
ReFS v2 
Cloning, projecting, and moving data 

 
J.R. Tipton 

jrtipton@microsoft.com 



What are we talking about? 

• Two technical things we should talk about 
• Block cloning in ReFS 
• ReFS data movement & transformation 

• What I would love to talk about 
• Super fast storage (non-volatile memory) & file systems 
• What is hard about adding value in the file system 

• Technically 
• Socially/organizationally 

• Things we actually have to talk about 
• Context 

 



Agenda 

• ReFS v1 primer 
• ReFS v2 at a glance 
• Motivations for v2 
• Cloning 
• Translation 
• Transformation 



ReFS v1 primer 

• Windows allocate-on-write file system 
• A lot of Windows compatibility 

• Merkel trees verify metadata integrity 
• Data integrity verification optional 

• Online data correction from alternate copies 
• Online chkdsk (AKA salvage AKA fsck) 

• Gets corruptions out of the namespace quickly 

 



ReFS v2 intro 
• Available in Windows Server Technical Preview 4 
• Efficient, reliable storage for VMs: fast provisioning, fast diff merging, & tiering 
• Efficient erasure encoding / parity in mainline storage 
• Write tiering in the data path 

• Automatically redirect data to fastest tier 
• Data spills efficiently to slower tiers 

• Read caching 
• Block cloning 

• End-to-end optimizations for virtualization & more 
• File system-y optimizations 

• Redo log (for durable AKA O_SYNC/O_DSYNC/FUA/write-through) 
• B+ tree layout optimizations 
• Substantially more parallel 
• “Sparse VDL” – efficient uninitialized data tracking 
• Efficient handling of 4KB IO 



Why v2: motivations 

• Cheaper storage, but not slow storage 
• VM density 

• Incentive to share precious resources 
• Don’t do more IO than necessary 
• Don’t take more capacity than necessary 

• VM provisioning 
• More hardware flavors; less homogeneity in a commodity box 

• SLC, MLC, TLC flash 
• Shingled magnetic recording (SMR disks) 
• Scary fast storage 



Why v2: random write performance 

• Lots of magic in 
marketplace 

• Magic not holding up well 
in harsh environments 

• Exceptionally fast hardware 
• Small random writes 
• Writes that must be durable 

on ack (FUA AKA sync AKA 
write-through) 

 
 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Full file clone 

 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Reordering some or all data within a file 

 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Can be used to ‘project’ data from one area into another w/o copy 

 



Block cloning in ReFS, cont. 

• Copy-on-write only used when needed 
• ReFS knows when only one copy remaining 
• ReFS knows if it is okay to write in place 

• Cloning/projecting is metadata-only operation 
• Fine-grained synchronization 
• Time is linear with number of extents involved 

 



Block cloning in practice 

• Deleting a Hyper-V VM checkpoint 
• Differencing disks track differences from parent 
• At some point, parent data will be discarded 

• Easiest to write old & new data to new VHD 
• Block cloning “moves” the data quickly 
• Cleans up VHD metadata (data logically appears in preferred order) 

• Extremely fast on ReFS v2 



Block cloning in practice: delete checkpoint 

NTFS ReFS 

5 minutes 

5 seconds 

• Deleting VM checkpoint requires 
reordering of data into different 
VHDs 

• On traditional file systems this 
means moving a lot of blocks 

• ReFS can make this trivially fast 



Block cloning in practice: VM provisioning 

NTFS NTFS ReFS ReFS 

100 VHDs 1 minute 

1 VHD < 1 sec 



Block cloning observations 

• App-directed 
• Avoids data copies 
• Meta-point: not just data copying 

• Some subsystem metadata challenges can be offloaded 
• Hyper-V not only system utilizing this; avoiding data copies not only 

motivation 
• No free lunch 

• Multiple valid copies requires copy-on-write for modification 
• Some metadata overhead to track state 
• Slam dunk in most cases, but not all 
• Spreading cost around 

 



ReFS cluster bands 

• Volume internally divvied up into ‘bands’ 
• Bands are large relative to IO (e.g. 64MB, 256MB) 

• Bands contain regular FS clusters (4KB, 64KB) 
• ReFS tracks bands & clusters independently 

• Per-band metadata 

• Bands can come and go 
• Mostly invisible outside of file system 

• Aside from performance counters, etc. 
 



ReFS cluster bands illustrated (poorly) 

Volume divided into bands 

Bands divided into clusters 

key value 

• Band ID 
• Offset within band 
• Checksum 

File offset 

File extent tables 



ReFS cluster bands: translation 

• Less fancy explanation: “ReFS can move bands around” 
• Moving = reading, writing, updating band pointer 
• Efficient write caching & parity/erasure encoding 

• Redirect writes to bands in fast tier 
• Per-band metadata tracks heat, etc. 
• ReFS moves bands between storage tiers 

• Movement is sequential 
• Made more efficient by just-in-time allocation 



ReFS cluster bands: translation, cont. 

• Multi-tiered environments is focus in this release 
• Log structured? 

• Logs generally don’t write in-place, incurring GC all the time 
• Copy-on-write? 

• Only when necessary 

• From 100% 3x mirroring to 95% parity 
• Last 5% can be had, too 

• Where possible, act like a ‘dumb’ file system for efficiency 
• Only get smart when necessary 
• Being smart can be painful (at least that’s what smart people tell me) 

 
 



ReFS cluster bands: translation, cont. 

• Small writes accumulate in storage tier 
where writes are cheap 

• For example 
• Mirror 
• Flash 
• Log-structured arena 

• Bands are shuffled to storage tier 
where random writes are expensive 

• Most efficient is always to write 
sequentially 

• Band transfers are fully sequential 



ReFS cluster bands: transformation 

• Less fancy explanation: “ReFS can do stuff to the data in a band” 
• Can happen in background 

• Data path can just allocate-on-write & is otherwise unaffected 

• Examples 
• Band compaction 

• Put cold bands together, squeeze out free space 
• Does not affect read data path 

• Compression 
• Good candidate for background activity 
• Affects read data path (decompress) 

 



ReFS v2: miscellany 

• These new systems are not easily compared to previous systems 
• Can be challenging for software organizations to evaluate 

• Why is ZFS so much slower than UFS in my favorite scenario? 
• Why is ReFS not doing what NTFS does in my other favorite scenario? 
• Answers not obvious in vacuum – it’s about the real world situation 

• File systems taking on more responsibility than before 
• Automatically imbue many stacks with new traits 
• FS has a lot of “knowledge” 
• Trendy 
• ..but also complex, forced to make tradeoffs in general systems, and trendy. 



ReFS v2 

• Data cloning 
• Data movement 
• Data transformation 
• Smart when smart makes sense 

• Switches to ‘dumb’ when dumb is better 

• Takes advantage of hardware combinations 
• And lots of other stuff, too 


	ReFS v2
	What are we talking about?
	Agenda
	ReFS v1 primer
	ReFS v2 intro
	Why v2: motivations
	Why v2: random write performance
	Block cloning in ReFS
	Block cloning in ReFS
	Block cloning in ReFS
	Block cloning in ReFS
	Block cloning in ReFS, cont.
	Block cloning in practice
	Block cloning in practice: delete checkpoint
	Block cloning in practice: VM provisioning
	Block cloning observations
	ReFS cluster bands
	ReFS cluster bands illustrated (poorly)
	ReFS cluster bands: translation
	ReFS cluster bands: translation, cont.
	ReFS cluster bands: translation, cont.
	ReFS cluster bands: transformation
	ReFS v2: miscellany
	ReFS v2

