

Storage Intelligence in SSDs and Standards

Bill Martin, Principal Engineer Changho Choi, PhD, Principal Engineer

Memory Solutions Lab Samsung Semiconductor, Inc.

What issues are we addressing?

- Currently hosts have no mechanism to understand the storage device internal features
 - Inefficient operation of background operations
 - Inefficient placement of data
- Current technology requires multiple translation layers
 - Key/Value to Block Storage
- Data and computational processing is not co-located
 - Increased IO traffic
 - Under-utilized compute power in storage device
 - Over utilized compute power in host/storage system

How do we solve these issues?

- Currently hosts have no mechanism to understand the storage device internal features
 - Inefficient operation of background operations
 - Inefficient placement of data
- Current technology requires multiple translation layers
 - Key/Value to Block Storage
- Data and computational rocessing is not co-located
 - Increased IO traffic
 - Under-utilized com Composition storage device
 - Over utilized mote power in host/storage system

What is Storage Intelligence?

- An interface to provide better collaboration between SSD and storage systems
 - Background operation control
 - Advanced garbage collection
 - Stream operation
 - Stores data with similar lifetime in associated physical locations
- A mechanism to offload performance operations to SSD
 - Object Storage
 - Defines a Key Value Storage API
 - In-Storage Compute
 - Framework for offloading processing to storage device

Background operation control

- Allows a host to control background operations
 - Set background operation mode
 - Start/Stop background operation
 - Retrieve background operation status
- Specifies a time period that the device may perform background operation with minimal impact to system performance
- Why background operation control?
 - IO performance is degrade when background operations occur at the same time as IO
 - Avoids overlap of IO and background operations
- Provides predictable and consistent performance

Predictable & consistent performance

Stream operation

- Allows host to associate each write operation with a stream
- Device places all data associated with a stream in physically associated locations
- □ All data associated with a stream is expected to be invalidated at the same time (e.g., trimmed, unmapped)
- Why stream operation?
 - When different lifetime data is intermixed
 - □ Garbage Collection overhead increases
 - Write Amplification Factor increases
- Improves system performance
- Improves device endurance

Stream comparison

Up to 9x performance and 3x SSD endurance

FIO 100% 128K writes with four different lifetime data

Object Storage

- Uses a Key Value Storage model (not block storage model)
- Key value mapping to physical location done by the storage device
- Why object storage?
 - Translation from Key Value to Block Storage protocol consumes host compute cycles and mapping must be stored in host
 - Double logging occurs
 - Key Value map may need to be retrieved from storage device at initialization time
- Reduce host compute for Key Value mapping
- Reduce host memory footprint

Object Storage Comparison

In-Storage Compute

- Offloads host compute to the storage device
- Allows host to download application to device for device processing
- Why In-Storage Compute?
 - High IO traffic caused by reading data, computing, and writing results
 - Unused device compute power and bandwidth
- Reduces IO traffic between storage and host
- Reduces host computing burden
- Enhances application/system performance and power consumption

In-Storage Compute

Host Retrieves **Performs** Generates computation result data Current **Device** Returns all data Host Request Retrieves Computation result In Storage Compute Device **Performs** Returns computation result

Standardization process

Background Operation Control & Stream Operation

- Currently standardized for SCSI
 - Documented in SCSI BLOCK Commands 4 (SBC-4)
- Proposal being considered for SATA
 - Current proposal f15123r1
 - Expected completion December 2015
- Approved as work item for NVMe
 - Being discussed prior to full NVMe technical group discussions
 - Bring in to NVME technical group in November
 - Expected ratification March 2016

Standardization process Object Storage & In-Storage Compute

- Object Storage
 - Being developed in SNIA Object Drive TWG
 - Requirements document well developed
 - API document to be started in the near future
- In-Storage Compute
 - Being developed in SNIA Object Drive TWG
 - Requirements document well developed
 - API document to be started in the near future
- Management of IP Drives
 - Being developed in SNIA Object Drive TWG
 - Requirements document well developed
 - Outline of standard started in July

Call for Action

□ To get involved in the standardization process contact

Bill Martin, bill.martin@ssi.samsung.com

For questions about Samsung's implementation contact

Changho Choi, changho.c@ssi.samsung.com

Thank You