
2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Preparing Applications
for Persistent Memory

Doug Voigt
Hewlett Packard (Enterprise)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Latency Thresholds Cause Disruption

2

La
te

nc
y

(L
og

)

200 nS

2 uS

HDD SATA
SSD

NVMe
Flash

Persistent
Memory

Context
Switch

NUMA

Min, Max Latencies For
Example Technologies

“Persistent memory” refers to
memory-like non-volatile memory

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

SNIA NVM Programming Model

 Version 1.1 approved by SNIA in March 2015
 http://www.snia.org/tech_activities/standards/curr_standards/npm

 Expose new block and file features to applications
 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

3

http://www.snia.org/tech_activities/standards/curr_standards/npm

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Memory Modes

Use with memory-like NVM

NVM.PM.VOLUME Mode
 Software abstraction to OS components

for Persistent Memory (PM) hardware
 List of physical address ranges for each

PM volume
 Thin provisioning management

NVM.PM.FILE Mode
 Describes the behavior for applications

accessing persistent memory Discovery
and use of atomic write features

 Mapping PM files (or subsets of files) to
virtual memory addresses

 Syncing portions of PM files to the
persistence domain

4

Application

PM device PM device. . .

User space

Kernel space

MMU
Mappings

PM-aware
file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware
kernel module

PM device

NVM.PM.VOLUME
mode

NVM.PM.FILE mode

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Programming Model Application Impact

 Map and Sync Paradigm
 Map associates memory addresses with PM in files
 Sync ensures that modifications to data are persistent
 Sync does not guarantee order

 Pointers – how do PM data structures reference each other?
 Virtual addresses can be used as pointers?
 Always use an offset from a re-locatable base?

 Failure Atomicity
 Different from the inter-process consistency in current architectures
 Processor architecture specific

 Exception Handling instead of status
 If low level failure recovery fails
 If backtracking is needed because PM was restored to an earlier state

5

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Application Horizons

6

Compiler

Until
Recently

Horizon 3:
Languages

Application

File System File System

File System

PM

Application Application

Application
PM Library

File System

PM PM

Disk Driver

Horizon 1:
PM Middleware

Horizon 2:
PM Libraries

SSD

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Memory Data Structures

7

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Libraries Using NVM Programming Model

8

Kernel
Space

 PM Aware
 Application

PM-Aware
File System

MMU
Mapp
ings

Persistent Memory

PM data structure
libraries

File APIs Mem ops

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Trivial Example: Append Only Log

9

Append pseudo-code:
<Create new log entry in free space>
Sync(new entry);
filled = filled + size(new entry); # Atomic update to fundamental data type
Sync(filled);

Pre-allocated PM pool

Int filled; Next entry WIP

Filled part of log Free part of log

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

PM Data Structures

 It can be more efficient to avoid modifying data in place
 Use newly allocated space
 PM allocation itself must be atomic/transactional

 Form groups of data structures
 Within a PM pool
 Cataloged under a common root

 Unify groups of PM data structures into larger transactions
 Transaction object tracks and manages PM updates
 Captures pre-images and rolls back if needed
 Syncs/Flushes data to persistence domain

10

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Pmem.io Library

 http://pmem.io/nvml
 PM assist functions

 Map, Sync, Allocation
 PM Data Structures

 Log, Block
 PM Object

 Root, Transactions, Type Safety and more

11

http://pmem.io/nvml

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Library vs. Language Extensions

 Features similar to pmem can be integrated into
standard programming languages
 More convenient
 More sophisticated
 Safer

http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
Failure atomic code sections based on existing critical sections

http://www.snia.org/sites/default/files/BillBridgeNVMSummit
2015Slides.pdf

NVM region file management, transactions with locks, heap management

12

http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Failure Recovery

13

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

PM Fault Tolerance

14

User
Space

Kernel
Space

 PM Aware
 Application

PM-Aware
File System

MMU
Mapp
ings

Persistent Memory

PM RAID or
Erasure Coding

File APIs Mem ops

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

High Durability and High Availability (HA)

Durability
Ability to (eventually) recover

data after failure
e.g. Local mirroring (1)
Does not guarantee

continuous access

Availability
Ability to continuously access

data regardless of failure
Requires cross-node

redundancy (2)
High availability requires high

durability

15

CPU
NVDIMMS

IO

CPU IO

Network
Adapter

Network
Adapter

Network
Switch(s)

Server

Server
2

1St

St

NVDIMMS

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Remote Access for High Availability

 SNIA NVMP TWG work in progress
 Use today’s RDMA to explore this use case
 Agnostic to specific implementation (IB, ROCE, iWARP)
 Optimal implementation may not always be RDMA

 Recommends Remote OptimizedFlush network service
 Goal is to minimize latency
 Requires at least 2 round trips with today’s implementations
 Main issue is assurance of durability at remote site.

 New RDMA completion type helps
 Proposed in Open Fabrics Alliance IO working group
 Delays RDMA completion until data is in the remote persistence domain
 Likely component of remote optimized flush implementation

16

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Application Recovery and Consistency

 Application level goal is recovery from failure
 Requires robust local and remote error handling
 High Availability (as opposed to High Durability) in today’s systems

requires application involvement.
 High Availability is high latency (10’s of uS) compared to memory

 Consistency is an application specific constraint
 Uncertainty of data state after failure
 Crash consistency
 Higher order consistency points such as transactions
 Atomicity of Aligned Fundamental Data Types

 Use consistency points to optimize HA performance
 Periodic consistency points comprise groups of transactions
 Apply recovery point objectives
 Recovery may require application level backtracking

17

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Backtracking Recovery

 Occurs when PM state is recovered to a recent consistency point
 Created by remote optimized flush or transaction
 Requires work in progress to be reconciled by the application

 Detection
 During an exception
 During a system or application restart

 Application Response
 Transaction roll forward or roll back and retry
 Consistency checking and correction

18

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Application Horizons

19

Compiler

Until
Recently

Horizon 3:
Languages

Application

File System File System

File System

PM

Application Application

Application
PM Library

File System

PM PM

Disk Driver

Horizon 1:
PM Middleware

Horizon 2:
PM Libraries

SSD

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Related Talks

20

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Related Talks at SDC
 PM Hardware

 The NVDIMM Cookbook: A Soup-to-Nuts Primer on Using NVDIMMs to
Improve Your Storage Performance
Jeff Chang, AgigA Tech and Arthur Sainio, Smart Modular

 PM Management
 Managing the Next Generation Memory Subsystem

Paul von Behren, Software Architect, Intel
 PM Performance

 Load-Sto-Meter: Generating Workloads for Persistent Memory Doug
Voigt, Damini Chopra, Storage CT Office, HP

 Remote Access and Failure Recovery
 Remote Access to Ultra-low-latency Storage

Tom Talpey, Architect, Microsoft
 RDMA with PM: Software Mechanisms for Enabling Persistent Memory

Replication, Chet Douglas, Principal SW Architect, Intel
21

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Related Talks at SDC
 Applications of Persistent Memory

 Solving the Challenges of Persistent Memory Programming
Sarah Jelinek, Senior SW Engineer, Intel

 Building NVRAM Subsystems in All-Flash Storage Arrays
Pete Kirkpatrick, Principal Engineer, Pure Storage

 Keynote earlier today
 Planning for the Next Decade of NVM Programming

Andy Rudoff, SNIA NVM Programming TWG, Intel
 Also check out persistent memory presentations in the pre-conference

 Advances in Non-Volatile Storage Technologies
 Nonvolatile Memory (NVM), Four Trends in the Modern Data Center, and

the Implications for the Design of Next Generation Distributed Storage
Platforms

 Developing Software for Persistent Memory

22

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Preparing Applications
for Persistent Memory

Doug Voigt
Hewlett Packard (Enterprise)

	Preparing Applications �for Persistent Memory
	Latency Thresholds Cause Disruption
	SNIA NVM Programming Model
	Persistent Memory Modes
	Programming Model Application Impact
	Application Horizons
	Slide Number 7
	Libraries Using NVM Programming Model
	Trivial Example: Append Only Log
	PM Data Structures
	Pmem.io Library
	Library vs. Language Extensions
	Slide Number 13
	PM Fault Tolerance
	High Durability and High Availability (HA)
	Remote Access for High Availability
	Application Recovery and Consistency
	Backtracking Recovery
	Application Horizons
	Slide Number 20
	Related Talks at SDC
	Related Talks at SDC
	Preparing Applications �for Persistent Memory

