SDC.1

STORAGE DEVELOPER CONFERENCE
SNIA = SANTA CLARA, 2015

New Hashing Algorithms for Data
Storage

Jason Resch
Cleversafe

Applications of Hashing

a3 Hashing is useful generally:
Provides O(1) lookup
Key - Value storage/retrieval
3 Could use hashing to decide...
Storage node in storage system or database
Proxy server that has a cache
Task assignment in distributed computing

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Hashing in Distributed Systems

3 Distributed Storage

If buckets are “storage nodes”, we can use
hashing so readers and writers select the
same storage locations for the same names

3 Distributed Caching

If buckets are “caching servers”, we can use
hashing to maximize reuse of the same
caching servers for the same URLs

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Conventional Hash Table Resize

i 612

|:

g 461] 353
) 993] 975
¥ 580

s: 8 D
g 825] 618
d 16] 700
cH 602] 233

bucket = hash(key) % num_buckets

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Conventional Hash Table Resize

I 612 F 700

.; e

q 461

—_
461 § 353 ’l’

993 g 975 eEs 993 E 233 4 353

580 h 4‘ 5 374

374 ¥ 68 (, 825 X 975

580

602 g 612

oo el 0 Al S R

bucket = hash(key) % num_buckets

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Defined

a9 When a conventional Hash Table is resized,
most keys are remapped to different buckets

bucket = hash(key) % num_buckets
Almost all keys move if num_bucket changes

1 Stable Hashing
Enables Hash Tables with greater stability
Minimizes disruption when resizing/scaling

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Resize

0: EZ3
B 975 J 602

)l 68

el 580 J 16

4. 23

H 825 J 700

o 612] 353] 618
7.

c 993 J 233

bucket = stable hash(buckets, key)

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Stable Hashing Resize

bucket = stable hash(buckets, key)

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Who uses Stable Hashing?

1 Caching/Routing: 1 DHT/Storage:

COLUSTER
<>
amazon TE
DynamoDB S Cassandra

@ ceph n

openstack

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

When is Stable Hashing Preferable?

a9 When the system is stateful
3 And recreating or transferring state is expensive

a For in-memory Hash Tables remapping is cheap
Requires copying a pointer in RAM

3 For Distributed Hash Tables remapping is costly
Moving a key requires transfer over a network

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

10

Stable Hashing with Global Namespaces

d Last year we presented about unlimited scale:

Main lesson: it requires eliminating points of
contention, including metadata systems

We achieved this with a “Global Namespace”

1 Namespace is fixed, but system is dynamic...

We needed an algorithm that could adapt to
changes in the system, and do so efficiently!

11

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Our motivations for using Stable Hashing

1 Helps balance:
Storage (read/write) load across nodes
Storage utilization across nodes
3 Minimizes disruption for:
Addition of new nodes
Resizing of existing nodes (disk addition)
Removing or repurposing nodes
Replacing obsolete nodes with new ones

12

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

But what algorithm to use...

0 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)

1 Weighted Stable Hashing:
CARP ('98)
RUSH/CRUSH (‘04/°06)

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

13

Classes of Stable Hashing Algorithms

Consistent Hashing

Rendezvous Hashing

c it . v - H -
s D 15 2015 Storage Developer Conference. Copyright © 2015 Clevers

14
o a
ilnc. All Rights Reserved.
“ Lar
j B g i e i ‘

How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key

_ _
— — |

15
- e
15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. .
R |

How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key

- _ _

D [—
B

0-316

16

h ¥ " a

‘ .

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. d =
§ i

How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key

- g @ @

D S = |

i -
ity = 2
15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.] 2
R |

How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key

@@ g @ @

S — j— j— |

i -
ity = 2
15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.] =
R |

How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

3 3 3
o
H0" || (EEW) = 759
HC1" || (28) = 481
H2" || (EED) = 830
H“3" || AER) = 879«
HC4" || (EED) = 484

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

19

How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

d § @ § @

46I 6I2
HC0" || €W) = 707
H-1" || (T8) = 854«
H2" || (W) = 370
H(3" || W) = 065
H(“4" || (I) = 804

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

20

How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

d U l g B

353 46| 6|2
HE 17])—207
H(2" || D) = 515
H("3" || EED)) = 668
He 4" || EEB) = 252

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

21

How CARP Works

7 CARP is Rendezvous Hashing, with one change
3 Scores are multiplied with a “Load Factor”

D

H“0" || (@FR) x 0.197 = 149.24
H“1" || (@FP) x 0.240 = 115.60
HC2" || (@D) x 0.197 = 163.21¢
H“3" || (@FP) x 0.170 = 149.22
H(“4" || @@EW) x 0.197 = 095.17

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Why CARP isn’t Perfectly Stable

0 Load factors in CARP must be relatively scaled

If any node’s weighting changes, or if any
node Is added or removed, then all load
factors must be recomputed

@ 1.50:1 Ej

Load Factor: 0.6000 0.4000
Weight: 200 100

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

23

Why CARP isn’t Perfectly Stable

0 Load factors in CARP must be relatively scaled

If any node’s weighting changes, or if any
node Is added or removed, then all load
factors must be recomputed

N N
@ 1.29:1 Ej

Load Factor: 0.3604 0.2792 0.3604
Weight: 200 100 200

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

24

How RUSH/CRUSH work

Sl By
D
&
8
S % 250
200 300

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

*

gl =

25

Evolution of Stable Hashing

0 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)
1 Weighted Stable Hashing:
CARP (‘98)
RUSH/CRUSH (‘04/°06)
d Perfect Weighted Stable Hashing:
Weighted Rendezvous Hash (‘14) aﬁ

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

26

Classes of Stable Hashing Algorithms

Consistent Hashing

Rendezvous Hashing

c it . v - H -
s D 15 2015 Storage Developer Conference. Copyright © 2015 Clevers

27
o a
ilnc. All Rights Reserved.
“ Lar
j B g i e i ‘

How Weighted Rendezvous Hashing Works

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled

D

200 / -Log(H(“ 0" ||) I MAX_HASH) = 725.29
400 / -Log(H(“1” ||) I MAX_HASH) = 546.43
200 / -Log(H(“ 2" ||) / MAX_HASH) = 1073.36"
100 / -Log(H(“3" ||) I MAX_HASH) = 775.37
200 / -Log(H(“ 4" ||) I MAX_HASH) = 275.61

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

28

Why WRH Is perfectly stable

7 When a node is added, removed, or changed.:

Only the scores for that node change
1t may win some keys (if weight increased)
71t may lose some keys (if weight decreased)

3 For the unchanged nodes:

Scores for all of them remain unchanged
7INo wasted data transfer occurs between nodes
JMinimum data moves to recover equilibrium

29

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Weight Change with WRH

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled

D

200 / -Log(H(“ 0" ||) I MAX_HASH) = 725.29
400 / -Log(H(“1” ||) I MAX_HASH) = 546.43
200 / -Log(H(“ 2" ||) / MAX_HASH) = 1073.36"
100 / -Log(H(“3" ||) I MAX_HASH) = 775.37
200 / -Log(H(“ 4" ||) I MAX_HASH) = 275.61

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

30

Weight Change with WRH

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled

-— p— -—
-]
612

200 / -Log(H(*0” ||) I MAX_HASH) = 725.29
800 / -Log(H(*1” ||) / MAX_HASH) = 1092.86
200 / -Log(H(*2" ||) / MAX_HASH) = 1073.36
100 / -Log(H(* 3" ||) | MAX_HASH) = 775.37
200 / -Log(H(* 4" ||) | MAX_HASH) = 275.61

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

31

Keys Transferred under CARP

4.3% 35.7% 47.8%

KX

Weight: 200 100 200

32

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. - - b EE 3
- &

@ . = i

Keys Transferred under WRH

40% 40%

£
o

Weight: 200 100 200

33

AR 5
S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. - . ?
- . o

¥ B ey = i

Simplicity of WRH

WO = O e Ll Pl ek

I B B T e e =
Wk D0 - MW 5 WK S W - om0 WS

o
=

l:::: -
S D 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

r

r

r

r

#!fusr/bin/python

import mmh3
import math
import binascii
import hashlib

fifty_three_ones = (@xFFFFFFFFFFFFFFFF >> (64 = 53))
fifty_three zeros = float(l =< 53)

def int _to fleoat{value}:
return {value & fifty_three_ones) / fifty_three_zeros

class Bucketl(object):
def _ init_ {self, name, seed, weight}:
self.name, self.seed, self.weight = name, seed, weight

def compute_weighted_score{self, name}:
hash_1, hash_2 = mmh3.hashEé4{stri{name), @xFFFFFFFF & self.seed)
hash_f = int_to_float(hash_2)
score = 1.8 / -math. log(hash_f)

return self.weight %= score

def __str__(self):
return " [" + self.name + " (" + str(self.seed) + ", "
def determine_responsible bucket({buckets, name):
highest_score, champion = -1, Mone
for bucket in buckets:
score = bucket.compute_weighted_score{name)
if score = highest_score:
champion, highest_score = bucket, score
return champion

*

Where the magic happens

+ striself.weight) + ")1"

34

—

B

Proof of Correctness

Let i € {1..n} be buckets and X be the set of hashable objects. Let w; € Rf
represent the weight for bucket ¢, and h; : X = [0,1] be the hash function for
bucket 7. Assume h;(z) is a perfect hashing function - that is it maps z € X to
a uniform, continuous random variable on [0, 1. Define f; as

Cw
= nt)
‘We define the champion function, C, as

fily)

C(x) = argmax fi(hi(x))

Theorem 1. Pr(C(z) = i]

Proof. Let # € X and hi(z) =
fila) > fi(b) <= a>b
Fi(hj(2) = filz) == hila) = £ (fi(=))
Pr(fi(hi(x)) < filhi(@) | hi(x) = 2] = Prih;(x) < [7(fi(2)]

RO
Then

PriC(e) =i | hi@) = 21 = [7 (=)
i#i

.
Pw[cm=f1=/M LI e
1@)=0 ki

1 v 1 N
:/ HyW:/ D) 0%
ha1=0 s hi()=0

B 1 w
Y X
wi
PriC(z) = i] = =
1] Y wy

15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

-

How we use the WRH

a3 Our system Is grown by sets of devices

Each set is composed of devices spread
across fault domains (racks, sites, etc.)

a1 Devices have a lifecycle:
Added, possibly expanded, then retired

0 The WRH selects which “device set” to write a
given object to or read a given object from

36

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

| Storage Pool A Total Pool Size = 10 PB
§ Device Set Size = 10 PB, Fraction = 10 PB/10 PB = 100%

- &

:

C T T P P P Py
(.

«
&

9/22/2015

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

 coEne Sl Total Pool Size = 20 PB .
§ Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% h‘?

it 1 ¥ ¢ F X R ERN
§ Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% h‘{é‘

it I I R rrre

9/22/2015

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

- | Storage Pool A Total Pool Size = 40 PB
§° Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25%
Ve

9/22/2015

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Evolution of a Storage Pool

| Storage Pool A Total Pool Size = 55 PB
Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18%

X009

000

Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18%

000
——0,p

000

G

Device Set Size = 20 PB, Fraction = 20 PB/55 PB = 36%

«
“s‘
«
é‘

.,000

000

Device Set Size = 15 PB, Fraction = 15 PB/55 PB = 27%

000

9/22/2015

15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

n

Evolution of a Storage Pool

Storage Pool A Total Pool Size = 45 PB

§ Device Set Size = 10 PB, Fraction = 10 PB/45 PB = 22%

9/22/2015

Moving Data according to the WRH

Total Number of Slices Export Share
+
200.00k /*h.ﬁ _
L2 -
150.00% o _,,,-«-"’* * ‘\,-"""’"
100.00k i’ f
¥ L)
50,00k - ./
o s
17:00 18:00 19:00 20:00 21:00
Jun 2
Event Conscle
I L] L] &* [] &

Mo more enrents are within the current filker.

| Shewanl | HideAn |
Il 5=t 1avg=14087k [l Set 2 avg = 127 .56x Il Set 3 avg= 114.80k

9/22/2015

o = .
e

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. - 31}5
y N - ’

#

Storage Resource Map

0 Shows relative capacities of device sets each of
which is independently reliable storage

"storage pool map": {
"657fe35a-a87a-44ct-b766-8e890aea7b2e: {
"weight': ""46000000000000000",
""hash_seed'": 67662243
s
"bfa3a243-c2f4-3alc-afa9-cee4b56cldal': {
"weight'': ""22000000000000000"
""hash_seed": 27781369

=
s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

43

Efficient Replacement: reuse seed

A The Hash Seed enables a clever trick:

When retiring a device set with replacement,
we-use the same hash seed for the new set

Since it seeds hashes in the same way, it
computes identical scores as the old set

When the retired set’s weight is set to 0, all
keys move from the old set to the new one

44

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Other ways to use WRH

7 We see many potential applications:

Performing work
7 Take on rebuilding tasks from a work gqueue
7 Assign compute jobs according to CPU capacity

Route access requests to “Access nodes”
7 Reduces contention, maximizes cache hits

Map data to drives within a storage node
7When a drive fails, remap data to other drives

45

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

Thank you! Any Questions?

46
L
S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. - -
¥ . d

& ey

References

Rendezvous Hashing: https://en.wikipedia.org/wiki/Rendezvous hashing
Consistent Hashing: https:/en.wikipedia.org/wiki/Consistent _hashing
CARP: https://tools.ietf.org/html/draft-vinod-carp-v1-03

RUSH: http://www.ssrc.ucsc.edu/Papers/honicky-ipdps04.pdf

CRUSH: http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf

CEPH;: http://ceph.com/docs/master/rados/operations/crush-map/

OpensStack: http://docs.openstack.org/developer/swift/ring.html
GlusterFS: http://blog.gluster.ora/2012/03/glusterfs-algorithms-distribution/

Cassandra: http://blog.imaginea.com/consistent-hashing-in-cassandra/

O o g aoaaagaaaaq

DynamoDB: http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. i

-

https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Consistent_hashing
https://tools.ietf.org/html/draft-vinod-carp-v1-03
http://www.ssrc.ucsc.edu/Papers/honicky-ipdps04.pdf
http://www.crss.ucsc.edu/media/papers/weil-sc06.pdf
http://ceph.com/docs/master/rados/operations/crush-map/
http://docs.openstack.org/developer/swift/ring.html
http://blog.gluster.org/2012/03/glusterfs-algorithms-distribution/
http://blog.imaginea.com/consistent-hashing-in-cassandra/
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

	New Hashing Algorithms for Data Storage
	Applications of Hashing
	Hashing in Distributed Systems
	Conventional Hash Table Resize
	Conventional Hash Table Resize
	Stable Hashing Defined
	Stable Hashing Resize
	Stable Hashing Resize
	Who uses Stable Hashing?
	When is Stable Hashing Preferable?
	Stable Hashing with Global Namespaces
	Our motivations for using Stable Hashing
	But what algorithm to use…
	Classes of Stable Hashing Algorithms
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Consistent Hashing Works
	How Rendezvous Hashing Works
	How Rendezvous Hashing Works
	How Rendezvous Hashing Works
	How CARP Works
	Why CARP isn’t Perfectly Stable
	Why CARP isn’t Perfectly Stable
	How RUSH/CRUSH work
	Evolution of Stable Hashing
	Classes of Stable Hashing Algorithms
	How Weighted Rendezvous Hashing Works
	Why WRH is perfectly stable
	Weight Change with WRH
	Weight Change with WRH
	Keys Transferred under CARP
	Keys Transferred under WRH
	Simplicity of WRH
	Proof of Correctness
	How we use the WRH
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Evolution of a Storage Pool
	Moving Data according to the WRH
	Storage Resource Map
	Efficient Replacement: reuse seed
	Other ways to use WRH
	Thank you! Any Questions?
	References

