

Managing the Next Generation Memory Subsystem

Scott Kirvan and Paul von Behren 9/22/2015

Agenda

- Memory technologies & management challenges
- Concepts and practices for managing next generation memory technologies
- Emerging management standards, open source code, documentation

Manory Technologies & Management USE Cases

TodayKey use cases are around discovery and identification

Technology/Feature	Management Use Cases
Processor Cache	How much do I have?How much per core?
Memory controller, channels, slots DIMMs	 BIOS interleave configuration. How much capacity do I have? How many empty slots do I have?
Memory and channel clock speed	What is the speed of my installed memory?
Redundancy: rank sparing, mirroring	BIOS configurationMirror intact? Spare consumed?
SSDs cache for HDDs	 Set cache size, determine status Select files/directories cached Select pinned files

NVDIMM-N

- Non-volatile memory created by combining volatile & nonvolatile media with a power source
 - DRAM speeds
 - Triggering mechanism like ADR to save volatile media contents to nonvolatile media
 - □ Platform support, BIOS support
 - Interleaved separately from DRAM
 - □ BIOS uniquely identifies volatile/non-volatile memory regions.

NVDIMM-N Management Use Cases

- Unique use cases are save/restore related
 - ☐ Trigger save, trigger restore
 - Monitor save/restore status
 - Monitor energy source, flash health, save readiness
- ☐ Standard NVDIMM use cases apply as well
 - Replace a failed (interleaved) DIMM
 - Update firmware on DIMM
 - Decommission, erase sensitive persistent content

NVDIMM-F

- Block device, DIMM form factor
 - Custom BIOS uniquely identifies block NVDIMM-F capacity in the system address map
 - Co-exists with DRAM
 - Some system DRAM may be used for caching.
 - Custom diver presents DIMMs as standard block device to the OS
 - Better than SSD performance.

NVDIMM-F Management Use Cases

- Unique use cases are storage oriented
 - Monitor flash spare/wear & other drive like SMART metrics
 - Standard block device partitioning/formatting
 - Software RAID
- Standard NVDIMM use cases apply as well
 - Update firmware on DIMM
 - Decommission, erase sensitive persistent content
 - Backup

NVDIMM-P (proposed)

- Non-volatile memory fast enough for direct MC access or directly accessible DRAM & NAND
 - Near-DRAM speeds, directly accessible by MC
 - Very large capacities
 - May include multi-mode capable, byte and/or block addressable
 - BIOS uniquely identifies volatile/non-volatile memory regions.

NVDIMM-P Management Use Cases

- Unique use cases are configuration oriented
 - Configure RAS and performance characteristics via BIOS
 - Configure block & direct access devices via driver
 - Optimize configuration for a given workload
- But many of the NVDIMM-N/F cases apply as well.
 - Replace a failed (interleaved) DIMM
 - Update firmware on DIMM
 - Decommission, erase sensitive persistent content

NEXTENSATION TO THE COMPTS

Memory is not a monolithic resource

- There can be multiple types of devices plugged into the memory bus
 - Devices may co-exist or require their own channel
 - They may work cooperatively or may be segregated
 - BIOS recognizes distinct device characteristics
 - □ MC programming, memory map reflect differences
 - □ Report uniquely in SMBIOS, ACPI (E820)
 - Management tools need to differentiate memory types and manage accordingly

Configuration Required

- BIOS needs help optimizing memory configuration
 - Choices
 - □ Volatile vs. persistent
 - □ Interleaved, mirrored
 - □ Block access, byte access
 - □ Cooperative relationships
 - Constraints
 - □ Topology restrictions
 - □ OS support
 - Workload requirements
 - Management tools translate user requests

Persistent Handles

- Applications must be able to access same persistent memory regions across restarts
 - File systems + drivers support exactly this type of behavior for other resources
 - Must be able to allocate & label a region of persistent memory
 - Potentially allocate from a pool with particular QoS
 - Deallocate when done, modify if needed

Data Management Needed

- Persistence creates reliability, serviceability & security concerns
 - Interleaving NVDIMMs complicates failure domains.
 - Replace failed DIMMs, rebuild logical storage entities and restore data from backup
 - Failed server –need to migrate NVDIMMs to a new server and locate logical storage entities
 - Repurposing NVDIMMs –must be able to securely erase data

Optimization is Hard

- NUMA just one example of configuration driven performance degradation
 - OS attempts to co-locate process and memory in multisocket systems
 - May not be possible if persistent allocations are not well thought out.
 - Cross-socket access increases latency
 - Management tools need to expose socket relationships

PEResources

Standards, Documentation, Code

Software/Interface Ecosystem

- End-user tools –CLI, XML, etc.
- Integration management libraries
- □ **Kernel** –sysfs, ioctl, etc.
- Out-of-band –IPMI, Redfish
- BIOS –ACPI, _DSM, UEFI driver protocols
- □ Hardware −registers, FW interfaces

BIOS

NVDIMM Firmware Interface Table (NFIT)

- BIOS tables that describe NVDIMM resources to OS
- Maps system physical address ranges to NVDIMMs including any interleaving schemes in use
- Describes QoS characteristics of the range (e.g. cacheable, writeprotected, etc.)
- NVDIMM control surfaces (e.g. CSRs, block access mechanisms)
- http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf

Device Specific Methods (_DSM)

- BIOS runtime interface to access NVDIMM functionality
- http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf

Kernel

- Linux PMEM Driver, ndctl
 - Persistent RAM Driver --/sysfs management interface, persistent memory namespace management
 - □ Bulk of NVMDIMM extensions included in 4.2 kernel (kernel.org)
 - □ https://github.com/01org/prd
 - □ Intel repo with upstream kernel and emerging NVDIMM-related patches
 - http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
 - http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
 - □ NDCTL –low level Linux only library for accessing NVDIMM management features.
 - □ https://github.com/pmem/ndctl

Emerging general-purpose NVDIMM management model

- □ DMTF DSP1071 CIM static model for memory resource discovery.
 - http://www.dmtf.org/sites/default/files/standards/documents/DSP1071_ 1.0.0a.pdf
- SNIA Memory Configuration, Persistent Configuration CIM models for creating the system address map and for allocating and labeling persistent memory regions.
 - ☐ In 2016, look for SMI-S 1.7.0 here:
 - http://www.snia.org/tech_activities/standards/curr_standards/smi
 - □ SNIA SMI TSG members, look for 1.7.0 Rev 3 or 4, Host Book here:
 - https://members.snia.org/members/smis/
 - □ Older version, but publicly available
 - http://www.snia.org/sites/default/files/SmisMemoryProfiles_v1.7r2.pdf

Stay Tuned!

□ Additional documentation, reference/open source code, standards related to NVDIMMs are in the works.

experience what's inside™