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Applications of Hashing

a3 Hashing is useful generally:
Provides O(1) lookup
Key - Value storage/retrieval
3 Could use hashing to decide...
Storage node in storage system or database
Proxy server that has a cache
Task assignment in distributed computing
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Hashing in Distributed Systems

3 Distributed Storage

If buckets are “storage nodes”, we can use
hashing so readers and writers select the
same storage locations for the same names

3 Distributed Caching

If buckets are “caching servers”, we can use
hashing to maximize reuse of the same
caching servers for the same URLs
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Conventional Hash Table Resize
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bucket = hash(key) % num_buckets
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Conventional Hash Table Resize
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bucket = hash(key) % num_buckets
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Stable Hashing Defined

a9 When a conventional Hash Table is resized,
most keys are remapped to different buckets

bucket = hash(key) % num_buckets
Almost all keys move if num_bucket changes

1 Stable Hashing
Enables Hash Tables with greater stability
Minimizes disruption when resizing/scaling
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Stable Hashing Resize
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bucket = stable hash(buckets, key)
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Stable Hashing Resize

bucket = stable hash(buckets, key)
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Who uses Stable Hashing?

1 Caching/Routing: 1 DHT/Storage:

COLUSTER
<>
amazon TE
DynamoDB S Cassandra

@ ceph n

openstack
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When is Stable Hashing Preferable?

a9 When the system is stateful
3 And recreating or transferring state is expensive

a For in-memory Hash Tables remapping is cheap
Requires copying a pointer in RAM

3 For Distributed Hash Tables remapping is costly
Moving a key requires transfer over a network
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Stable Hashing with Global Namespaces

d Last year we presented about unlimited scale:

Main lesson: it requires eliminating points of
contention, including metadata systems

We achieved this with a “Global Namespace”

1 Namespace is fixed, but system is dynamic...

We needed an algorithm that could adapt to
changes in the system, and do so efficiently!

11
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Our motivations for using Stable Hashing

1 Helps balance:
Storage (read/write) load across nodes
Storage utilization across nodes
3 Minimizes disruption for:
Addition of new nodes
Resizing of existing nodes (disk addition)
Removing or repurposing nodes
Replacing obsolete nodes with new ones

12
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But what algorithm to use...

0 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)

1 Weighted Stable Hashing:
CARP ('98)
RUSH/CRUSH (‘04/°06)
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Classes of Stable Hashing Algorithms

Consistent Hashing

Rendezvous Hashing
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How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key
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How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key
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How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key
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How Consistent Hashing Works

0 Buckets inserted in random positions
0 Keys map to the next node greater than that key
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How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

3 3 3
o
H0" || (EEW ) = 759
HC1" || (28 ) = 481
H2" || (EED ) = 830
H“3" || AER ) = 879«
HC4" || (EED ) = 484
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How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

d § @ § @

46I 6I2
HC0" || €W ) = 707
H-1" || (T8 ) = 854«
H2" || (W ) = 370
H(3" || W ) = 065
H(“4" || (I ) = 804

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.

20



How Rendezvous Hashing Works

1 Hash(Bucket ID || Key) = Score
3 Bucket with the highest score wins

d U l g B

353 46| 6|2
HE 17 ] )—207
H(2" || D) = 515
H("3" || EED)) = 668
He 4" || EEB) = 252
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How CARP Works

7 CARP is Rendezvous Hashing, with one change
3 Scores are multiplied with a “Load Factor”

D

H“0" || (@FR ) x 0.197 = 149.24
H“1" || (@FP) x 0.240 = 115.60
HC2" || (@D ) x 0.197 = 163.21¢
H“3" || (@FP ) x 0.170 = 149.22
H(“4" || @@EW ) x 0.197 = 095.17
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Why CARP isn’t Perfectly Stable

0 Load factors in CARP must be relatively scaled

If any node’s weighting changes, or if any
node Is added or removed, then all load
factors must be recomputed

@ 1.50:1 Ej

Load Factor: 0.6000 0.4000
Weight: 200 100
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Why CARP isn’t Perfectly Stable

0 Load factors in CARP must be relatively scaled

If any node’s weighting changes, or if any
node Is added or removed, then all load
factors must be recomputed

N N
@ 1.29:1 Ej

Load Factor: 0.3604 0.2792 0.3604
Weight: 200 100 200
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How RUSH/CRUSH work
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Evolution of Stable Hashing

0 Perfect Stable Hashing:
Rendezvous Hashing (‘96)
Consistent Hashing (‘97)
1 Weighted Stable Hashing:
CARP (‘98)
RUSH/CRUSH (‘04/°06)
d Perfect Weighted Stable Hashing:
Weighted Rendezvous Hash (‘14) aﬁ
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Classes of Stable Hashing Algorithms

Consistent Hashing

Rendezvous Hashing
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How Weighted Rendezvous Hashing Works

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled

D

200 / -Log(H(“ 0" || ) I MAX_HASH) = 725.29
400 / -Log(H(“1” || ) I MAX_HASH) = 546.43
200 / -Log(H(“ 2" || ) / MAX_HASH) = 1073.36"
100 / -Log(H(“3" || ) I MAX_HASH) = 775.37
200 / -Log(H(“ 4" || ) I MAX_HASH) = 275.61
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Why WRH Is perfectly stable

7 When a node is added, removed, or changed.:

Only the scores for that node change
1t may win some keys (if weight increased)
71t may lose some keys (if weight decreased)

3 For the unchanged nodes:

Scores for all of them remain unchanged
7INo wasted data transfer occurs between nodes
JMinimum data moves to recover equilibrium

29

s D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved.



Weight Change with WRH

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled

D

200 / -Log(H(“ 0" || ) I MAX_HASH) = 725.29
400 / -Log(H(“1” || ) I MAX_HASH) = 546.43
200 / -Log(H(“ 2" || ) / MAX_HASH) = 1073.36"
100 / -Log(H(“3" || ) I MAX_HASH) = 775.37
200 / -Log(H(“ 4" || ) I MAX_HASH) = 275.61
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Weight Change with WRH

7 WRH adjusts scores before weighting them
7 Unlike CARP, scores aren’t relatively scaled
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200 / -Log(H(*0” || ) I MAX_HASH) = 725.29
800 / -Log(H(*1” || ) / MAX_HASH) = 1092.86
200 / -Log(H(*2" || ) / MAX_HASH) = 1073.36
100 / -Log(H(* 3" || ) | MAX_HASH) = 775.37
200 / -Log(H(* 4" || ) | MAX_HASH) = 275.61
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Keys Transferred under CARP

4.3% 35.7% 47.8%

KX

Weight: 200 100 200

32

S D ‘ 15 2015 Storage Developer Conference. Copyright © 2015 Cleversafe, Inc. All Rights Reserved. - - b EE 3
- &

@ . = i




Keys Transferred under WRH

40% 40%

£
o

Weight: 200 100 200
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Simplicity of WRH
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#!fusr/bin/python

import mmh3
import math
import binascii
import hashlib

fifty_three_ones = (@xFFFFFFFFFFFFFFFF >> (64 = 53))
fifty_three zeros = float(l =< 53)

def int _to fleoat{value}:
return {value & fifty_three_ones) / fifty_three_zeros

class Bucketl(object):
def _ init_ {self, name, seed, weight}:
self.name, self.seed, self.weight = name, seed, weight

def compute_weighted_score{self, name}:
hash_1, hash_2 = mmh3.hashEé4{stri{name), @xFFFFFFFF & self.seed)
hash_f = int_to_float(hash_2)
score = 1.8 / -math. log(hash_f)

return self.weight %= score

def __str__(self):
return " [" + self.name + " (" + str(self.seed) + ", "
def determine_responsible bucket({buckets, name):
highest_score, champion = -1, Mone
for bucket in buckets:
score = bucket.compute_weighted_score{name)
if score = highest_score:
champion, highest_score = bucket, score
return champion

*

Where the magic happens

+ striself.weight) + ")1"
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Proof of Correctness

Let i € {1..n} be buckets and X be the set of hashable objects. Let w; € Rf
represent the weight for bucket ¢, and h; : X = [0,1] be the hash function for
bucket 7. Assume h;(z) is a perfect hashing function - that is it maps z € X to
a uniform, continuous random variable on [0, 1. Define f; as

Cw
= nt)
‘We define the champion function, C, as

fily)

C(x) = argmax fi(hi(x))

Theorem 1. Pr(C(z) = i]

Proof. Let # € X and hi(z) =
fila) > fi(b) <= a>b
Fi(hj(2) = filz) == hila) = £ (fi(=))
Pr(fi(hi(x)) < filhi(@) | hi(x) = 2] = Prih;(x) < [7(fi(2)]

RO
Then

PriC(e) =i | hi@) = 21 = [ 7 (=)
i#i

.
Pw[cm=f1=/M LI e
1@)=0 ki

1 v 1 N
:/ HyW:/ D) 0%
ha1=0 s hi()=0

B 1 w
Y X
wi
PriC(z) = i] = =
1 ] Y wy
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How we use the WRH

a3 Our system Is grown by sets of devices

Each set is composed of devices spread
across fault domains (racks, sites, etc.)

a1 Devices have a lifecycle:
Added, possibly expanded, then retired

0 The WRH selects which “device set” to write a
given object to or read a given object from

36
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Evolution of a Storage Pool

| Storage Pool A Total Pool Size = 10 PB
§ Device Set Size = 10 PB, Fraction = 10 PB/10 PB = 100%
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Evolution of a Storage Pool

 coEne Sl Total Pool Size = 20 PB .
§ Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% h‘?

it 1 ¥ ¢ F X R ERN
§ Device Set Size = 10 PB, Fraction = 10 PB/20 PB = 50% h‘{é‘
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Evolution of a Storage Pool

- | Storage Pool A Total Pool Size = 40 PB
§° Device Set Size = 10 PB, Fraction = 10 PB/40 PB = 25%
Ve
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Evolution of a Storage Pool

| Storage Pool A Total Pool Size = 55 PB
Device Set Size = 10 PB, Fraction = 10 PB/55 PB = 18%

X009

000
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Device Set Size = 15 PB, Fraction = 15 PB/55 PB = 27%
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Evolution of a Storage Pool

Storage Pool A Total Pool Size = 45 PB

§ Device Set Size = 10 PB, Fraction = 10 PB/45 PB = 22%
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Moving Data according to the WRH

Total Number of Slices Export Share
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Storage Resource Map

0 Shows relative capacities of device sets each of
which is independently reliable storage

"storage pool map": {
"657fe35a-a87a-44ct-b766-8e890aea7b2e: {
"weight': ""46000000000000000",
""hash_seed'": 67662243
s
"bfa3a243-c2f4-3alc-afa9-cee4b56cldal': {
"weight'': ""22000000000000000"
""hash_seed": 27781369

=
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Efficient Replacement: reuse seed

A The Hash Seed enables a clever trick:

When retiring a device set with replacement,
we-use the same hash seed for the new set

Since it seeds hashes in the same way, it
computes identical scores as the old set

When the retired set’s weight is set to 0, all
keys move from the old set to the new one

44
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Other ways to use WRH

7 We see many potential applications:

Performing work
7 Take on rebuilding tasks from a work gqueue
7 Assign compute jobs according to CPU capacity

Route access requests to “Access nodes”
7 Reduces contention, maximizes cache hits

Map data to drives within a storage node
7When a drive fails, remap data to other drives

45
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Thank you! Any Questions?

46
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