Storage Class Memory Support in the Windows Operating System

Neal Christiansen
Principal Development Lead
Microsoft
nealch@microsoft.com
What is “Storage Class Memory”?

- **Paradigm Shift**: A non-volatile storage medium with RAM-like performance characteristics - Low latency/high bandwidth.

- Resides on the memory bus
 - Underlying technology does not matter

- Several different terms in use:
 - Storage Class Memory (SCM)
 - Direct Access Storage (DAS)
 - Byte Addressable Storage (BAS)
 - Persistent Memory (PM)
 - Non-Volatile Memory (NVM)
NVDIMM-N

- NVDIMM-N is an example of this new type of storage
 - Has DRAM and Flash on DIMM module
 - DRAM contents saved to Flash on power fail
 - Requires per module or central backup power source
 - Requires Specific platform support
- Available today

Source: Viking Technology
Standardization

Purpose

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. UEFI Persistent Memory Type (UEFI 2.5)</td>
<td>UEFI Standards Working Group</td>
</tr>
<tr>
<td>2. ACPI Persistent Memory Type, NFIT, ACPI Namespace Object for NVDIMM devices (ACPI 6.0)</td>
<td>ACPI Standards Working Group</td>
</tr>
<tr>
<td>3. Identification for NVDIMM devices (DDR4 SPD Document Release 3)</td>
<td>JEDEC SPD TG</td>
</tr>
<tr>
<td>4. Standard interface to NVDIMM-N (Byte-Addressable Energy-Backed Interface Specification)</td>
<td>JEDEC TG456_2</td>
</tr>
<tr>
<td>5. NVDIMM-N Health and management data (Microsoft _DSM for JEDEC Byte-Addressable Energy-Backed Interface NVDIMMs)</td>
<td>Microsoft</td>
</tr>
</tbody>
</table>

Diagram

- **Application/OS**: SNIA
- **Driver Stack**: ASWG
- **Platform**: ASWG
- **Software**: ASWG
- **Controller**: JEDEC
- **SPD**: JEDEC
- **UEFI**: USWG
- **ACPI**: USWG
- **Firmware**: USWG

Diagram Notes

- **Controller**: JEDEC
- **SPD**: JEDEC
- **Firmware**: USWG
- **UEFI**: USWG
- **ACPI**: USWG

Key Components

- **Application/OS**: SNIA
- **Driver Stack**: ASWG
- **Platform**: ASWG
- **Software**: ASWG
- **Controller**: JEDEC
- **SPD**: JEDEC
- **UEFI**: USWG
- **ACPI**: USWG
- **Firmware**: USWG

Legend

- **NVDIMM**: Discrete/Sharded Energy Source
- **Driver Stack**: Application/OS
SCM Storage Drivers

- New driver model
 - SCM Bus Driver
 - Enumerates the physical and logical SCM devices on the system
 - SCM Disk Drivers
 - Driver for logical SCM devices
 - Storage abstraction layer to rest of the OS
 - Hardware-specific
 - Can support both standards or vendor-specific driver

- New interfaces to expose byte addressable storage functionality and to support SCM management
Windows Goals for Storage Class Memory

1. Support zero-copy access to persistent memory
2. Most existing user-mode applications will run without modification
3. Provide an option to support 100% backward compatibility
 - Introduces new types of failure modes
4. Make available sector granular failure modes for application compatibility
BTT – Block Translation Table

- Algorithm created by Intel
- Provides sector level atomicity of writes
 - No sub-sector torn writes
 - On power loss either see contents of old sector or new sector
 - Maintains compatibility with existing applications that have built-in assumptions around storage failure patterns
- SCM Storage Drivers will support BTT
 - May have an option to disable
File Systems and Storage Class Memory

- SCM is a disruptive technology
- Customers want the fastest performance
 - System software is in the way!
- Customers want application compatibility
- Can be conflicting goals
A Storage Class Memory Aware File Systems for Windows

- A volume can be in one of the following modes:
 - Block mode
 - DAS mode
- The mode is chosen at format time
Block Mode Volumes

- Maintains existing storage semantics
 - All IO operations traverse the storage stack to the SCM storage driver
 - Shorter path length through storage stack
- Fully compatible with existing applications
- Supported by all Windows file systems
- Works with existing file system and storage filters
DAS Mode Volumes

- Introduces new storage concepts
 - Memory mapped files provide applications with zero copy access to SCM
 - Maximizes performance
- Some existing functionality is lost
- DAS mode will be supported by both the NTFS and ReFS file systems
Application

Block Mode Access

Standard Raw Disk Access

Application

SCM Driver

File System

Direct Access

Application

Section

Standard File API

Cached IO

SCM Capable File System with Cache Manager

Memory Mappings

File System Metadata

Non-cached IO

SCM Driver

Storage Class Memory (SCM)
Memory Mapped IO in DAS mode

- On DAS formatted volumes creation of a memory mapped section will map directly to SCM hardware
- No change to existing memory mapping APIs
- When an application creates a memory mapped section:
 - The memory manager asks the File System if the section should be created in DAS mode
 - The FS returns YES when:
 - The volume resides on SCM hardware
 - The volume has been formatted for DAS mode
Memory Mapped IO in DAS mode

- When a DAS mode section is requested
 - MM asks the file system for the physical memory ranges for a given offset and length of the file
 - The file system translates the given file offset and length into one or more volume relative extents (sector offset and length)
 - The file system then asks the storage stack to translate these extents into physical memory ranges
 - MM then updates its paging tables for the section which maps directly to the persistent storage
Memory Mapped IO in DAS mode

- This is true zero-copy access to storage
 - An application has direct access to persistent memory
- BTT is not used
 - An application may see new failure patterns on power loss or system crash
- Important \Rightarrow No paging reads or paging writes will be generated
Cached IO in DAS mode

- When cached IO is requested for a file on a DAS enabled volume the Windows cache manager will create a DAS enabled cache map.
- The cache manager will then copy directly between the user’s buffer and SCM.
 - Cached IO has **one-copy** access to storage.
Cached IO in DAS mode

- Cached IO is coherent with memory mapped IO
- BTT is not used
 - An application may see new failure patterns on power loss or system crash
- As in the Memory Mapped IO case, no paging reads or paging writes will be generated
Non-cached IO in DAS Mode

- Will send IO operations down the storage stack to the SCM storage driver
 - Will use BTT
 - Maintains existing storage semantics for application compatibility
File System Metadata in DAS Mode

- File system metadata files will operate in block mode
 - Meaning paging reads/writes will be generated for all FS metadata operations
 - Needed to maintain existing ordered write guarantees for write-ahead logging
- One or more metadata files may switch to DAS mode access in the future
Impacts to File System Functionality in DAS Mode

- Direct access to storage by applications eliminates the traditional hook points that file systems use to implement various features.

- Following is functionality that cannot be supported on DAS enabled volumes:
 - No NTFS encryption support
 - No NTFS compression support
 - No NTFS TxF support
 - No ReFS integrity stream support
 - No ReFS cluster band support
 - No ReFS block cloning support
 - No volume encryption support via BitLocker
 - It is expected that SCM vendors will provide hardware encryption in the future
 - No volume snapshot support via Volsnap
 - No mirrored or parity storage support via Spaces or dynamic volumes
Impacts to File System Functionality in DAS Mode

- Functionality that is not currently supported but can be supported in the future:
 - Sparse files
- For writeable memory mapped files the file system no longer knows when the file has been modified
 - The following file system features are now updated at the time the file is memory mapped
 - Updating the file’s modification time
 - Marking the file as modified in the USN Journal
 - Signaling directory change notification
File System Filters

- File system filters are drivers that layer above the file system and can interact with all operations as they come into and out of the file system.
 - Filters have the ability to augment file system functionality.
 - Example classes of filters: Anti-virus, replication, HSM, encryption, compression, quota, activity monitor, etc.
File System Filters in DAS Mode

To minimize compatibility issues:

- No existing filter will receive notification when a DAS volume is mounted.
- At filter registration time filters will indicate via a new registration flag if they understand DAS mode semantics.
Compatibility Issues with Filters in DAS Mode

- Data Transformation Filters
 - There is no opportunity for these filters (ex: encryption and compression) to do their work
- Anti-virus filters
 - Minimally impacted because scanning is performed on file open and close
 - Detecting when a file is modified will need to be updated
 - Watch for creation of writeable mapped sections
Intel NVML Library

- Open source library implemented by Intel
- Defines a set of application API’s for directly manipulating files on SCM hardware
- Available for Linux today via GitHub
- Microsoft is working with Intel on a Windows port
Questions?