
2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Remote Access to
Ultra-Low-Latency Storage

Tom Talpey
Microsoft

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Outline

 Problem Statement
 RDMA Storage Protocols Today
 Sources of Latency
 RDMA Storage Protocols Extended
 Other Protocols Needed

2

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Related SDC2015 Talks

 Monday – Neal Christiansen
 Tuesday – Jim Pinkerton, Andy Rudoff, Doug Voigt
 Wednesday – Chet Douglas
 Thursday – Paul von Behren

3

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Problem Statement

4

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA-Aware Storage Protocols

 Focus of this talk – Enterprise / Private Cloud-
capable storage protocols
Scalable, manageable, broadly deployed

 SMB3 with SMB Direct
 NFS/RDMA
 iSER
 Many others exist
 Including NVM Fabrics, but not the focus here

5

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

New Storage Technologies Emerging

 Advanced block devices
 I/O bus-attached: PCIe, SSD, NVMe, …
Block or future Byte addressable

 Storage Class Memory (“PM” Persistent Memory)
Memory bus attached NVDIMM, …

Block or Byte accessible
Emerging persistent memory technologies

3D XPoint, PCM, …
In various form factors

6

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Storage Latencies Decreasing

 Write latencies of storage
protocols (e.g. SMB3) today
down to 30-50us on RDMA
 Good match to HDD/SSD
 Stretch match to NVMe
 PM, not so much

 Storage workloads are
traditionally highly parallel
 Latencies are mitigated

 But workloads are changing:
 Write replication adds a

latency hop
 Write latency critical to

reduce

Technology Latency
(high)

Latency
(low)

IOPS

HDD 10 msec 1 msec 100

SSD 1 msec 100 µsec 100K

NVMe 100 µsec 10 µsec (or
better)

500K+

PM < 1 µsec (~ memory
speed)

BW/size
(>>1M/DIMM)

Orders of magnitude decrease

7

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

New Latency-Sensitive Workloads

 Writes!
Small, random

Virtualization, Enterprise applications
MUST be replicated and durable

A single write creates multiple network writes
 Reads
Small, random are latency sensitive
Large, more forgiving

But recovery/rebuild are interesting/important
8

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Writes, Replication, Network

…

Write
Commit

Erasure Code

 Writes (with possible
erasure coding)
greatly multiplies
network I/O demand
The “2-hop” issue

 All such copies must
be made durable
before responding
Therefore, latency

is critical!

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

APIs and Latency

 APIs also shift the latency requirement
 Traditional Block and File are often parallel
 Memory Mapped and PM-Aware APIs not so

much
Effectively a Load/Store expectation
Memory latency, with possibly expensive

Commit
Local caches can improve Read (load) but not

Write (store/remotely durable)
10

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA Storage Protocols
Today

11

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Many Layers Are Involved

 Storage layers
 SMB3 and SMB Direct
 NFS, pNFS and NFS/RDMA
 iSCSI and iSER

 RDMA Layers
 iWARP
 RoCE, RoCEv2
 InfiniBand

 I/O Busses
 Storage (Filesystem, Block e.g. SCSI, SATA, SAS, …)
 PCIe
 Memory

12

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

SMB3 Architecture (shameless plug)

 Principal Windows remote filesharing protocol
 Also an authenticated, secure, multichannel, RDMA-

capable session layer
 Transport for

 File system operations (REFS, NTFS, etc)
Block operations (VHDX, RSVD, “EBOD”)
Hyper-V Live Migration (VM memory)
RPC (Named Pipes)

 Future transport for
Backend NVMe storage
Persistent Memory

13

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

SMB3 Components (example)

.
Application

Win32 API

SMB3 Redirector
(RDR)

TCP RDMA TCP RDMA

Multichannel

SMB3 Server (SRV)

Filesystem

HDD/SSD

NVMe

SCSI
VHD, RSVD, EBOD

Block
mode
PM

“PM Direct” ?

Mapped
File

Raw
mode
PM

Hyper-V Live
Migration Guest

Memory

Client Server
Storage

Providers
Storage

Backends

S
C
S
I

14

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Contributors to Latency

15

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA Transfers – Storage Protocols Today
 Direct placement model

(simplified and optimized)
 Client advertises RDMA region in

scatter/gather list
 Server performs all RDMA

 More secure: client does not
access server’s memory

 More scalable: server does
not preallocate to client

 Faster: for parallel (typical)
storage workloads

 SMB3 uses for READ and
WRITE
 Server ensures durability
 NFS/RDMA, iSER similar

 Interrupts and CPU on both sides

16

RDMA Read (with local invalidate)

Send (with invalidate)

Send

DATA

RDMA Write
DATA

Send (with invalidate)

Send

READ

WRITE

Client Server

Register

(Register)

Register

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Latencies

 Undesirable latency contributions
 Interrupts, work requests

Server request processing
Server-side RDMA handling

CPU processing time
Request processing

 I/O stack processing and buffer management
To “traditional” storage subsystems

Data copies
 Can we reduce or remove all of the above to PM?

17

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA Storage Protocols
Extended

18

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Push Mode (Schematic)

 Enhanced direct placement model
 Client requests server resource of file, memory region, etc

 MAP_REMOTE_REGION(offset, length, mode r/w)
 Server pins/registers/advertises RDMA handle for region
 Client performs all RDMA

 RDMA Write to region
 RDMA Read from region (“Pull mode”)
 No requests of server (no server CPU/interrupt)

 Achieves near-wire latencies
 Client remotely commits to PM (new RDMA operation!)

 Ideally, no server CPU interaction
 RDMA NIC optionally signals server CPU
 Operation completes at client only when remote

durability is guaranteed

 Client periodically updates server via master
protocol
 E.g. file change, timestamps, other metadata

 Server can call back to client
 To recall, revoke, manage resources, etc

 Client signals server (closes) when done 19

RDMA Read

Send

Send

DATA

RDMA Write
DATA

Send

Send

Remote Direct Access

Unregister

Register

RDMA Write
DATA

RDMA Commit (new)

Push

Pull

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Storage Protocol Extensions

 SMB3
 NFSv4.x
 iSER

20

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

SMB3 Push Mode (hypothetical)

 Setup – a new create context or FSCTL
 Server registers and advertises w/r file by Handle

 Or, directly to a region of PM or NVMe-style device!

 Takes a Lease or lease-like ownership
 Write, Read – RDMA access by client

 Client writes and reads directly via RDMA
 Commit – Client requests durability

 Perform Commit, via RDMA with optional server processing
 SMB_FLUSH-like processing for signaling if needed/desired

 Callback – Server manages client access
 Similar to current oplock/lease break

 Finish – Client access complete
 SMB_CLOSE, or lease manipulation

21

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

NFS/RDMA Push Mode (hypothetical)

 Setup – a new NFSv4.x Operation
 Server registers and advertises w/r file or region by filehandle
 Offers Delegation or…
 Via pNFS layout? (!)

 Write, Read – RDMA access by client
 Client writes and reads via RDMA

 Commit – Client requests durability
 Perform Commit, via RDMA with optional server processing
 NFS4_COMMIT-like processing for signaling if needed/desired

 Callback – via backchannel
 Similar to current delegation or layout recall

 Finish
 NFS4_CLOSE, or delegreturn or layoutreturn (if pNFS) 22

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

iSCSI (iSER) Push Mode (very hypothetical)

 Setup – a new iSER operation
 Target registers and advertises w/r buffer(s)

 Write – a new Unsolicited SCSI-In operation
 Implement RDMA Write within initiator to target buffer

 No Target R2T processing
 Read – a new Unsolicited SCSI-Out operation

 Implement RDMA Read within initiator from target buffer
 No Target R2T processing

 Commit – a new iSER / modified iSCSI operation
 Perform Commit, via RDMA with optional Target processing
 Leverage FUA processing for signaling if needed/desired

 Callback – a new SCSI Unit Attention
 ???

 Finish – a new iSER operation
23

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Other Protocols Extended

24

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA protocols
 Need a remote guarantee of Durability
 RDMA Write alone is not sufficient for this semantic

 Completion at sender does not mean data was placed
 NOT that it was even sent on the wire, much less received
 Some RNICs give stronger guarantees, but never that data was

stored remotely
 Processing at receiver means only that data was accepted

 NOT that it was sent on the bus
 Segments can be reordered, by the wire or the bus
 Only an RDMA completion at receiver guarantees placement

 And placement != commit/durable
 No Commit operation

 Certain platform-specific guarantees can be made
 But client cannot know them
 See Chet’s presentation later today!

25

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA protocol extension
 Two “obvious” possibilities

 RDMA Write with placement acknowledgement
 Advantage: simple API – set a “push bit”
 Disadvantage: significantly changes RDMA Write semantic, data

path (flow control, buffering, completion)
 Requires significant changes to RDMA Write hardware design

 And also to initiator work request model (flow controlled RDMA Writes
would block the send work queue)

 Undesirable
 RDMA “Commit”

 New operation, flow controlled/acknowledged like RDMA Read
or Atomic

 Disadvantage: new operation
 Advantage: simple API – “flush”, operates on one or more

STags/regions (allows batching), preserves existing RDMA
Write semantic (minimizing RNIC implementation change)

 Desirable
26

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

RDMA Commit (concept)

 RDMA Commit
 New wire operation
 Implementable in iWARP and IB/RoCE

 Initiating RNIC provides region list, other commit parameters
 Under control of local API at client/initiator

 Receiving RNIC queues operation to proceed in-order
 Like RDMA Read or Atomic processing currently
 Subject to flow control and ordering

 RNIC pushes pending writes to targeted regions
 If not tracking regions, then flushes all writes

 RNIC performs PM commit
 Possibly interrupting CPU in current architectures
 Future (highly desirable to avoid latency) perform via PCIe

 RNIC responds when durability is assured

27

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Local RDMA API extensions (concept)

 New platform-specific attributes to RDMA registration
 To allow them to be processed at the server *only*
 No client knowledge – ensures future interop

 New local PM memory registration
 Register(region[], PMType, mode)

 PMType includes type of PM
 i.e. plain RAM, “commit required”, PCIe-resident, any other

local platform-specific processing
Mode includes disposition of data

 Read and/or write
 Cacheable after operation

 Resulting handle sent by peer Commit, to be processed in
receiving NIC under control of original Mode 28

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

PCI Protocol Extension

 PCI extension to support Commit
To Memory, CPU, PCI Root, PM device, PCIe

device, …
Avoids CPU interaction
Supports strong data consistency model

 Performs equivalent of:
CLFLUSHOPT (region list)
PCOMMIT
 (See Chet’s presentation!)

29

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Expected Goal

30

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Latencies

 Single-digit microsecond remote Write+Commit
 (See Chet’s presentation for estimate details)
 Push mode minimal write latencies (2-3us + data wire time)
 Commit time NIC-managed and platform+payload dependent

 Remote Read also possible
 Roughly same latency as write, but without commit

 No server interrupt
 Once RDMA and PCIe extensions in place

 Single client interrupt
 Moderation and batching can reduce when pipelining

 Deep parallelism with Multichannel and flow control management

31

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Open questions

 Getting to the right semantic?
 Discussion in multiple standards groups (PCI, RDMA, Storage, …)
 How to coordinate these discussions?
 Implementation in hardware ecosystem
 Drive consensus from upper layers down to lower layers!

 What about new API semantics?
 Does NVML add new requirements?
 What about PM-aware filesystems (DAX/DAS)?

 Other semantics – or are they Upper Layer issues?
 Authentication?
 Integrity/Encryption?
 Virtualization?

32

2015 Storage Developer Conference. © Microsoft. All Rights Reserved.

Discussion?

33

	Remote Access to�Ultra-Low-Latency Storage
	Outline
	Related SDC2015 Talks
	Problem Statement
	RDMA-Aware Storage Protocols
	New Storage Technologies Emerging
	Storage Latencies Decreasing
	New Latency-Sensitive Workloads
	Writes, Replication, Network
	APIs and Latency
	RDMA Storage Protocols Today
	Many Layers Are Involved
	SMB3 Architecture (shameless plug)
	SMB3 Components (example)
	Contributors to Latency
	RDMA Transfers – Storage Protocols Today
	Latencies
	RDMA Storage Protocols Extended
	Push Mode (Schematic)
	Storage Protocol Extensions
	SMB3 Push Mode (hypothetical)
	NFS/RDMA Push Mode (hypothetical)
	iSCSI (iSER) Push Mode (very hypothetical)
	Other Protocols Extended
	RDMA protocols	
	RDMA protocol extension
	RDMA Commit (concept)
	Local RDMA API extensions (concept)
	PCI Protocol Extension
	Expected Goal
	Latencies
	Open questions
	Discussion?

