
2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Solving the Challenges of Persistent
Memory Programming

Sarah Jelinek
Intel Corporation

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Disclaimer
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL
APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information.

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may
affect actual performance.

Intel, the Intel logo, are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

Copyright © 2015 Intel Corporation. All rights reserved

*Other brands and names may be claimed as the property of others.

2

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Agenda
 What is Persistent Memory

 Visibility vs. Persistence
 Overview of Persistent Memory and the Non-

Volatile Memory Library
 Context of current work
 Challenges with integration of volatile mode

persistent memory
 Challenges with integration of persistent mode

persistent memory

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What Is Persistent Memory?
 Byte-addressable memory, but

persistent
 Must be reasonable to stall a CPU

waiting for a load to finish
 So, not NAND NVM based

 Can do small I/O
 DIMMs are 64B cache line accessible

 Can DMA to it
 Receive data from network directly to

persistence!
 At IDF Intel said capacity will be up to 6TB on

a two-socket server

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Visibility vs. Persistence

 It has always been thus:
open()
mmap()
store...

msync()

 pmem just follows this decades-old model

 But the stores are cached in a different spot

Visible

Persistent

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

The Data Path

Core

L1 L1
L2

L3

Core

L1 L1
L2

Core

L1 L1
L2

Core

L1 L1
L2

NVDIMM
NVDIMM

NVDIMM
NVDIMM

Memory Controller Memory Controller

MOV

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Hiding Places

Core

L1 L1
L2

L3

Core

L1 L1
L2

Core

L1 L1
L2

Core

L1 L1
L2

NVDIMM
NVDIMM

NVDIMM
NVDIMM

Memory Controller Memory Controller

MOV

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Two Levels of Flushing Writes(what we
can do to ensure persistence)

NVDIMM NVDIMM

CLFLUSH, CLFLUSHOPT, CLWB

PCOMMIT

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Memory Software Architecture

9
NVDIMM

User
Space

Kernel
Space

Standard
File API

NVDIMM Driver

Application

File System

 Application Application

Standard
Raw Device

Access

Block File Memory

Load/Store

Management Library

Management UI

Standard
File API

Mgmt.

pmem-Aware
File System

MMU
Mappings

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

NVML Open Source Library
 6 libraries comprise overall NVML project
 libpmem:

Low level persistent memory support.
 libpmemblk

Supports arrays of pmem-resident blocks, all the
same size, that are atomically updated. E.g. cache
of fixed sized objects

 libpmemlog
Provides a pmem-resident log file.

10

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

NVML Open Source Library

 NVML libraries cont.
 libpmemobj

Provides transactional object store. Includes
memory allocation. Best place to start.

 libvmem
Turns pool of pmem into volatile memory pool.

 libvmmalloc
Transparently converts all memory allocations into

persistent memory allocations. No modification of
target application required.

More info @pmem.io 11

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

My Current Work

 Integration of persistent memory into an existing
block cache

 Goals:

Reduce DRAM required
Provide warm cache in persistent mode
Be within 10-20% performance of DRAM for

NVM cache
 Integration of both volatile and persistent

modes

12

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Memory Integration Challenges

 Where to integrate Persistent Memory?
 Possible memory management changes
 What to include in Persistent Memory
 Seamless integration of Persistent Memory in

existing application
 For “persistent” mode it’s particularly challenging

13

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Memory, Where to Integrate?

 Where will you get the best use and
performance?

 Can you keep track of the memory allocated
without a lot of additional code?

 How easily does it integrate into existing code?
 Least intrusive

14

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Block Cache Design

15

Client

Middleware

Client
Client

Server Server Server Server

RPC

Mini-servers
Writers/Readers

PMEM

Block Cache

Pmem
memory
pool

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Server/Block Cache Design

16

Writer

PMEM

Reader

Read(1)

Found?

holder

YES: Return to requester(2)

Block Cache

NO: Allocate Read
Buffer from PMEM(3)

Read from Media into PMEM buffer(4)

Insert into cache(5)

Return to requester(6)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Key Points In Block Cache Design
 1 block cache per server
 When PMEM is integrated cache will now be

divided between DRAM and PMEM(volatile or
persistent mode)

 2 stage persistent memory allocation
Speeds up reads/reduces double copy
But, complicates memory management

 Key data structures:
Containing structure that holds key/value

among other metadata
Hash table for lists of containing structures 17

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Volatile Mode PMEM Integration
 In general do not have to worry about how you

integrate volatile mode
The goal is to reduce DRAM, so store at least

cache data(which could be very large) in
PMEM. Account for PMEM correctly.

No worry about maintaining persistence.
Except that the combination of DRAM and PMEM

data structures must still be consistent.
PMEM space is limited. There is no paging so

when you cannot allocate from a PMEM pool
you have to do something to manage this.

18

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Volatile Mode PMEM Integration
 Store Key, Value and Containing structure in

PMEM.
 Some DRAM structures point to PMEM
 It is not ok to have PMEM point to DRAM.

 Used libvmem
 When doing any buffer allocation we evict and

retry for N times.
 Memory functions:

 vmem_malloc, vmem_free
 Once allocated memcpy, memset, memmove are

used to modify buffer 19

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Volatile Mode PMEM Integration
 Critical point is that when you are freeing

memory you must call correct ‘free’ function
since data structures are a mix of DRAM and
PMEM.

 Isolated DRAM from PMEM as much as
possible.

20

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM Integration
 Choosing which method to use

Transactions(TX)
Atomic LISTS
Atomic Memory management

 What works best in implementation
I chose atomic memory management based on three

factors:
 Transactional model is complicated for this use case.
 Performance. Did not want to traverse data structures

linearly to find the one we need to finish insertion
 Atomic memory management fits best in the two stage

allocation model that this application requires.

21

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM(TX cache allocation)
 TX example – Initial PMEM buffer allocation

TX_BEGIN(pop) { // Outer transaction(outer method), allocating from PMEM
Allocate Memory From Cache {
 TX_BEGIN(pop) { // Inner transaction

Try allocation; including containing structure
 If fail {
 pmemobj_tx_abort() // Could not allocate from cache. Nothing to do on abort, will revert to
heap in outer transaction

 } TX_END(pop) // End of inner transaction
If no abort called, read data from disk
Do cache insertion // NEXT page has transaction details for insertion

} TX_ONABORT {// Back to Outer transaction(if abort in inner transaction)
 allocate from heap for read buffer.
 read data from disk
 Return data to caller with indicating cache does not own

22

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM(TX cache insertion)
 TX example – PMEM cache insertion
 TX_BEGIN // start a new transaction to do insertion. In outer ReadBlock method.
 Insert into cache {

 TX_BEGIN(pop) { // Inner transaction
Find data pointer that we are inserting. Requires pointer math. The key_val->value
member is the 1st member of the structure. Find that address(non linear search)
If fail to find
 pmemobj_tx_abort() // Return to outer transaction which aborts
If found, reallocate struct key_val because we account for key size now.
Set valid bit
Call pmem_persist() // No failures possible past this point
Update DRAM data structures

} TX_END(pop) // End of inner transaction

 } TX_ONABORT {// Back to Outer transaction(if abort in inner transaction)
 Clean up previously allocated memory
 return error
 } TX_END
} TX_END(pop)

23

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM Atomic Memory
Allocation
 Initial buffer allocation
 struct key_val is used to track the PMEM key/val

addresses. And, it’s also used to find the ‘value’.

24

struct key_val {
 uint8_t *value;
 size_t value_size;
 size_t key_length;
 uint8_t key[1];
 size_t kv_size; // Final size of the allocated structure.
 bool valid; // Set once all data has been set and inserted into
cache.
};

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM, Atomic Memory
Allocation (initial buffer allocation)

25

pmemobj_alloc(pool, … size,
constructor, …)

kv_construct()

Persistent memory allocator

PMEM Pmem_persist()

vi
si

bl
e

pe
rs

is
te

nt

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM, Atomic Memory
Allocation(Cache insertion)
 At insertion time we have data value and key

value and size.
 Need to reallocate key_val structure to account

for key data size
 We must search for value pointer to locate

correct key_val structure.

26

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Persistent Mode PMEM, Atomic Memory
Allocation (Cache insertion)

27

Cache Insertion

PMEMoid newoid; newoid.off = uintptr_t(slice-
>data()) - uintptr_t(pop_);
 newoid.pool_uuid_lo = root_.pool_uuid_lo;

Calculate new size to include key.
int status = pmemobj_zrealloc(pop_,

&newoid, new_size, 0);

pmemobj_persist Set key length

Valid bit set, now valid entry

Set key

Set structure size

Set valid bit

Find existing entry

Red lines are crash points

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Summary and Next Steps
 It’s challenging to program to Persistent Memory
 Whether integrating into existing app or writing

new app it’s critical to consider when something
is visible and when it’s made persistent

 It’s important to consider the state of the data in
Persistent Memory at any point a crash can
occur

 Using the NVML library makes programming to
persistent memory much easier. Consider the
possibilities without it(programming directly to
the device, load/store)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Summary and Next Steps
 More information about Persistent Memory and

the NVM Library at http://pmem.io
 SNIA NVM Programming TWG
http://snia.org/forums/sssi/nvmp

 Linux Pmem Examples:
https://github.com/pmem/linux-examples

 Use these tools to convert applications for Intel
DIMMs!

http://pmem.io/
http://snia.org/forums/sssi/nvmp
https://github.com/pmem/linux-examples

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Q & A

30

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Backup

31

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Flushing Writes From Caches

Instruction Meaning

CLFLUSH addr
Cache Line Flush:

Available for a long time

CLFLUSHOPT addr
Optimized Cache Line Flush:
New to allow concurrency

CLWB addr
Cache Line Write Back:

Leave value in cache
for performance of next access

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Flushing Writes From Memory Controller

Instruction Meaning

PCOMMIT
Persistent Commit:

Flush stores accepted by
memory subsystem

Asynchronous DRAM Refresh
Flush outstanding writes

on power failure
Platform-Specific Feature

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Two Movements Afoot

 Why now?
Basic programming model is decades old!

34

Block Mode Innovations

• Atomics
• Access hints
• NVM-oriented operations

Emerging NVM Technologies

•Performance
•Performance
•Perf… okay, Cost

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Next Generation Scalable NVM

Family Defining Switching
Characteristics

Phase Change
Memory

Energy (heat) converts material
between crystalline (conductive) and
amorphous (resistive) phases

Magnetic Tunnel
Junction (MTJ)

Switching of magnetic resistive
layer by spin-polarized electrons

Electrochemical Cells
(ECM)

Formation / dissolution of
“nano-bridge” by electrochemistry

Binary Oxide
Filament Cells

Reversible filament formation by
Oxidation-Reduction

Interfacial
Switching

Oxygen vacancy drift diffusion induced
barrier modulation

Scalable Resistive Memory Element

Resistive RAM NVM Options

Cross Point Array in Backend Layers ~4l2 Cell

Wordlines Memory
Element

Selector
Device

Many candidate next generation NVM technologies.
Offer ~ 1000x speed-up over NAND, closer to DRAM

	Solving the Challenges of Persistent Memory Programming
	Disclaimer
	Agenda	
	What Is Persistent Memory?
	Visibility vs. Persistence
	The Data Path
	Hiding Places
	Two Levels of Flushing Writes(what we can do to ensure persistence)
	Persistent Memory Software Architecture
	NVML Open Source Library
	NVML Open Source Library
	My Current Work
	Persistent Memory Integration Challenges
	Persistent Memory, Where to Integrate?
	Block Cache Design
	Server/Block Cache Design
	Key Points In Block Cache Design
	Volatile Mode PMEM Integration
	Volatile Mode PMEM Integration
	Volatile Mode PMEM Integration
	Persistent Mode PMEM Integration
	Persistent Mode PMEM(TX cache allocation)
	Persistent Mode PMEM(TX cache insertion)
	Persistent Mode PMEM Atomic Memory Allocation
	Persistent Mode PMEM, Atomic Memory Allocation (initial buffer allocation)
	Persistent Mode PMEM, Atomic Memory Allocation(Cache insertion)
	Persistent Mode PMEM, Atomic Memory Allocation (Cache insertion)
	Summary and Next Steps
	Summary and Next Steps
	Slide Number 30
	Slide Number 31
	Flushing Writes From Caches
	Flushing Writes From Memory Controller
	Two Movements Afoot
	Next Generation Scalable NVM

