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Persistent Memory (PM) 
is a type of Non-Volatile Memory (NVM) 
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 Disk-like non-volatile memory 
 Appears as disk drives to applications 
 Accessed as traditional array of blocks 

 Memory-like non-volatile memory (PM) 
 Appears as memory to applications 
 Applications store data directly in byte-addressable memory 
 No IO or even DMA is required 
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The SNIA NVM Programming Model 
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 Version 1.1 approved by SNIA in March 2015 
 http://www.snia.org/tech_activities/standards/curr_standards/npm 

 Expose new block and file features to applications 
 Atomicity capability and granularity 
 Thin provisioning management 

 Use of memory mapped files for persistent memory 
 Existing abstraction that can act as a bridge 
 Limits the scope of application re-invention 
 Open source implementations available 

 Programming Model, not API 
 Described in terms of attributes, actions and use cases 
 Implementations map actions and attributes to API’s 

http://www.snia.org/tech_activities/standards/curr_standards/npm
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Programming Model Modes 
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 Block and File modes use IO 
 Data is read or written using RAM buffers 
 Software controls how to wait (context switch or poll) 
 Status is explicitly checked by software 

 Volume and PM modes enable Ld/St 
 Data is loaded into or stored from processor registers 
 Processor makes software wait for data during instruction 
 No status checking – errors generate exceptions 
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Block Access NVM 

No Application Functionality Change 
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Implications of the NVM Programming 
Model for Persistent Memory Applications 
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Persistent Memory Modes 
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NVM.PM.VOLUME Mode 
 Software abstraction to OS components for 

Persistent Memory (PM) hardware 
 List of physical address ranges for each PM 

volume 
 Thin provisioning management 

NVM.PM.FILE Mode 
 Describes the behavior for applications 

accessing persistent memory Discovery and 
use of atomic write features 

 Mapping PM files (or subsets of files) to virtual 
memory addresses 

 Syncing portions of PM files to the persistence 
domain 
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Map and Sync 
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 Map 
 Associates memory addresses with open file 
 Caller may request specific address 

 Sync 
 Flush CPU cache for indicated range 
 Additional Sync types 
 Optimized Flush – multiple ranges from user space 
 Optimized Flush and Verify – Optimized flush with read back from media 

 Warning!  Sync does not guarantee order 
 Parts of CPU cache may be flushed out of order 
 This may occur before the sync action is taken by the application 
 Sync only guarantees that all data in the indicated range has been flushed some time before the 

sync completes 
 



2016 Storage  Developer Conference. 

PM Pointers 
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How can one persistent memory mapped data 
structure refer to another? 

 Use its virtual address as a pointer 
 Assumes it will get the same address every time it is memory mapped 
 Requires special virtual address space management 

 Use an offset from a relocatable base 
 Base could be the start of the memory mapped file 
 Pointer includes namespace reference 
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Failure Atomicity 
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 Current processor + memory systems 
 Guarantee inter-process consistency (SMP) 
 But only provide limited atomicity with respect to failure 

 System reset/restart/crash 
 Power Failure 
 Memory Failure 

 Failure atomicity is processor architecture specific 
 Processors provide failure atomicity of aligned fundamental data types 
 Fundamental data types include pointers and integers 
 PM programs use these to create larger atomic updates or transactions 
 Fallback is an additional checksum or CRC 
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Error handling – exceptions instead of status 
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New machine check flow to 
integrate file and PM level 

recovery  

Thread restart required unless 
memory hardware error detection is 

precise, contained and live 

Contained: exact memory location(s) are identified 
Precise: instruction execution can be resumed (RTI) 
Live: reported without restart 

Application gets exception if file level recovery fails  
or backtracking is needed 
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Ongoing Work 
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 Atomicity White Paper 
in Final Review 
Transactional PM Libraries 
 

 Remote Access for HA 
White Paper Published 
High Availability PM - 
Remote Optimized Flush 
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Application Horizons 
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 Inter-Process Atomicity vs. Failure Atomicity 
 References NVM Library 
 PM Data Structures with Intrinsic atomicity  

Log, Block and more 
 Transactions for more complex atomicity 

Multiple Data Structures 
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Atomicity 
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 SNIA PM Remote Access for High Availability 
 Remote access taxonomy 
 Data recoverability requirements 
 Model and requirements for remote flush 

 Multiple industry parties are responding 
 Open Fabrics Alliance 
 InfiniBand Trade Association 
 Several vendors 
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Remote Access 

http://www.snia.org/sites/default/files/technical_work/final/NVM_PM_Remote_Access_for_High_Availability_v1.0.pdf
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 Application centric 
 Vendor neutral 
 Achievable today 
 Beyond storage 

 Applications 
 Memory 
 Networking 
 Processors 
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Rally the industry around a view of NVM that is: 
Role of the NVM Programming Model 

http://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.1.pdf
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Thank You 
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