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Applications of Hashing 

 Hashing is useful generally: 
Provides O(1) lookup 
Key  Value storage/retrieval 

 Could use hashing to decide… 
Storage node in storage system or database 
Proxy server that has a cache 
Task assignment in distributed computing 
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Hashing in Distributed Systems 

 Distributed Storage 
 If buckets are “storage nodes”, we can use 

hashing so readers and writers select the 
same storage locations for the same names 

 Distributed Caching 
 If buckets are “caching servers”, we can use 

hashing to maximize reuse of the same 
caching servers for the same URLs 
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Conventional Hash Table Resize 
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Stable Hashing Defined 

 When a conventional Hash Table is resized, 
most keys are remapped to different buckets 
bucket = hash(key) % num_buckets 
Almost all keys move if num_bucket changes 

 
 Stable Hashing 
Enables Hash Tables with greater stability 
Minimizes disruption when resizing/scaling 
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Stable Hashing Resize 
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Stable Hashing Resize 
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Who uses Stable Hashing? 

 Caching/Routing:  DHT/Storage: 
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When is Stable Hashing Preferable? 

 When the system is stateful 
 And recreating or transferring state is expensive 

 
 For in-memory Hash Tables remapping is cheap 
Requires copying a pointer in RAM 

 For Distributed Hash Tables remapping is costly 
Moving a key requires transfer over a network 
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Stable Hashing with Global Namespaces 

 Last year we presented about unlimited scale: 
Main lesson: it requires eliminating points of 

contention, including metadata systems 
We achieved this with a “Global Namespace” 

 
 Namespace is fixed, but system is dynamic… 
We needed an algorithm that could adapt to 

changes in the system, and do so efficiently! 
11 
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Our motivations for using Stable Hashing 

 Helps balance: 
Storage (read/write) load across nodes 
Storage utilization across nodes 

 Minimizes disruption for: 
Addition of new nodes 
Resizing of existing nodes (disk addition) 
Removing or repurposing nodes 
Replacing obsolete nodes with new ones 
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But what algorithm to use… 

 Perfect Stable Hashing: 
Rendezvous Hashing (‘96) 
Consistent Hashing (‘97) 

 
 Weighted Stable Hashing: 
CARP (‘98) 
RUSH/CRUSH (‘04/’06) 

13 
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Classes of Stable Hashing Algorithms 
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How Consistent Hashing Works 
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 Buckets inserted in random positions 
 Keys map to the next node greater than that key 
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How Consistent Hashing Works 

16 

0 - 316 317 - 605 606 - 999 

 Buckets inserted in random positions 
 Keys map to the next node greater than that key 



2015 Storage  Developer Conference. Copyright © 2015 Cleversafe, Inc.  All Rights Reserved. 
 

How Consistent Hashing Works 
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0 - 316 317 - 605 606 - 782 783 - 999 

 Buckets inserted in random positions 
 Keys map to the next node greater than that key 
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How Consistent Hashing Works 
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0 - 278 279 - 316 317 - 605 606 - 782 783 - 999 

 Buckets inserted in random positions 
 Keys map to the next node greater than that key 
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How Rendezvous Hashing Works 

 Hash(Bucket ID || Key)  Score 
 Bucket with the highest score wins 
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How Rendezvous Hashing Works 

 Hash(Bucket ID || Key)  Score 
 Bucket with the highest score wins 
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0 1 2 3 4 

H(“0” ||           ) = 707 461 
H(“1” ||           ) = 854 461 

H(“2” ||           ) = 370 461 
H(“3” ||           ) = 065 461 
H(“4” ||           ) = 804 461 

612 461 
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How Rendezvous Hashing Works 

 Hash(Bucket ID || Key)  Score 
 Bucket with the highest score wins 
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0 1 2 3 4 

H(“0” ||           ) = 746 353 
H(“1” ||           ) = 207 353 

H(“2” ||           ) = 515 353 
H(“3” ||           ) = 668 353 
H(“4” ||           ) = 252 353 

353 461 612 
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How CARP Works 

 CARP is Rendezvous Hashing, with one change 
 Scores are multiplied with a “Load Factor” 

22 

0 1 2 3 4 

H(“0” ||           ) × 0.197 = 149.24 612 
H(“1” ||           ) × 0.240 = 115.60 612 

H(“2” ||           ) × 0.197 = 163.21 612 
H(“3” ||           ) × 0.170 = 149.22 612 
H(“4” ||           ) × 0.197 = 095.17 612 
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Why CARP isn’t Perfectly Stable 

 Load factors in CARP must be relatively scaled 
 If any node’s weighting changes, or if any 

node is added or removed, then all load 
factors must be recomputed 
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Why CARP isn’t Perfectly Stable 

 Load factors in CARP must be relatively scaled 
 If any node’s weighting changes, or if any 

node is added or removed, then all load 
factors must be recomputed 
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How RUSH/CRUSH work 
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Evolution of Stable Hashing 

 Perfect Stable Hashing: 
Rendezvous Hashing (‘96) 
Consistent Hashing (‘97) 

 Weighted Stable Hashing: 
CARP (‘98) 
RUSH/CRUSH (‘04/‘06) 

 Perfect Weighted Stable Hashing: 
Weighted Rendezvous Hash (‘14) 

26 
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Classes of Stable Hashing Algorithms 
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100 / -Log(H(“3” ||           ) / MAX_HASH) = 775.37 612 

How Weighted Rendezvous Hashing Works 

 WRH adjusts scores before weighting them 
 Unlike CARP, scores aren’t relatively scaled 

28 

0 1 2 3 4 

200 / -Log(H(“0” ||           ) / MAX_HASH) = 725.29 612 
400 / -Log(H(“1” ||           ) / MAX_HASH) = 546.43 612 
200 / -Log(H(“2” ||           ) / MAX_HASH) = 1073.36 612 

200 / -Log(H(“4” ||           ) / MAX_HASH) = 275.61 612 

612 
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Why WRH is perfectly stable 

 When a node is added, removed, or changed: 
Only the scores for that node change 

It may win some keys (if weight increased) 
It may lose some keys (if weight decreased) 

 For the unchanged nodes: 
Scores for all of them remain unchanged 

No wasted data transfer occurs between nodes 
Minimum data moves to recover equilibrium 
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100 / -Log(H(“3” ||           ) / MAX_HASH) = 775.37 612 

Weight Change with WRH 

 WRH adjusts scores before weighting them 
 Unlike CARP, scores aren’t relatively scaled 
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100 / -Log(H(“3” ||           ) / MAX_HASH) = 775.37 612 

Weight Change with WRH 

 WRH adjusts scores before weighting them 
 Unlike CARP, scores aren’t relatively scaled 
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200 / -Log(H(“0” ||           ) / MAX_HASH) = 725.29 612 
800 / -Log(H(“1” ||           ) / MAX_HASH) = 1092.86 612 
200 / -Log(H(“2” ||           ) / MAX_HASH) = 1073.36 612 

200 / -Log(H(“4” ||           ) / MAX_HASH) = 275.61 612 
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Keys Transferred under CARP 
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Keys Transferred under WRH 
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Simplicity of WRH 
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Where the magic happens 
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Proof of Correctness 
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How we use the WRH 

 Our system is grown by sets of devices 
Each set is composed of devices spread 

across fault domains (racks, sites, etc.) 
 Devices have a lifecycle: 
Added, possibly expanded, then retired 

 The WRH selects which “device set” to write a 
given object to or read a given object from 

36 
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Evolution of a Storage Pool 

9/22/2015 

Storage Pool A Total Pool Size = 10 PB 
Device Set Size = 10 PB, Fraction = 10 PB/10 PB = 100% 
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Evolution of a Storage Pool 

9/22/2015 

Storage Pool A Total Pool Size = 20 PB 
Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% 

Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% 
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Evolution of a Storage Pool 

9/22/2015 

Storage Pool A Total Pool Size = 40 PB 
Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25% 

Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25% 

Device Set Size = 20 PB, Fraction = 20 PB/20 PB = 50% 
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Evolution of a Storage Pool 

9/22/2015 

Storage Pool A Total Pool Size = 55 PB 
Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18% 

Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18% 

Device Set Size = 20 PB, Fraction = 20 PB/55 PB = 36% 

Device Set Size = 15 PB, Fraction = 15 PB/55 PB = 27% 
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Evolution of a Storage Pool 

9/22/2015 

Storage Pool A Total Pool Size = 45 PB 

Device Set Size = 10 PB, Fraction = 10 PB/45 PB = 22% 

Device Set Size = 20 PB, Fraction = 20 PB/45 PB = 44% 

Device Set Size = 15 PB, Fraction = 15 PB/45 PB = 33% 
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Moving Data according to the WRH 

9/22/2015 
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Storage Resource Map 

 Shows relative capacities of device sets each of 
which is independently reliable storage 

43 

"storage_pool_map": { 
    "657fe35a-a87a-44cf-b766-8e890aea7b2e": { 
        "weight": "46000000000000000", 
        "hash_seed": 67662243 
    }, 
    "bfa3a243-c2f4-3a1c-afa9-cee4b56c1da1": { 
        "weight": "22000000000000000" 
        "hash_seed": 27781369 
    } 
} 
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Efficient Replacement: reuse seed 

 The Hash Seed enables a clever trick: 
When retiring a device set with replacement, 

we-use the same hash seed for the new set 
Since it seeds hashes in the same way, it 

computes identical scores as the old set 
When the retired set’s weight is set to 0, all 

keys move from the old set to the new one 

44 
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Other ways to use WRH 

 We see many potential applications: 
Performing work 

Take on rebuilding tasks from a work queue 
Assign compute jobs according to CPU capacity 

Route access requests to “Access nodes” 
Reduces contention, maximizes cache hits 

Map data to drives within a storage node 
When a drive fails, remap data to other drives 
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Thank you! Any Questions? 
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