
2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Azure File Storage: ‘net use’ the cloud 

David Goebel 
Microsoft Corporation 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Azure File Storage 
Talk Topics: 
1. The features and API surfaces: What 
2. The scenarios enabled: Why 
3. The design of an SMB server not backed by 

a conventional file system: How 
 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

What: AFS¹ Fundamental Concepts 
• AFS is not the Windows SMB server (srv2.sys) running 

on Azure nodes. 

• AFS is a completely new SMB implementation which uses 
Azure Tables and Blobs as the backing store. 

• AFS leverages the highly available and distributed 
architecture of Tables and Blobs to imbue those same 
qualities to the file share. 

 ¹ Azure File Storage not CMU’s Andrew File System.  I wasn’t on the naming committee.  



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

AFS Features 
• SMB 2.1 in preview since last summer. 

• SMB 3.0 in progress with encryption & persistent handles. 

• Azure storage containers mapped as shares. 

• SMB clients work unmodified out of the box. 

• As AFS is built on top of Azure Tables and Blobs, the share 
namespace is coherently accessible through the Azure 
REST APIs. 

 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

[MS-SMB2] 
• Very different from SMB1.x which had a long and 

circuitous evolution since the DOS days. 

• [MS-SMB2] clearly designed to proxy the NT APIs over 
the network in a very clean way with compound 
commands added to reduce chatter. 

• Anticipates, though doesn’t require, a traditional file 
system on the other side. 

• AFS uses Azure Tables (for metadata) & Blobs instead. 

 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

SMB is a stateful protocol, 
but not all states require expensive distributed transactional semantics 

• Some aspects of a file’s state are immutable, such as FileId and 
whether it’s a file or a directory. 

• Some state is transient, such as open counts, and can be 
optimized if loss of this state is acceptable in a disaster. 

• Some state is also maintained by the client, like CreateGuid, 
drastically reducing the cost of tracking clients. 

• State associated with connection mechanics is ephemeral. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

\\AccountName.file.core.windows.net\ShareName DNS Load Balancer 

for example 157.56.217.32:445 

Front End 
Node 2 

Front End 
Node 0 

Front End 
Node 1 

Front End 
Node N 

. . . . 

Azure Table and Blob Store 

“FrontEnd”: Ephemeral state and immutable state. 

“BackEnd”:  Solid and Fluid durable state. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Front End 
Node 2 

Front End 
Node 0 

Front End 
Node 1 

Front End 
Node N 

. . . . 

Azure Table and Blob Store 

Client A accessing 
\\MySrv\MyShare 

Client B accessing 
\\MySrv\MyShare 

• Clients A & B both accessing the 
same share/files via the same 
DNS name.  
 

• Same coherency as if they were 
talking to a single on-premis 
server. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Front End 
Node 2 

Front End 
Node 0 

Front End 
Node 1 

Front End 
Node N 

. . . . 

Azure Table and Blob Store 

Client A accessing 
\\MySrv\MyShare 

Client B accessing 
\\MySrv\MyShare 

• Clients B loses connection to FE1 
or FE1 goes down (either due to a 
failure of some sort or intentional 
software upgrade). 
 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Front End 
Node 2 

Front End 
Node 0 

Front End 
Node 1 

Front End 
Node N 

. . . . 

Azure Table and Blob Store 

Client A accessing 
\\MySrv\MyShare 

Client B accessing 
\\MySrv\MyShare 

• Client B automatically reconnects 
to \\MySrv\MyShare and the Load 
Balancer selects a new FE. 
 

• This is completely* transparent to 
any application running on ClientB. 

*completely with SMB3, mostly with SMB2.1 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Current AFS Preview State 
• SMB 2.1.  SMB 3.0 in the works. 

• 5TB per share and 1TB per file. 

• 1000 8k IOPS per share.  60 MB/sec per share. 

• Some NTFS features not supported (see link to list on 
the Resources slide). 

• Shared namespace with REST imposes some limitation on 
characters and path lengths due to HTTP restrictions. 

 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

DEMO 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Current Linux Support 
Linux Distribution Publisher Kernel Version CIFS 

Version SMB2.1 

Ubuntu Server 14.04 LTS Canonical  3.16.0-31-generic  2.03 Pass 
Ubuntu Core 15.04 BETA Canonical  3.19.0-15-generic  2.06 Pass 
CentOS 7.1 OpenLogic  3.10.0-229.1.2.el7.x86_6  2.03 Pass 
Open SUSE 13.2 SUSE  3.16.6-2-default  2.03 Pass 
SUSE Linux Enterprise 
Server 12 SUSE  3.12.38-44-default  2.02 Pass 

SUSE Linux Enterprise 
Server 12 (Premium 
Image) 

SUSE  3.12.38-44-default  2.02 Pass 

Note: “Pass” just means the volume mounts and very simple I/O works. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Why: Scenarios Enabled By AFS 
• Existing file I/O API (Win32, CRT, etc.) based applications, i.e. 

most business applications written over the last 30 years, “just 
work”®. 

• A business can stage existing workloads seamlessly into the 
cloud without modification to mission critical applications. 

• Some minor caveats that will become more minor over time. 

 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Encryption 
Enabled 
Scenario 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

What about REST? 
If you’re a true believer in the benefits of statelessness, SMB and 
REST access the same data in the same namespace so a gradual 
application transition without disruption is possible. 
 Container operations: 

Create, List, Delete, Get properties, Get/Set metadata 
 Directory Operations: 

Create, Delete, Get Properties, List (Same as ListFiles) 
 File operations: 

Create, List, Delete, Get/Set properties, Get/Set metadata, Get Contents,  
Put Ranges, List Ranges 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

How: The Durability Game 
• A conventional file server treats only actual file data and 

essential metadata (filesize, timestamps, etc) as needing to be 
durably committed before an operation is acknowledged to 
the client (and even then only if opened WriteThrough). 

• For true active/active high availability and coherency 
between FrontEnd nodes, modified state that normally 
exists only in server memory must be durably committed. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

\\AccountName.file.core.windows.net\ShareName DNS Load Balancer 

for example 157.56.217.32:445 

Front End 
Node 2 

Front End 
Node 0 

Front End 
Node 1 

Front End 
Node N 

. . . . 

Azure Table and Blob Store 

“FrontEnd”: Ephemeral state and immutable state. 

“BackEnd”:  Solid and Fluid durable state. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

• Ephemeral state: SMB2_FILEID.Volatile, credits, tcp socket 
details. 

• Immutable state: 64bit actual FileId, IsDirectory 

• Solid durable state: SMB2_FILEID.Persistent, SessionId 

• Fluid durable state: Open counts, file names, file size, lease 
levels and many more.  This is the largest group of states. 

Examples of state tiering 

“Solid” here meaning the state is generated by AFS and not generally changeable by normal actions 
of the client/application while “Fluid” is fully changeable by File APIs. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Example: Durable Handle Reconnect 
• Intended for network hiccups as it assumes all state is still 

valid on the server. 

• On AFS this state is durably persisted on our BackEnd so 
we’re able to ‘stretch’ durable handles to recover from 
FrontEnd AFS failures (planned or otherwise) since it’s 
transparent to the client. 

• This is important as we’re continually updating AFS code 
requiring AFS service restarts. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Example: Persistent Handles 
• Unlike durable handles, actually intended to support 

Transparent Failover when the server dies. 

• Leverages state on the client for replay detection so that 
‘once only’ operations are only executed once. 

• More details about create requests durably committed. 

• With durable handles SMB 2.1 protocol compliance 
required us to artificially limit our capability.  With 
Persistent Handles we have seamless Transparent Failover. 



2015 Storage  Developer Conference. © Microsoft.  All Rights Reserved. 
 

Resources: 
• Getting started blog with many useful links: 

http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-
microsoft-azure-file-service.aspx 

• NTFS features currently not supported: 
https://msdn.microsoft.com/en-us/library/azure/dn744326.aspx 

• Naming restrictions for REST compatibility: 
https://msdn.microsoft.com/library/azure/dn167011.aspx 


	Azure File Storage: ‘net use’ the cloud
	Azure File Storage
	What: AFS¹ Fundamental Concepts
	AFS Features
	[MS-SMB2]
	SMB is a stateful protocol,�but not all states require expensive distributed transactional semantics
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Current AFS Preview State
	DEMO
	Current Linux Support
	Why: Scenarios Enabled By AFS
	Slide Number 15
	What about REST?
	How: The Durability Game
	Slide Number 18
	Examples of state tiering
	Example: Durable Handle Reconnect
	Example: Persistent Handles
	Resources:

