SMB 3.0 Transparent Failover for EMC Isilon OneFS

John Gemignani
EMC – Emerging Technologies Division
Isilon
Clusters may be capable of offering continuous availability to files by moving workloads from one node to another.

Some protocols can do this seamlessly
- HTTP, HDFS, NFS3

Some protocols can do this with proper support
- NLM, NFS4, SMB3

Others simply cannot
- SSH, FTP
Agenda

- OneFS Overview
- SMB CA and Witness
 - What SMB CA Is Intended to Do
 - What SMB Witness Can Do To Help
 - Intended Workflows for CA
- Implementation in OneFS
- Experiences
OneFS Overview
OneFS Overview

- Servers
- Clients
- Front End Networking (Ethernet, data center)
- Isilon OneFS Cluster Nodes
- Back End Networking (infiniband, private)

Isilon OneFS

Cluster Nodes

Back End Networking
(optional 2nd switch providing back end failover)
OneFS Features

- Scalable performance and capacity
- Data integrity and protection
- High availability
- All nodes are fully-functional, symmetric peers
- Client-facing protocols entirely in user-mode
- Protocols supported by a common, high-performance infrastructure
OneFS Features (2)

- Concurrent access to all files from all protocols:
 - SMB1/SMB2/SMB3
 - NFSv3/NFSv4/NLM/NSM
 - HDFS
 - SSH
 - HTTP
 - FTP
- Protocols supported within “zones” and “pools”
SMB CA and Witness
What SMB CA Is Intended To Do

- Address applications that aren’t resilient to issues relating to connectivity:
 - I/O errors
 - Unexpected closure of file handles
 - Long access outages
- Resolve ugly complications arising from outages when clients cache data under a lease
- Do so in an automated and transparent manner
How SMB CA Accomplishes This

- Support file open requests for persistent handles
- Persistent handles backed by persistent data
- Persistent handles are available for reclaim from any server within the cluster, for a bounded time
- For protection and continuity, while disconnected, the file cannot be opened by anyone else (subject to bounded time)
What SMB Witness Can Do To Help

- Identify paths to a resource
- Provide feedback to clients about availability
- Expedite the transfer of the workflow
 - No TCP keep-alive dependencies
 - No SMB timeouts needed
- Outages minimized, even nearly indiscernible
- Supported by any node in the pool
SMB CA and WITNESS

- Client connects to SMB service
- SMB3 offers CA and resource
- Resource identifies nodes in the same address pool
- Client connects to WITNESS on another node
- Client registers for availability events
SMB CA and WITNESS (2)

- Node becomes unaccessible
- Witness receives GMP event
- Witness updates availability
- Client performs disconnect from now unavailable node
- Client performs reconnect to new available node
Intended Workflows for CA

- Node maintenance – planned
 - Hardware servicing
 - Software updates
 - Simple: updates without node reboot
 - Complex: updates with node reboot
- Cluster reconfiguration – planned
Intended Workflows for CA (2)

- Node failure – unplanned outage
 - SMB service outage
 - Transient cluster-related issues
 - Node downtime
- Non-disruptive home directories
Intended Workflows for CA (3)

- Workload migration – future opportunity
 - Ability to move workload across nodes
 - Potential for load balancing
 - Potential recovery from various pool-related infrastructure problems
Implementation in OneFS
Implementation In OneFS

- The Parts
 - Administration
 - Supporting cluster infrastructure
 - CA in the SMB service
 - The Witness protocol
Administration

- This is, by far, the easy part
- CA is a share option
- Web UI
- Commands
Supporting Cluster Infrastructure

- Hands-down the most difficult and sensitive part
- Lock subsystem was chosen as it provides:
 - Cluster-coherent management of resources
 - Ownership (registrations)
 - Manages contention, distribution and recovery
 - State survives total loss of the server node
Supporting Cluster Infrastructure (2)

- Now supports persistence of ancillary file data
- Persistent handle gets us to persistent data
- Persistent data can be up to 1024 bytes and is application-defined
- State may have an associated expiration
- Leases are also managed this way
Supporting Cluster Infrastructure (3)

Resource
- Has a name up to 1024B
- Has backup copies
- May have a registered owner
- May have an expiration

Ancillary Data
- Up to 1024B
- Application-defined

Lock

Lock

Lock
Supporting Cluster Infrastructure (4)

- Primary owns the resource
- Initiator manipulates the resource
- Secondaries hold backup copies for failover
- Pools only apply to SMB access
CA in the SMB Service

- Moderately difficult
 - The right tinker toys need to be in place
- Built upon several layers of both improvements and enhancements
- Support client requests for persistent handles
- Required a cluster-wide persistent handle
 - Must be globally accessible
 - Must be unique
CA in the SMB Service (2)

User

Kernel

<table>
<thead>
<tr>
<th>SMB (File Service)</th>
<th>WITNESS (RPC Service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWIO (Server Infrastructure)</td>
<td></td>
</tr>
<tr>
<td>FSD (File System Driver)</td>
<td></td>
</tr>
</tbody>
</table>

Kernel

<table>
<thead>
<tr>
<th>isi_lwext (LikeWise Kernel Extension)</th>
<th>GMP (Group Management)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK/LKF (Lock Services)</td>
<td></td>
</tr>
<tr>
<td>RBM (Transaction and Messaging)</td>
<td></td>
</tr>
</tbody>
</table>
CA in the SMB Service (3)

- SMB – File services
- WITNESS – RPC service for availability
- LWIO – High performance server infrastructure
- FSD – OneFS user-mode personality driver
- LWEXT – OneFS kernel-mode personality system service loadable module
- LKF – OneFS persistent lock/state subsystem
- GMP – OneFS Cluster group management
- RBM – OneFS transaction and message subsystem
The Witness RPC

- Not too difficult
- Two types of responses to notification requests
 - Status update (available, unavailable)
 - Please move (to IP address)
- OneFS supports the Witness V1 interface
- Only events related to status updates sent
 - OneFS already has cluster event facility
Experience
Experience

- Witness and client reaction is reasonably fast
- Simple tree-connect restored in 1-2 seconds
- Other times are related to the number of file reconnect/reclaim operations sent from the client
- Original design treated all reconnects the same
 - Same node case caches state for returns
 - Other node case relies on stored state
Experience (2)

- Our SMB3 session IDs are not cluster-wide
 - Reconnects “steal” the original state
 - Previous node is notified to invalidate its copy
- With home directories lockout may be a problem
 - Administrator may allow conflicting opens to break through the lockout
Questions?

Contact Information
john.gemignani@emc.com