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Latency Thresholds Cause Disruption 
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SNIA NVM Programming Model 

 Version 1.1 approved by SNIA in March 2015 
 http://www.snia.org/tech_activities/standards/curr_standards/npm 

 Expose new block and file features to applications 
 Atomicity capability and granularity 
 Thin provisioning management 

 Use of memory mapped files for persistent memory 
 Existing abstraction that can act as a bridge 
 Limits the scope of application re-invention 
 Open source implementations available 

 Programming Model, not API 
 Described in terms of attributes, actions and use cases 
 Implementations map actions and attributes to API’s 
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Persistent Memory Modes 

Use with memory-like NVM 
 
NVM.PM.VOLUME Mode 
 Software abstraction to OS components 

for Persistent Memory (PM) hardware 
 List of physical address ranges for each 

PM volume 
 Thin provisioning management 

 
NVM.PM.FILE Mode 
 Describes the behavior for applications 

accessing persistent memory Discovery 
and use of atomic write features 

 Mapping PM files (or subsets of files) to 
virtual memory addresses 

 Syncing portions of PM files to the 
persistence domain 
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Programming Model Application Impact 

 Map and Sync Paradigm 
 Map associates memory addresses with PM in files 
 Sync ensures that modifications to data are persistent 
 Sync does not guarantee order 

 Pointers – how do PM data structures reference each other? 
 Virtual addresses can be used as pointers? 
 Always use an offset from a re-locatable base? 

 Failure Atomicity 
 Different from the inter-process consistency in current architectures 
 Processor architecture specific 

 Exception Handling instead of status 
 If low level failure recovery fails 
 If backtracking is needed because PM was restored to an earlier state 
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Application Horizons 
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Persistent Memory Data Structures 
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Libraries Using NVM Programming Model 
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Trivial Example: Append Only Log 
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Append pseudo-code: 
<Create new log entry in free space> 
Sync(new entry); 
filled = filled + size(new entry);  # Atomic update to fundamental data type 
Sync(filled); 

Pre-allocated PM pool 

Int filled; Next entry WIP 

Filled part of log Free part of log 
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PM Data Structures 

 It can be more efficient to avoid modifying data in place 
 Use newly allocated space 
 PM allocation itself must be atomic/transactional 

 Form groups of data structures 
 Within a PM pool 
 Cataloged under a common root 

 Unify groups of PM data structures into larger transactions 
 Transaction object tracks and manages PM updates 
 Captures pre-images and rolls back if needed 
 Syncs/Flushes data to persistence domain 
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Pmem.io Library 

 http://pmem.io/nvml 
 PM assist functions 

 Map, Sync, Allocation 
 PM Data Structures  

 Log, Block 
 PM Object 

 Root, Transactions, Type Safety and more 
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Library vs. Language Extensions 

 Features similar to pmem can be integrated into 
standard programming languages 
 More convenient 
 More sophisticated 
 Safer 

http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf 
Failure atomic code sections based on existing critical sections 

http://www.snia.org/sites/default/files/BillBridgeNVMSummit
2015Slides.pdf  

NVM region file management, transactions with locks, heap management 
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http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
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Failure Recovery 
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PM Fault Tolerance 
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High Durability and High Availability (HA) 

Durability 
Ability to (eventually) recover 

data after failure 
e.g. Local mirroring (1) 
Does not guarantee 

continuous access 

 
Availability 
Ability to continuously access 

data regardless of failure 
Requires cross-node 

redundancy (2) 
High availability requires high 

durability 
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Remote Access for High Availability 

 SNIA NVMP TWG work in progress 
 Use today’s RDMA to explore this use case 
 Agnostic to specific implementation (IB, ROCE, iWARP) 
 Optimal implementation may not always be RDMA 

 Recommends Remote OptimizedFlush network service 
 Goal is to minimize latency 
 Requires at least 2 round trips with today’s implementations 
 Main issue is assurance of durability at remote site. 

 New RDMA completion type helps 
 Proposed in Open Fabrics Alliance IO working group 
 Delays RDMA completion until data is in the remote persistence domain 
 Likely component of remote optimized flush implementation 
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Application Recovery and Consistency 

 Application level goal is recovery from failure 
 Requires robust local and remote error handling 
 High Availability (as opposed to High Durability) in today’s systems 

requires application involvement. 
 High Availability is high latency (10’s of uS) compared to memory 

 Consistency is an application specific constraint 
 Uncertainty of data state after failure 
 Crash consistency 
 Higher order consistency points such as transactions 
 Atomicity of Aligned Fundamental Data Types 

 Use consistency points to optimize HA performance 
 Periodic consistency points comprise groups of transactions 
 Apply recovery point objectives 
 Recovery may require application level backtracking 
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Backtracking Recovery 

 Occurs when PM state is recovered to a recent consistency point 
 Created by remote optimized flush or transaction 
 Requires work in progress to be reconciled by the application 

 Detection 
 During an exception 
 During a system or application restart 

 Application Response 
 Transaction roll forward or roll back and retry 
 Consistency checking and correction 
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Application Horizons 
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Related Talks 
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Related Talks at SDC 
 PM Hardware 

 The NVDIMM Cookbook: A Soup-to-Nuts Primer on Using NVDIMMs to 
Improve Your Storage Performance 
Jeff Chang, AgigA Tech and Arthur Sainio, Smart Modular 

 PM Management 
 Managing the Next Generation Memory Subsystem 

Paul von Behren, Software Architect, Intel 
 PM Performance 

 Load-Sto-Meter: Generating Workloads for Persistent Memory Doug 
Voigt, Damini Chopra, Storage CT Office, HP 

 Remote Access and Failure Recovery 
 Remote Access to Ultra-low-latency Storage 

Tom Talpey, Architect, Microsoft 
 RDMA with PM: Software Mechanisms for Enabling Persistent Memory 

Replication, Chet Douglas, Principal SW Architect, Intel 
21 
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Related Talks at SDC 
 Applications of Persistent Memory 

 Solving the Challenges of Persistent Memory Programming 
Sarah Jelinek, Senior SW Engineer, Intel 

 Building NVRAM Subsystems in All-Flash Storage Arrays 
Pete Kirkpatrick, Principal Engineer, Pure Storage 

 Keynote earlier today 
 Planning for the Next Decade of NVM Programming 

Andy Rudoff, SNIA NVM Programming TWG, Intel  
 Also check out persistent memory presentations in the pre-conference 

 Advances in Non-Volatile Storage Technologies  
 Nonvolatile Memory (NVM), Four Trends in the Modern Data Center, and 

the Implications for the Design of Next Generation Distributed Storage 
Platforms  

 Developing Software for Persistent Memory 
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