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What are we talking about? 

• Two technical things we should talk about 
• Block cloning in ReFS 
• ReFS data movement & transformation 

• What I would love to talk about 
• Super fast storage (non-volatile memory) & file systems 
• What is hard about adding value in the file system 

• Technically 
• Socially/organizationally 

• Things we actually have to talk about 
• Context 

 



Agenda 

• ReFS v1 primer 
• ReFS v2 at a glance 
• Motivations for v2 
• Cloning 
• Translation 
• Transformation 



ReFS v1 primer 

• Windows allocate-on-write file system 
• A lot of Windows compatibility 

• Merkel trees verify metadata integrity 
• Data integrity verification optional 

• Online data correction from alternate copies 
• Online chkdsk (AKA salvage AKA fsck) 

• Gets corruptions out of the namespace quickly 

 



ReFS v2 intro 
• Available in Windows Server Technical Preview 4 
• Efficient, reliable storage for VMs: fast provisioning, fast diff merging, & tiering 
• Efficient erasure encoding / parity in mainline storage 
• Write tiering in the data path 

• Automatically redirect data to fastest tier 
• Data spills efficiently to slower tiers 

• Read caching 
• Block cloning 

• End-to-end optimizations for virtualization & more 
• File system-y optimizations 

• Redo log (for durable AKA O_SYNC/O_DSYNC/FUA/write-through) 
• B+ tree layout optimizations 
• Substantially more parallel 
• “Sparse VDL” – efficient uninitialized data tracking 
• Efficient handling of 4KB IO 



Why v2: motivations 

• Cheaper storage, but not slow storage 
• VM density 

• Incentive to share precious resources 
• Don’t do more IO than necessary 
• Don’t take more capacity than necessary 

• VM provisioning 
• More hardware flavors; less homogeneity in a commodity box 

• SLC, MLC, TLC flash 
• Shingled magnetic recording (SMR disks) 
• Scary fast storage 



Why v2: random write performance 

• Lots of magic in 
marketplace 

• Magic not holding up well 
in harsh environments 

• Exceptionally fast hardware 
• Small random writes 
• Writes that must be durable 

on ack (FUA AKA sync AKA 
write-through) 

 
 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Full file clone 

 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Reordering some or all data within a file 

 



Block cloning in ReFS 

• Clone any block of one file into any other block of another file 
• Can be used to ‘project’ data from one area into another w/o copy 

 



Block cloning in ReFS, cont. 

• Copy-on-write only used when needed 
• ReFS knows when only one copy remaining 
• ReFS knows if it is okay to write in place 

• Cloning/projecting is metadata-only operation 
• Fine-grained synchronization 
• Time is linear with number of extents involved 

 



Block cloning in practice 

• Deleting a Hyper-V VM checkpoint 
• Differencing disks track differences from parent 
• At some point, parent data will be discarded 

• Easiest to write old & new data to new VHD 
• Block cloning “moves” the data quickly 
• Cleans up VHD metadata (data logically appears in preferred order) 

• Extremely fast on ReFS v2 



Block cloning in practice: delete checkpoint 

NTFS ReFS 

5 minutes 

5 seconds 

• Deleting VM checkpoint requires 
reordering of data into different 
VHDs 

• On traditional file systems this 
means moving a lot of blocks 

• ReFS can make this trivially fast 



Block cloning in practice: VM provisioning 

NTFS NTFS ReFS ReFS 

100 VHDs 1 minute 

1 VHD < 1 sec 



Block cloning observations 

• App-directed 
• Avoids data copies 
• Meta-point: not just data copying 

• Some subsystem metadata challenges can be offloaded 
• Hyper-V not only system utilizing this; avoiding data copies not only 

motivation 
• No free lunch 

• Multiple valid copies requires copy-on-write for modification 
• Some metadata overhead to track state 
• Slam dunk in most cases, but not all 
• Spreading cost around 

 



ReFS cluster bands 

• Volume internally divvied up into ‘bands’ 
• Bands are large relative to IO (e.g. 64MB, 256MB) 

• Bands contain regular FS clusters (4KB, 64KB) 
• ReFS tracks bands & clusters independently 

• Per-band metadata 

• Bands can come and go 
• Mostly invisible outside of file system 

• Aside from performance counters, etc. 
 



ReFS cluster bands illustrated (poorly) 

Volume divided into bands 

Bands divided into clusters 

key value 

• Band ID 
• Offset within band 
• Checksum 

File offset 

File extent tables 



ReFS cluster bands: translation 

• Less fancy explanation: “ReFS can move bands around” 
• Moving = reading, writing, updating band pointer 
• Efficient write caching & parity/erasure encoding 

• Redirect writes to bands in fast tier 
• Per-band metadata tracks heat, etc. 
• ReFS moves bands between storage tiers 

• Movement is sequential 
• Made more efficient by just-in-time allocation 



ReFS cluster bands: translation, cont. 

• Multi-tiered environments is focus in this release 
• Log structured? 

• Logs generally don’t write in-place, incurring GC all the time 
• Copy-on-write? 

• Only when necessary 

• From 100% 3x mirroring to 95% parity 
• Last 5% can be had, too 

• Where possible, act like a ‘dumb’ file system for efficiency 
• Only get smart when necessary 
• Being smart can be painful (at least that’s what smart people tell me) 

 
 



ReFS cluster bands: translation, cont. 

• Small writes accumulate in storage tier 
where writes are cheap 

• For example 
• Mirror 
• Flash 
• Log-structured arena 

• Bands are shuffled to storage tier 
where random writes are expensive 

• Most efficient is always to write 
sequentially 

• Band transfers are fully sequential 



ReFS cluster bands: transformation 

• Less fancy explanation: “ReFS can do stuff to the data in a band” 
• Can happen in background 

• Data path can just allocate-on-write & is otherwise unaffected 

• Examples 
• Band compaction 

• Put cold bands together, squeeze out free space 
• Does not affect read data path 

• Compression 
• Good candidate for background activity 
• Affects read data path (decompress) 

 



ReFS v2: miscellany 

• These new systems are not easily compared to previous systems 
• Can be challenging for software organizations to evaluate 

• Why is ZFS so much slower than UFS in my favorite scenario? 
• Why is ReFS not doing what NTFS does in my other favorite scenario? 
• Answers not obvious in vacuum – it’s about the real world situation 

• File systems taking on more responsibility than before 
• Automatically imbue many stacks with new traits 
• FS has a lot of “knowledge” 
• Trendy 
• ..but also complex, forced to make tradeoffs in general systems, and trendy. 



ReFS v2 

• Data cloning 
• Data movement 
• Data transformation 
• Smart when smart makes sense 

• Switches to ‘dumb’ when dumb is better 

• Takes advantage of hardware combinations 
• And lots of other stuff, too 
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