

Using CDMI to Manage Swift, S3, and Ceph Object Repositories

David Slik NetApp, Inc.

- CDMI (Cloud Data Management Interface) is a RESTful API for accessing and managing cloud storage.
- The major cloud storage APIs are:
 - □ Amazon S3
 - CDMI
 - Microsoft Azure
 - Swift API (part of OpenStack)
- CDMI is widely implemented
 - □ >30 server implementations
 - CDMI gateway for S3, OpenStack support

- 2009: SNIA Cloud Technical Working Group founded to explore API standardization
- 2011: CDMI 1.0 ratified as a US Technical Architecture
 - CDMI 1.0.1 errata released in late 2011
 - CDMI 1.0.2 errata released in mid 2012
- 2012: CDMI 1.0.2 becomes ISO/IEC 17826
- □ 2013: CDMI 1.1 under active development
 - 18 Extensions submitted
- 2015: CDMI 1.1.1 Submitted to ISO/IEC
 - 13 Extensions submitted, 5 incorporated

- Why does CDMI Matter?
 - Simple and easy to implement
 - □ Start with HTTP and add functionality, few mandatory parts
 - Advanced functionality not found in other APIs
 - Provides a foundation for next generation cloud services, such as federation
 - Open industry standard
 - Not controlled by any one vendor, protection against patents
 - Well defined formal standard
 - □ Enables interoperability, testing, and cross-vendor support
 - Widespread government support and adoption

CDMI Standardizes:

- CRUD operations (Create/Read/Update/Delete)
- Data, Container, Queue and Domain objects
- Identity and access control model
- Metadata (including client and vendor extensibility)
- Query and Notifications
- Versioning
- Serialization and Deserialization
- Interoperability with other NAS and cloud protocols

Converged Data Management

- Objects, Files, LUNs, NoSQL databases, and many other types of persistent data entities can all be managed through the Cloud Data Management Interface (CDMI)
- □ This presentation focuses on how CDMI provides a common management interface that sits beside data access interfaces, such as NFS, CIFS, iSCSI, S3, & Swift.
- This is especially valuable for converged storage infrastructure that allows data objects to move between platforms and interfaces (Ceph, Sheepdog, etc)

- What is an object?
 - At a generic level, an object is something that has a name, and represents something that can be manipulated (accessed, managed, etc).
 - Examples include:
 - □ File
 - Directory
 - **LUN**
 - System
 - Snapshot
 - □ Etc.

- What is an namespace?
 - Each object has a name. The organization of these names is known as the namespace.
 - □ Namespaces can be flat (objects in an S3 bucket)
 - □ Namespaces can be hierarchical (files in a file system)
 - □ Namespaces can be arbitrary (graph relationships)
 - Restrictions on allowable names are also important parts of namespaces:
 - □ Reserved characters (such as for hierarchical separators)
 - □ Character set encodings (Unicode)
 - The more restrictive a namespace, the less it is able to accommodate different types of objects

- What is management?
 - Inf. Whatever doesn't fit in the data path.
 - Management operations are applied against objects or sets of objects:
 - Snapshots
 - Migration
 - Permissions
 - □ Etc.

- Putting it all together:
 - The CDMI (Cloud Data Management Interface) provides a superset *namespace* to allow *management* operations performed against cloudresident *objects*.
 - CDMI can sit on top of almost any data repository, be it file systems, block storage systems, even NoSQL systems.

CDMI Namespaces

- CDMI supports arbitrary tree-based hierarchies
 - Superset of Swift, S3, Azure and other cloud namespaces
 - Superset of standard filesystem namespaces
 - Superset of LUN/Zone hierarchies
- CDMI references allow symlink-like cross-tree links
- This allows a single CDMI namespace to encapsulate all of these different data types into a single namespace for management purposes:

Varied Namespace Restrictions

CDMI Object Model

Overlay for File System Model

Overlay for Swift Object Model

Overlay for \$3 Object Model

12

Example of Subset Namespaces

^{*} File-system-like hierarchies can be emulated on top of S3/Swift, but lack much of the operational expressiveness

CDMI Namespace Demonstration

CDMI & AJAX Client Demonstration

CDMI for LUN Management

- Typical management lifecycle
 - LUN creation
 - LUN discovery
 - LUN permissions
 - LUN SLOs
 - LUN exports
 - Taking existing files and exporting them as a LUN
- Others
 - Snapshots, serialization, etc.

CDMI LUN Demonstration

CDMI & AJAX Client Demonstration

CDMI for File Management

- Typical management lifecycle
 - Directory structures
 - File/Directory SLOs
 - Filesystem exports
- Others
 - Snapshots, serialization, etc.

CDMI File System Demonstration

CDMI & AJAX Client Demonstration

To Summarize

- CDMI provides:
 - Ability to view and manage different types of objects in a unified namespace
 - Common management API and approaches
 - A way to bundle file, object and LUNs together for mobility and management
- Extensible to arbitrary management structures

Thank you!

Questions

dslik@netapp.com