
2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

New Hashing Algorithms for Data
Storage

Jason Resch
Cleversafe

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Applications of Hashing

 Hashing is useful generally:
Provides O(1) lookup
Key  Value storage/retrieval

 Could use hashing to decide…
Storage node in storage system or database
Proxy server that has a cache
Task assignment in distributed computing

2

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Hashing in Distributed Systems

 Distributed Storage
 If buckets are “storage nodes”, we can use

hashing so readers and writers select the
same storage locations for the same names

 Distributed Caching
 If buckets are “caching servers”, we can use

hashing to maximize reuse of the same
caching servers for the same URLs

3

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Conventional Hash Table Resize

4

0:

1:

2:

3:

4:

5:

6:

7:

8:

16

374

602

993

700

618

612

975

825

68

580

461

233

353

bucket = hash(key) % num_buckets

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Conventional Hash Table Resize

5

0:

1:

2:

3:

4:

5:

6:

7:

8:

16

374

602

993

700

618

612

975

825

68

580

461

233

353

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

612

461

353 993

975

580

374

68

825

618

16

700

602

233

bucket = hash(key) % num_buckets

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Defined

 When a conventional Hash Table is resized,
most keys are remapped to different buckets
bucket = hash(key) % num_buckets
Almost all keys move if num_bucket changes

 Stable Hashing
Enables Hash Tables with greater stability
Minimizes disruption when resizing/scaling

6

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Resize

7

0:

1:

2:

3:

4:

5:

6:

7:

8:

16

374

602

993

700

618 612

975

825

68

580

461

233

353

bucket = stable_hash(buckets, key)

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Resize

8

0:

1:

2:

3:

4:

5:

6:

7:

8:

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

16

374

602

993

700

618 612

975

825

68

580

461

233

353

374

993 233

975

618

602

68

580 16

461

700

825

612 353

bucket = stable_hash(buckets, key)

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Who uses Stable Hashing?

 Caching/Routing:  DHT/Storage:

9

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

When is Stable Hashing Preferable?

 When the system is stateful
 And recreating or transferring state is expensive

 For in-memory Hash Tables remapping is cheap
Requires copying a pointer in RAM

 For Distributed Hash Tables remapping is costly
Moving a key requires transfer over a network

10

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing with Global Namespaces

 Last year we presented about unlimited scale:
Main lesson: it requires eliminating points of

contention, including metadata systems
We achieved this with a “Global Namespace”

 Namespace is fixed, but system is dynamic…
We needed an algorithm that could adapt to

changes in the system, and do so efficiently!
11

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Our motivations for using Stable Hashing

 Helps balance:
Storage (read/write) load across nodes
Storage utilization across nodes

 Minimizes disruption for:
Addition of new nodes
Resizing of existing nodes (disk addition)
Removing or repurposing nodes
Replacing obsolete nodes with new ones

12

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

But what algorithm to use…

 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)

 Weighted Stable Hashing:
CARP (‘98)
RUSH/CRUSH (‘04/’06)

13

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Classes of Stable Hashing Algorithms

14

Stable Hashing

Perfectly Stable Precisely Weighted

Consistent Hashing
CARP

RUSH

CRUSH
Rendezvous Hashing

???

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Consistent Hashing Works

15

0 - 605 606 - 999

 Buckets inserted in random positions
 Keys map to the next node greater than that key

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Consistent Hashing Works

16

0 - 316 317 - 605 606 - 999

 Buckets inserted in random positions
 Keys map to the next node greater than that key

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Consistent Hashing Works

17

0 - 316 317 - 605 606 - 782 783 - 999

 Buckets inserted in random positions
 Keys map to the next node greater than that key

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Consistent Hashing Works

18

0 - 278 279 - 316 317 - 605 606 - 782 783 - 999

 Buckets inserted in random positions
 Keys map to the next node greater than that key

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Rendezvous Hashing Works

 Hash(Bucket ID || Key)  Score
 Bucket with the highest score wins

19

0 1 2 3 4

H(“0” ||) = 759 612
H(“1” ||) = 481 612

H(“2” ||) = 830 612
H(“3” ||) = 879 612
H(“4” ||) = 484 612

612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Rendezvous Hashing Works

 Hash(Bucket ID || Key)  Score
 Bucket with the highest score wins

20

0 1 2 3 4

H(“0” ||) = 707 461
H(“1” ||) = 854 461

H(“2” ||) = 370 461
H(“3” ||) = 065 461
H(“4” ||) = 804 461

612 461

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How Rendezvous Hashing Works

 Hash(Bucket ID || Key)  Score
 Bucket with the highest score wins

21

0 1 2 3 4

H(“0” ||) = 746 353
H(“1” ||) = 207 353

H(“2” ||) = 515 353
H(“3” ||) = 668 353
H(“4” ||) = 252 353

353 461 612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How CARP Works

 CARP is Rendezvous Hashing, with one change
 Scores are multiplied with a “Load Factor”

22

0 1 2 3 4

H(“0” ||) × 0.197 = 149.24 612
H(“1” ||) × 0.240 = 115.60 612

H(“2” ||) × 0.197 = 163.21 612
H(“3” ||) × 0.170 = 149.22 612
H(“4” ||) × 0.197 = 095.17 612

612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Why CARP isn’t Perfectly Stable

 Load factors in CARP must be relatively scaled
 If any node’s weighting changes, or if any

node is added or removed, then all load
factors must be recomputed

23

0 1

0.6000 0.4000

1.50:1

Load Factor:
200 100 Weight:

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Why CARP isn’t Perfectly Stable

 Load factors in CARP must be relatively scaled
 If any node’s weighting changes, or if any

node is added or removed, then all load
factors must be recomputed

24

0 1 2

0.3604 0.2792 0.3604

1.29:1

Load Factor:
200 100 Weight: 200

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How RUSH/CRUSH work

25

200 300

250

500

750

0 1

2

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of Stable Hashing

 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)

 Weighted Stable Hashing:
CARP (‘98)
RUSH/CRUSH (‘04/‘06)

 Perfect Weighted Stable Hashing:
Weighted Rendezvous Hash (‘14)

26

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Classes of Stable Hashing Algorithms

27

Stable Hashing

Perfectly Stable Precisely Weighted

Consistent Hashing
CARP

RUSH

CRUSH
Rendezvous Hashing

WRH

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

100 / -Log(H(“3” ||) / MAX_HASH) = 775.37 612

How Weighted Rendezvous Hashing Works

 WRH adjusts scores before weighting them
 Unlike CARP, scores aren’t relatively scaled

28

0 1 2 3 4

200 / -Log(H(“0” ||) / MAX_HASH) = 725.29 612
400 / -Log(H(“1” ||) / MAX_HASH) = 546.43 612
200 / -Log(H(“2” ||) / MAX_HASH) = 1073.36 612

200 / -Log(H(“4” ||) / MAX_HASH) = 275.61 612

612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Why WRH is perfectly stable

 When a node is added, removed, or changed:
Only the scores for that node change

It may win some keys (if weight increased)
It may lose some keys (if weight decreased)

 For the unchanged nodes:
Scores for all of them remain unchanged

No wasted data transfer occurs between nodes
Minimum data moves to recover equilibrium

29

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

100 / -Log(H(“3” ||) / MAX_HASH) = 775.37 612

Weight Change with WRH

 WRH adjusts scores before weighting them
 Unlike CARP, scores aren’t relatively scaled

30

0 1 2 3 4

200 / -Log(H(“0” ||) / MAX_HASH) = 725.29 612
400 / -Log(H(“1” ||) / MAX_HASH) = 546.43 612
200 / -Log(H(“2” ||) / MAX_HASH) = 1073.36 612

200 / -Log(H(“4” ||) / MAX_HASH) = 275.61 612

612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

100 / -Log(H(“3” ||) / MAX_HASH) = 775.37 612

Weight Change with WRH

 WRH adjusts scores before weighting them
 Unlike CARP, scores aren’t relatively scaled

31

0 1 2 3 4

200 / -Log(H(“0” ||) / MAX_HASH) = 725.29 612
800 / -Log(H(“1” ||) / MAX_HASH) = 1092.86 612
200 / -Log(H(“2” ||) / MAX_HASH) = 1073.36 612

200 / -Log(H(“4” ||) / MAX_HASH) = 275.61 612

612 612

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Keys Transferred under CARP

32

0 1 2

200 100 Weight: 200

47.8% 35.7% 4.3%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Keys Transferred under WRH

33

0 1 2

200 100 Weight: 200

40% 40%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Simplicity of WRH

34

Where the magic happens

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Proof of Correctness

35

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

How we use the WRH

 Our system is grown by sets of devices
Each set is composed of devices spread

across fault domains (racks, sites, etc.)
 Devices have a lifecycle:
Added, possibly expanded, then retired

 The WRH selects which “device set” to write a
given object to or read a given object from

36

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

9/22/2015

Storage Pool A Total Pool Size = 10 PB
Device Set Size = 10 PB, Fraction = 10 PB/10 PB = 100%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

9/22/2015

Storage Pool A Total Pool Size = 20 PB
Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50%

Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

9/22/2015

Storage Pool A Total Pool Size = 40 PB
Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25%

Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25%

Device Set Size = 20 PB, Fraction = 20 PB/20 PB = 50%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

9/22/2015

Storage Pool A Total Pool Size = 55 PB
Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18%

Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18%

Device Set Size = 20 PB, Fraction = 20 PB/55 PB = 36%

Device Set Size = 15 PB, Fraction = 15 PB/55 PB = 27%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

9/22/2015

Storage Pool A Total Pool Size = 45 PB

Device Set Size = 10 PB, Fraction = 10 PB/45 PB = 22%

Device Set Size = 20 PB, Fraction = 20 PB/45 PB = 44%

Device Set Size = 15 PB, Fraction = 15 PB/45 PB = 33%

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Moving Data according to the WRH

9/22/2015

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Storage Resource Map

 Shows relative capacities of device sets each of
which is independently reliable storage

43

"storage_pool_map": {
 "657fe35a-a87a-44cf-b766-8e890aea7b2e": {
 "weight": "46000000000000000",
 "hash_seed": 67662243
 },
 "bfa3a243-c2f4-3a1c-afa9-cee4b56c1da1": {
 "weight": "22000000000000000"
 "hash_seed": 27781369
 }
}

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Efficient Replacement: reuse seed

 The Hash Seed enables a clever trick:
When retiring a device set with replacement,

we-use the same hash seed for the new set
Since it seeds hashes in the same way, it

computes identical scores as the old set
When the retired set’s weight is set to 0, all

keys move from the old set to the new one

44

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Other ways to use WRH

 We see many potential applications:
Performing work

Take on rebuilding tasks from a work queue
Assign compute jobs according to CPU capacity

Route access requests to “Access nodes”
Reduces contention, maximizes cache hits

Map data to drives within a storage node
When a drive fails, remap data to other drives

45

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Thank you! Any Questions?

46

2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

References

 Rendezvous Hashing: https://en.wikipedia.org/wiki/Rendezvous_hashing

 Consistent Hashing: https://en.wikipedia.org/wiki/Consistent_hashing

 CARP: https://tools.ietf.org/html/draft-vinod-carp-v1-03

 RUSH: http://www.ssrc.ucsc.edu/Papers/honicky-ipdps04.pdf

 CRUSH: http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf

 CEPH: http://ceph.com/docs/master/rados/operations/crush-map/

 OpenStack: http://docs.openstack.org/developer/swift/ring.html

 GlusterFS: http://blog.gluster.org/2012/03/glusterfs-algorithms-distribution/

 Cassandra: http://blog.imaginea.com/consistent-hashing-in-cassandra/

 DynamoDB: http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

47

https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Consistent_hashing
https://tools.ietf.org/html/draft-vinod-carp-v1-03
http://www.ssrc.ucsc.edu/Papers/honicky-ipdps04.pdf
http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf
http://ceph.com/docs/master/rados/operations/crush-map/
http://docs.openstack.org/developer/swift/ring.html
http://blog.gluster.org/2012/03/glusterfs-algorithms-distribution/
http://blog.imaginea.com/consistent-hashing-in-cassandra/
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

	New Hashing Algorithms for Data Storage
	Applications of Hashing
	Hashing in Distributed Systems
	Conventional Hash Table Resize
	Conventional Hash Table Resize
	Stable Hashing Defined
	Stable Hashing Resize
	Stable Hashing Resize
	Who uses Stable Hashing?
	When is Stable Hashing Preferable?
	Stable Hashing with Global Namespaces
	Our motivations for using Stable Hashing
	But what algorithm to use…
	Classes of Stable Hashing Algorithms
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Rendezvous Hashing Works
	How Rendezvous Hashing Works
	How Rendezvous Hashing Works
	How CARP Works
	Why CARP isn’t Perfectly Stable
	Why CARP isn’t Perfectly Stable
	How RUSH/CRUSH work
	Evolution of Stable Hashing
	Classes of Stable Hashing Algorithms
	How Weighted Rendezvous Hashing Works
	Why WRH is perfectly stable
	Weight Change with WRH
	Weight Change with WRH
	Keys Transferred under CARP
	Keys Transferred under WRH
	Simplicity of WRH
	Proof of Correctness
	How we use the WRH
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Moving Data according to the WRH
	Storage Resource Map
	Efficient Replacement: reuse seed
	Other ways to use WRH
	Thank you! Any Questions?
	References

