
2016 Storage Developer Conference.

The SNIA NVM Programming Model

Doug Voigt
Hewlett Packard Enterprise

2016 Storage Developer Conference.

Contents

2

 What and Why
 Implications of the NVM Programming Model

 Map and Sync
 Pointers
 Atomicity
 Exception Handling

 Ongoing Work
 Persistent Memory Data Structures
 High Availability

2016 Storage Developer Conference.

Latency Thresholds Cause Disruption

3

La
te

nc
y

(L
og

)

200 nS

2 uS

HDD SATA
SSD

NVMe
Flash

Persistent
Memory

Context
Switch

NUMA

Min, Max Latencies For
Example Technologies

2016 Storage Developer Conference.

Persistent Memory (PM)
is a type of Non-Volatile Memory (NVM)

4

 Disk-like non-volatile memory
 Appears as disk drives to applications
 Accessed as traditional array of blocks

 Memory-like non-volatile memory (PM)
 Appears as memory to applications
 Applications store data directly in byte-addressable memory
 No IO or even DMA is required

2016 Storage Developer Conference.

The SNIA NVM Programming Model

5

 Version 1.1 approved by SNIA in March 2015
 http://www.snia.org/tech_activities/standards/curr_standards/npm

 Expose new block and file features to applications
 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

http://www.snia.org/tech_activities/standards/curr_standards/npm

2016 Storage Developer Conference.

Programming Model Modes

6

 Block and File modes use IO
 Data is read or written using RAM buffers
 Software controls how to wait (context switch or poll)
 Status is explicitly checked by software

 Volume and PM modes enable Ld/St
 Data is loaded into or stored from processor registers
 Processor makes software wait for data during instruction
 No status checking – errors generate exceptions

2016 Storage Developer Conference.

Block Access NVM

No Application Functionality Change

2016 Storage Developer Conference.

Implications of the NVM Programming
Model for Persistent Memory Applications

2016 Storage Developer Conference.

Persistent Memory Modes

9

Application

PM device PM device. . .

User space

Kernel space

MMU
Mappings

PM-aware
file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware
kernel module

PM device

NVM.PM.VOLUME
mode

NVM.PM.FILE mode

Use with memory-like NVM
NVM.PM.VOLUME Mode
 Software abstraction to OS components for

Persistent Memory (PM) hardware
 List of physical address ranges for each PM

volume
 Thin provisioning management

NVM.PM.FILE Mode
 Describes the behavior for applications

accessing persistent memory Discovery and
use of atomic write features

 Mapping PM files (or subsets of files) to virtual
memory addresses

 Syncing portions of PM files to the persistence
domain

2016 Storage Developer Conference.

Map and Sync

10

 Map
 Associates memory addresses with open file
 Caller may request specific address

 Sync
 Flush CPU cache for indicated range
 Additional Sync types
 Optimized Flush – multiple ranges from user space
 Optimized Flush and Verify – Optimized flush with read back from media

 Warning! Sync does not guarantee order
 Parts of CPU cache may be flushed out of order
 This may occur before the sync action is taken by the application
 Sync only guarantees that all data in the indicated range has been flushed some time before the

sync completes

2016 Storage Developer Conference.

PM Pointers

11

How can one persistent memory mapped data
structure refer to another?

 Use its virtual address as a pointer
 Assumes it will get the same address every time it is memory mapped
 Requires special virtual address space management

 Use an offset from a relocatable base
 Base could be the start of the memory mapped file
 Pointer includes namespace reference

2016 Storage Developer Conference.

Failure Atomicity

12

 Current processor + memory systems
 Guarantee inter-process consistency (SMP)
 But only provide limited atomicity with respect to failure

 System reset/restart/crash
 Power Failure
 Memory Failure

 Failure atomicity is processor architecture specific
 Processors provide failure atomicity of aligned fundamental data types
 Fundamental data types include pointers and integers
 PM programs use these to create larger atomic updates or transactions
 Fallback is an additional checksum or CRC

2016 Storage Developer Conference.

Error handling – exceptions instead of status

13

New machine check flow to
integrate file and PM level

recovery

Thread restart required unless
memory hardware error detection is

precise, contained and live

Contained: exact memory location(s) are identified
Precise: instruction execution can be resumed (RTI)
Live: reported without restart

Application gets exception if file level recovery fails
or backtracking is needed

2016 Storage Developer Conference.

Ongoing Work

2016 Storage Developer Conference.

 Atomicity White Paper
in Final Review
Transactional PM Libraries

 Remote Access for HA
White Paper Published
High Availability PM -
Remote Optimized Flush

15

PM Aware Apps

PM Device

File APIs Ld/St

User

Kernel

PM Aware File
Systems

MMU
Mapp
ings

PM data structure
libraries

Middleware features
e.g. RAID

Recent NVMP TWG Work in Progress

2016 Storage Developer Conference.

Application Horizons

16

Compiler

Until
Recently

Horizon 3:
Languages

Application

File System File System

File System

PM

Application Application

Application
PM Library

File System

PM PM

Disk Driver

Horizon 1:
PM Middleware

Horizon 2:
PM Libraries

SSD

2016 Storage Developer Conference.

 Inter-Process Atomicity vs. Failure Atomicity
 References NVM Library
 PM Data Structures with Intrinsic atomicity

Log, Block and more
 Transactions for more complex atomicity

Multiple Data Structures

17

Atomicity

2016 Storage Developer Conference.

 SNIA PM Remote Access for High Availability
 Remote access taxonomy
 Data recoverability requirements
 Model and requirements for remote flush

 Multiple industry parties are responding
 Open Fabrics Alliance
 InfiniBand Trade Association
 Several vendors

18

Remote Access

http://www.snia.org/sites/default/files/technical_work/final/NVM_PM_Remote_Access_for_High_Availability_v1.0.pdf

2016 Storage Developer Conference.

 Application centric
 Vendor neutral
 Achievable today
 Beyond storage

 Applications
 Memory
 Networking
 Processors

19

Rally the industry around a view of NVM that is:
Role of the NVM Programming Model

http://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.1.pdf

2016 Storage Developer Conference.

Thank You

	The SNIA NVM Programming Model
	Contents
	Latency Thresholds Cause Disruption
	Persistent Memory (PM)�is a type of Non-Volatile Memory (NVM)
	The SNIA NVM Programming Model
	Programming Model Modes
	Block Access NVM
	Implications of the NVM Programming Model for Persistent Memory Applications
	Persistent Memory Modes
	Map and Sync
	PM Pointers
	Failure Atomicity
	Error handling – exceptions instead of status
	Ongoing Work
	Slide Number 15
	Application Horizons
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Thank You

