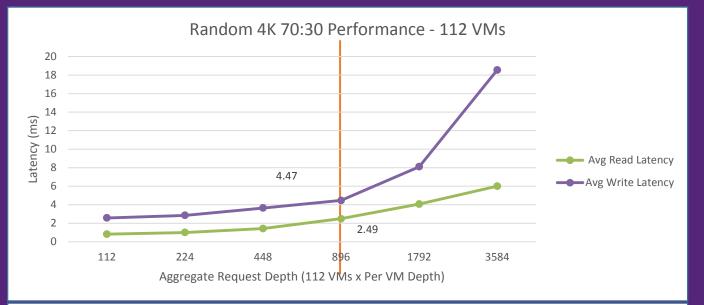
*All of the data volumes available for tenant workloads

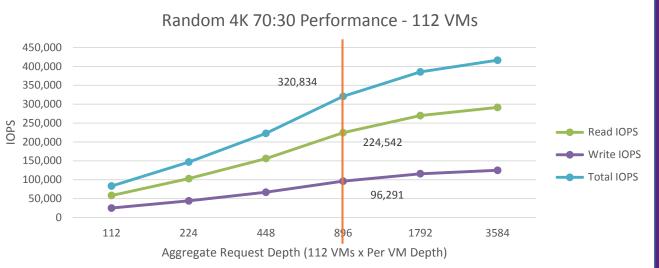
Storage Scale Unit (SSU) Performance – Read/Write

Test Configuration

Load: 112 VMs, on 14 servers generating load
Diskspd Load generator in each VM, single threaded
Random 4 KB IO, using RDMA offload NICs
Single SSU (4 servers),
14* tenant volumes, 3-way mirror
2 pools, 20 SSD per pool (capacity of 2 in reserve)

Spaces tiering placed all IOs in SSD Tier


Variables


Queue depth (number of outstanding IOs per VM) Total IO queued to SSU is 112*QD

Single SSU Results (IOPs, Latency)

70%/30% Read/Write (non-saturated) 321K IOPs, queue depth of 8 per VM Reads: 2.5 ms avg, 5.0 ms 95th percentile Writes: 4.5 ms avg, 37.4 ms 95th percentile

*All of the data volumes available for tenant workloads

What's Next? The Cloud Marches on

• Continue to make Services reliable, scalable, available ... on top of high volume, fault prone hardware

- Some cutting edge component technologies of interest
 - Storage NVME, NVDIMM, ultra-high capacity hard drives
 - Networking 40 gigabit Ethernet, new offloads, advanced network topologies
 - Next generation isolation compute, network, storage
 - Next generation RESTful management

• See Microsoft's Open Compute contribution "Open Cloud Server" (OCS)