

Self-contained Information Retention
Format (SIRF) Specification

Working Draft - Version 1.0
January 28th, 2015

Publication of this Working Draft for review and comment has been approved by the Long Term
Retention (LTR) Technical Work Group. This draft represents a “best effort” attempt by the LTR
Technical Work Group to reach preliminary consensus, and it may be updated, replaced, or
made obsolete at any time. This document should not be used as reference material or cited as
other than a “work in progress.” Suggestions for revision should be directed to
http://www.snia.org/feedback/.

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof)

is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA
for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
or this entire document, or distribute this document to third parties. All rights not explicitly granted are
expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available
under the following license:

BSD 3-Clause Software License

Copyright (c) 2014, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2015 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

© SNIA

 Working Draft SIRF Specification V1.0 5

Contents

FOREWORD ... 7

ABSTRACT ... 7
SNIA WEB SITE ... 7
SNIA ADDRESS .. 7
ACKNOWLEDGEMENTS .. 7

1. INTRODUCTION ... 8

2. BUSINESS CASE .. 9

3. SPECIFICATION OVERVIEW .. 11

4. CONTAINER INFORMATION METADATA .. 14

4.1 SPECIFICATION CATEGORY .. 14
4.2 CONTAINER ID CATEGORY .. 14
4.3 STATE CATEGORY ... 15
4.4 PROVENANCE CATEGORY ... 16
4.5 AUDIT LOG CATEGORY .. 17

5. OBJECT INFORMATION METADATA ... 19

5.1 OBJECT IDS CATEGORY .. 19
5.2 DATES CATEGORY ... 21
5.3 RELATED OBJECTS CATEGORY ... 22
5.4 PACKAGING FORMAT CATEGORY ... 22
5.5 FIXITY CATEGORY ... 23
5.6 RETENTION CATEGORY .. 24
5.7 AUDIT LOG CATEGORY .. 24
5.8 EXTENSION CATEGORY .. 25

6. SERIALIZATION FOR SNIA CDMI ... 26

6.1 CATALOG SERIALIZATION: OBJECT IDS CATEGORY ... 27
6.2 CATALOG SERIALIZATION: FIXITY CATEGORY .. 27

7. SERIALIZATION FOR SNIA LTFS ... 29

7.1 CATALOG SERIALIZATION: OBJECT IDS CATEGORY ... 30
7.2 CATALOG SERIALIZATION: FIXITY CATEGORY .. 30

8. SERIALIZATION FOR OPENSTACK SWIFT ... 31

9. USE CASE EXAMPLE ... 35

REFERENCES .. 38

© SNIA

 Working Draft SIRF Specification V1.0

APPENDIX A – XML SCHEMA FOR THE SIRF CATALOG .. 39

APPENDIX B – SAMPLE XML CATALOG ... 43

APPENDIX C – SAMPLE JSON CATALOG .. 47

FIGURES
Figure 1: SIRF Components ... 16

Figure 2: Possible container states and transitions ... 16

Figure 3: SIRF Seralization for CDMI Example ... 27

Figure 4: SIRF Serialization for LTFS Volume .. 30

Figure 5: SIRF Actors ... 35

© SNIA

 Working Draft SIRF Specification V1.0 7

Foreword

Abstract

This document specifies the Self-contained Information Retention Format (SIRF) Level 1 and its
serialization for LTFS, CDMI and OpenStack Swift.

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the Storage Networking Industry Association, 425 Market Street, Suite #1020,
San Francisco, CA 94105, U.S.A.

Acknowledgements

The SNIA Long Term Retention Technical Working Group, who developed this document, would like
to recognize the significant contributions made by the following members:

Company

Contributor

HP Mary Baker

IBM Simona Rabinovici-Cohen

Antesignanus Roger Cummings

HP Samuel Fineberg

IBM Phillip Viana

We would also want to acknowledge Mark Carlson and Eric Hibbard for their help in creating this
document.

© SNIA

 Working Draft SIRF Specification V1.0

1. Introduction
Many organizations now have a requirement to preserve and maintain access to large volumes of
digital content indefinitely into the future. Regulatory compliance and legal issues require preservation
of email archives, medical records and information about intellectual property. Web services and
applications compete to provide storage, organization and sharing of consumers' photos, movies, and
other creations. And many other fixed-content repositories are charged with collecting and providing
access to scientific data, intelligence, libraries, movies and music. A key challenge to this need is the
creation of vendor-neutral storage containers that can be interpreted over time.

Archivists and records managers of physical items such as documents, records, etc., avoid processing
each item individually. Instead, they gather together a group of items that are related in some manner
- by usage, by association with a specific event, by timing, and so on - and then perform all of the
processing on the group as a unit. The group itself may be known as a series, a collection, or in some
cases as a record or a record group. Once assembled, an archivist will place the series in a physical
container (e.g., a file folder or a filing box of standard dimensions), mark the container with a name
and a reference number and place the container in a known location. Information about the series will
be included in a label that is physically attached to the container, as well as in a “finding aid” such as
an online catalog that conforms to a defined schema and gives the name and location of the series, its
size, and an overview of its contents.

We propose an approach to digital content preservation that leverages the processes of the archival
profession thus helping archivists remain comfortable with the digital domain. One of the major needs
to make this strategy possible is a digital equivalent to the physical container - the archival box or file
folder - that defines a series, and which can be labeled with standard information in a defined format to
allow retrieval when needed. Self-contained Information Retention Format (SIRF) is intended to be
that equivalent - a storage container format for a set of (digital) preservation objects that also provides
a catalog with metadata related to the entire contents of the container as well as to the individual
objects and their interrelationship. This logical container makes it easier and more efficient to provide
many of the processes that will be needed to address threats to the digital content. Easier, more
efficient preservation processes in turn lead to more scalable and less costly preservation of digital
content.

SIRF components, use cases and functional requirements were defined in [1] and further described in
[2]. This document goes one step further and details the actual metadata, categories and elements in
the container’s catalog. We also describe how the SIRF logical format is serialized for storage
containers in the cloud and for tape based containers. The SIRF serialization for the cloud is being
experimented with OpenStack Swift object storage, and the implementation is offered as open source
in the OpenSIRF initiative [3].

Creating and maintaining the SIRF catalog requires executing data-intensive computations on the
various preservation objects including fixity checks, data transformations. This can be done efficiently
via executing computational modules - storlets - close to where the data is stored. The benefits of
using storlets include reduced bandwidth (reduce the number of bytes transferred over the WAN),
enhanced security (reduce exposure of sensitive data), costs savings (saving infrastructure at the
client side) and compliance support (improve provenance tracking). The Storlet Engine [4], is an
engine to support such storlets computations in secure sandboxes within the storage system, and can
be used to create and maintain SIRF containers.

© SNIA

 Working Draft SIRF Specification V1.0 9

2. Business Case

While no one wants to lose their digital content, the cost of maintaining integrity and access is
significant, in both money and effort. And unlike paper based content, the lifespan of digital content
can be very short unless if proactive steps are being taken to protect it. The use of a storage container
format like SIRF adds little expense and greatly increases the sustainability of data. However, this is
not adequate unless if the cost of preserving content is less than the (potential) cost of losing it.

In a business context, there are three major reasons why content is preserved. These are: to preserve
history, to mitigate risk or meet a legal mandate, and for future value of information. One or more of
these may apply, and the amount an entity is willing to spend will differ depending on how well these
reasons are aligned with the business goals of an organization.

One of the main reasons why people and organizations preserve content is to preserve history. In the
case of an individual, it may be photos, videos, and other content preserving one's life history. In a
business context, libraries, national archives, historians, and others have a primary mission to
preserve history.

This should mean that information under the control of these organizations or individuals would be well
protected. However, reality dictates that:
 Organizations (and individuals) have limited resources, and they have to make choices how much

to invest in preservation. Typically, this happens with the organization's knowledge of what trade-
offs are being made. However, in the case of digital content, the choice not to invest in
preservation will typically result in loss.

 Organizations cannot preserve everything as the cost would be prohibitive. However, it is difficult
to predict what will be of historic value. Sometimes important content is lost simply because its
value was not known at the time.

 Lack of skilled and experienced personal may also result in loss, especially in situations where
simple solutions do not exist.

Another often cited reason for preserving data is for "risk mitigation", or in some cases for "legal
mandate". These are closely related reasons because legal mandate is often looked at through the
lens of legal risk. In other words, a mandate that is not enforced or whose penalty is small is less of a
risk than a mandate with a larger penalty.

For example, consider government entities like a national or state archive. Legislators require those
entities to keep records for a prescribed period of time. The penalty for losing those records may
include loss of job, loss of funding, or even criminal penalties. Since preservation is directly funded,
there is little excuse for losing information. However, even in those cases, underfunding, and lack of
expertise may result in loss. Further, when those agencies preserve historical information, the
mandate and funding will not allow them to keep everything. Therefore, even these archivists are
required to make choices about what to keep.

Another often cited legal mandate is in healthcare, where medical organizations are required to retain
information for the lifetime of a patient. This seems like a difficult requirement, especially since
records are often maintained in private doctors' offices and other places that may not exist 50 or 75
years into the future. Anecdotal evidence shows that medical records are not maintained that long.
So, why is this happening? It is because records retention is expensive, and there are no penalties for

© SNIA

 Working Draft SIRF Specification V1.0

losing information. That is not to say that doctors and hospitals don't try, rather they won't spend the
necessary money to ensure that records are not lost.

The private sector is similar to healthcare. Preservation is seen as a cost, so it only makes sense
where the return on investment is positive. For example, businesses are very good at keeping recent
tax records, because they know that if they don't, the tax authority may levy fines. In the US,
businesses retain emails, because they know judges will fine them if they don't. They even implement
searchable archive systems, because they know that it will save money when they are forced to
produce documents responsive to a lawsuit. Note that this is different outside of the US, where judges
often do not levy fines or force companies to spend large sums of money on legal discovery.

When private sector companies do preserve information, they are typically focused on risk mitigation,
not preservation. If a company can legally delete information, they often will, because it eliminates the
chance that it can be used against them. If information is purely a risk, and a company is not in the
business of preservation, why would they keep it? The obvious answer is that they will keep
information that is valuable, and other information will not be kept. Value can result from future
revenue, cost savings, technical advantage, etc.

Regarding future value of information, one obvious example is in the entertainment industry. Movies,
TV shows, music, and other content can be re-sold and repurposed decades after its creation. This
can result in many dollars in revenue. So not surprisingly, organizations like the Motion Picture
Experts Group are at the leading edge of digital preservation. Entertainment companies spend
significant amounts of money retaining their content so that they will have it available to repurpose.
However, this does not mean they can retain everything. With the advent of digital movie production,
the amount of data that can be generated during the creation of a single film is immense. Therefore,
even here where future value is tangible, some hard choices need to be made.

In other industries, the mandate may not be as clear. Are design documents from an existing product
valuable? What about a retired product? What about research leading up to a product design? These
things may be needed for risk mitigation, but what about for use in future products? Companies make
decisions about these kinds of Intellectual Property content every day, and more times than not, the
data is either actively destroyed or lost due to inaction. The reason for this is actually because its
value (beyond risk mitigation) is unknown, so it's not clear how much a company should invest in
retaining the information.

So, how does SIRF help? SIRF brings down the expense of preservation, because data can remain
accessible even if the software that created the data no longer exists. This is because the stored data
is designed to be understandable, and does not need specialized software to interpret it. SIRF
reduces the complexity of logical and physical migration, making it easier for businesses to justify. By
using SIRF today, it becomes possible to retain more information, and to retain information with a
lower perceived future value. This is unlike proprietary and undocumented formats, which become
useless soon after a business stops paying for support.

© SNIA

 Working Draft SIRF Specification V1.0 11

3. Specification Overview
Figure 1 illustrates the SIRF container, which includes the following components:

 A magic object that identifies whether this is a SIRF container and gives its version. The magic
object is independent of the media and has an agreed defined name and a fixed size. It also includes
the means to access the SIRF catalog (for example, the catalog’s location).

 Preservation objects that contain the actual data to be preserved. An example preservation object
can be the OAIS Archival Information Package (AIP). The container may include multiple versions of a
preservation object and multiple copies of each version, but each specific preservation object is
generally immutable.

 A catalog that is updateable and contains metadata needed to make the container and its
preservation objects portable and accessible into the future without relying on metadata external to the
storage subsystem.

While the semantics of traditional storage systems include only limited standardized metadata about
each object, SIRF provides for the rich metadata needed for preservation and ensures its grouping
with the data. This rich metadata is defined in the catalog in a logical format to allow its serialization for
different storage technologies.

Figure 1: SIRF Components

The SIRF catalog is an object that includes metadata about the Preservation Objects (POs) in the
container and their relationship. It has a well-defined standardized format so it can be understandable
in the future. The SIRF catalog is separated from the metadata contained in the POs themselves
because a strict standardized format is difficult to impose on the POs that are generated by different
applications and domains. Additionally, The SIRF catalog level 1 includes metadata that is not
included in the PO e.g. fixity value of the whole PO. Including this metadata within the PO changes the
fixity value of the PO making this metadata inherently incorrect.

© SNIA

 Working Draft SIRF Specification V1.0

The SIRF catalog includes metadata related to the whole container as well as metadata related to
each preservation object within the container. Both types of metadata are organized into categories.

The metadata for the whole container includes the following categories:

1 Container Information

1.1 Specification

1.2 Container ID

1.3 State

1.4 Provenance

1.5 Audit Log

The metadata for all the preservation objects set is aggregated under:
2 Objects Set

The metadata for each preservation object includes the following categories:

3 Object Information

3.1 Object IDs

3.2 Related Objects

3.3 Dates

3.4 Packaging Format

3.5 Fixity

3.6 Retention

3.7 Audit Log

3.8 Extension

This document describes the specific metadata units in the various categories. Each category includes
several elements in which each element may be composed of several attributes. We also provide a
hierarchical representation of the metadata units. The notation of the hierarchical representation is
based on PREMIS [5] when possible and includes the following notions:

Repeatability (R): A metadata unit designated as “Repeatable” (R) can take multiple values. It does
not mean that a repository must record multiple instances of the metadata unit. Similarly, a metadata
unit can be designated as Not Repeatable (NR).
Optionality (O): Whether a value for the metadata unit is optional (O) or mandatory (M). Values for
mandatory metadata units are required while values for optional metadata units are encouraged but
not required.

SIRF serialization for CDMI/LTFS/Swift specify how a CDMI container, LTFS Tape or Swift container
can become also SIRF-compliant. A SIRF-compliant CDMI container, LTFS Tape or Swift container
enables future CDMI/LTFS/Swift clients “understand” containers created by today’s CDMI/LTFS/Swift
clients although the properties of the future client is unknown to us today. By “understand”, we mean

© SNIA

 Working Draft SIRF Specification V1.0 13

we can identify the preservation objects in the container, the packaging format of each object, its fixity
values, etc. (as defined in the SIRF catalog). This document also includes sections on SIRF
serialization for CDMI (Section 6), SIRF serialization for LTFS (Section 7) and SIRF serialization for
OpenStack Swift (Section 8).

SIRF includes metadata about the storage container, to help “understand” the container information in
the future. No single technology will be usable over the time spans mandated by current digital
preservation needs. SNIA CDMI, Swift and LTFS technologies are among best current choices, but
are good for perhaps 10-20 years. SIRF provides a vehicle for collecting all of the information that will
be needed to transition to new technologies in the future, and it can be serialized for the future
technologies as they come.

© SNIA

 Working Draft SIRF Specification V1.0

4. Container Information Metadata

4.1 Specification Category

This category includes information about the SIRF specification used for this container. As the
specification may evolve over time and distinct containers may use different SIRF specifications, we
need to denote in the SIRF catalog the specification used, and the SIRF level. SIRF level 2
specification defines more detailed metadata in the container.

The elements of the Specification category are:

 Specification ID (containerSpecificationIdentifier) – the specification identifier e.g. "SIRF-1.0"
 Specification Version (containerSpecificationVersion) – the specification version e,g, "1.0"
 SIRF Level (containerSpecificationSirfLevel) – the SIRF level that should be "1"

Hierarchical Representation:

1 containerInformation (1-1: M, NR)

 1.1 containerSpecification (1-1: M, NR)

 1.1.1 containerSpecificationIdentifier (1-1: M, NR)

 1.1.2 containerSpecificationVersion (1-1: M, NR)

 1.1.3 containerSpecificationSirfLevel (1-1: M, NR)

4.2 Container ID Category

This category includes the container unique identifier and it has just one element:
 Container ID (containerIdentifier) – the container unique identifier e.g. the tape id or cloud

container id

The Container ID element is composed of the following attributes:

 Container Identifier Type (containerIdentifierType) – a designation of the naming authority
and the domain within which the object identifier is unique.

 Container Identifier Locale (containerIdentifierLocale) – the locale of the identifier based on
the Internet Assigned Numbers Authority (IANA).

 Container Identifier Value (containerIdentifierValue) - a Unicode/UTF-8 string for identifier
actual value.

Hierarchical Representation

1 containerInformation (1-1: M, NR)

 1.2 containerIdentifier (1-1: M, NR)

© SNIA

 Working Draft SIRF Specification V1.0 15

 1.2.1 containerIdentifierType (1-1: M, NR)

 1.2.2 containerIdentifierLocale (1-1: M, NR)

 1.2.3 containerIdentifierValue (1-1: M, NR)

4.3 State Category

The state metadata is an indication of the progress of any activities that are to be carried out against a
container. For example, if a container holds many preservation objects, state may indicate whether all
of the objects intended for a container have been included or not. Or, state may indicate an in-
process migration of a container.

The elements of the State category are:

 State Type (containerStateType)
 State Value (containerStateValue)

Table 1: State category types and values

Type Accepted Values Use

INITIALIZING TRUE

TRUE when the container is being initialized, i.e.,
the magic object, container provenance and/or
catalog are being created

READY ACTIVE
FINALIZED

ACTIVE when the container is ready to receive
new POs or catalog changes

FINALIZED when the container is closed, read-
only, and cannot receive more POs

NOT READY DESTROYED
ERROR

DESTROYED when the container has been
destroyed and can no longer be read or modified.

ERROR when there's a failure that cannot be
specified using any other state type

MIGRATING TRUE TRUE when the data stored in a container are
being moved to/from another container

© SNIA

 Working Draft SIRF Specification V1.0

The container state transitions occur depending on the current state and the action that is being taken
in the container. The state diagram below shows the possible state transitions.

Figure 2: Possible container states and transitions

Hierarchical Representation

1 containerInformation (1-1: M, NR)

 1.3 containerState (1-1: M, NR)

 1.3.1 containerStateType (1-1: M, NR)

 1.3.2 containerStateValue (1-1: M, NR)

4.4 Provenance Category

Provenance is metadata describing the history of the information in a SIRF container (e.g., its origins,
chain of custody, preservation actions and effects). The W3C provenance primer [6] describes 3
perspectives for provenance information:

1. One perspective might focus on agent-centered provenance, that is, what people or organizations

were involved in generating or manipulating the information in question. For example, in this
perspective the provenace of the container can include the user that created the SIRF container.

2. A second perspective might focus on object-centered provenance, by tracing the origins of
portions of the container. An example of this perspective is having the container assembled from
content from other containers.

© SNIA

 Working Draft SIRF Specification V1.0 17

3. A third perspective one might take is on process-centered provenance, capturing the actions and
steps taken to generate the information in question. For example, the container may have been
generated by invoking a service to retrieve data from a database, then generating preservation
objects, and finally storing the preservation objects with a specific application.

Regardless of the perspective from which provenance metadata is derived, it is critical for
understanding the container, its history, its context and meaning. SIRF enables the preservation of
container provenance information as part of a container’s metadata.

The provenance information may vary depending on the type of information being preserved or its
intended audience. In addition, it may be larger than what can reasonably be included in the catalog.
Therefore, it is included in the catalog by reference, and the actual information is stored in another
preservation object:

This category includes just one element:

 Provenance Reference (containerProvenanceReference) – reference to the object that
contains the provenance

The container provenance information stored in SIRF may be in the W3C-PROV format, or any other
well known provenance format.

The containerProvenanceReference element is composed of the following attributes:
 Reference Type (referenceType) – whether internal referencing within the container or

external referencing
 Reference Role (referenceRole) – the value should be "Provenance"
 Reference Value (referenceValue) – the unique identifier of the referenced provenance

object. If the referenced object is an internal preservation object, the value will be its
objectVersionIdentifier.objectIdentifierValue

Hierarchical Representation

1 containerInformation (1-1: M, NR)

 1.4 containerProvenance (1-*: M, NR)

 1.4.1 containerProvenanceReference (1-1: M, NR)

 1.4.1.1 referenceType (1-1: M, NR)

 1.4.1.2 referenceRole (1-1: M, NR)

 1.4.1.3 referenceValue (1-1: M, NR)

4.5 Audit Log Category

The audit log is provided as a place for preserving any important information about how a container
has been accessed or modified. Note that this category is for the audit log of the container, in contrast
to the audit log described in the Object Information Metadata section. The extent and contents of an
audit log depend on the needs of the specific preservation data store and its use case. Distinct
domains have different audit logs regulations e.g., SEC is for the market domain, FDA is for the

© SNIA

 Working Draft SIRF Specification V1.0

pharmatutical domain. In SIRF, audit logs are stored as SIRF preservation objects. Therefore, a
container audit log information is stored as an object ID in the SIRF catalog.

This category includes just one element:

 Audit Log Reference (containerAuditLogReference) – reference to the object that contains
the audit log

The containerAuditLogReference element is composed of the following attributes:

 Reference Type (referenceType) – whether internal referencing within the container or
external referencing

 Reference Role (referenceRole) – the value should be "AuditLog"
 Reference Value (referenceValue) – the unique identifier of the referenced audit log object. If

the referenced object is an internal preservation object, the value will be its
objectVersionIdentifier.objectIdentifierValue

Hierarchical Representation

1 containerInformation (1-1: M, NR)

 1.5 containerAuditLog (0-*, O, R)

 1.5.1 containerAuditLogReference (1-1: M, NR)

 1.5.1.1 referenceType (1-1: M, NR)

 1.5.1.2 referenceRole (1-1: M, NR)

 1.5.1.3 referenceValue (1-1: M, NR)

© SNIA

 Working Draft SIRF Specification V1.0 19

5. Object Information Metadata

The SIRF container includes multiple preservation objects (POs). The objectsSet is the element in the
SIRF catalog that aggregates all the object information metadata of the various POs. Underneath the
objectsSet, we'll have the various objectInformation – one for each PO. The following subsections
describe the categories, elements and attributes within the objectInformation.

Hierarchical Representation

2 objectsSet (1-*: M, R)

5.1 Object IDs Category

Identifiers (IDs) are used to identify a PO and to link to other POs. Managing identifiers over the long
term raises issues such as:

 how to ensure uniqueness of identifiers over long term

 how to handle evolution of identifiers over time

 how to ensure scalability of identifiers

SIRF helps addressing these issues by enabling redundancy in identifiers and registering the evolution
(genealogy) of POs. Hence, a PO in a SIRF container can have multiple identifiers as redundancy in
identifiers increases the chances that at least one identifier will survive for the long term. Nevertheless,
at any time, at least one of the identifiers should be persistent and unique.

When an identifier is qualified as unique, it should be unique across all types of storage including
offline storage and online storage. There are various methods to generate unique identifiers, which
may vary in the scope of uniqueness. Unique identifiers are sometimes based on external
infrastructure. For example, the British Library unique identifiers are based on a secure timestamp
provided by the British government. In another example, the unique identifier can be based on a
domain name and include a vendor identifier.

Universal Unique IDs (UUIDs) are sometimes selected for creating unique identifiers. Note that in a
long-term environment, there are additional challenges with managing UUIDs and ensuring their
uniqueness. For example, there is a need to ensure that the same process and method for generating
UUIDs is continually used, so that it can be guaranteed over long periods of time that no duplicate
UUID would be generated. Also note that as of today, there are no means to enforce the methods of
which the UUIDs are generated and to validate that they do not collide.

The elements of the Object IDs category are:

 PO Name (objectName) – non-unique identifier e.g., file name

 PO Version ID (objectVersionIdentifier) – unique identifier that identifies the specific version
of the PO

 PO Logical ID (objectLogicalIdentifier) - a unique identifier that identifies the various
versions that originate from the same ancestor

© SNIA

 Working Draft SIRF Specification V1.0

 PO Parent ID (objectParentIdentifier) - a unique identifier that identifies the parent PO from
which this PO version was created. The Parent PO shares the same logical ID as the current
PO, but has a different version ID. Parent ID can be added at a later stage, and it is not
mandatory to specify it when the PO is created. This is because the parent PO may be stored
in the container at a later stage or can be stored in another container.

A PO may have several copies that are bitwise identical. Different copies may reside in different
containers. Each one of these copies may have a different copy ID, but their version ID, logical ID, and
parent ID should be the same. Elements such as "copy ID" or "number of copies" are not maintained
in the SIRF catalog, as maintaining them in each container and updating the catalog each time a copy
is lost may be difficult and subject to inconsistency. It is hard to manage such an element, especially if
some of the copies reside in other storage containers. For example, consider the case in which a copy
of a PO is destroyed, and an update of the catalog of all containers was needed. Also, when a new
copy is created instead, some implementations may choose to assign a new copy ID to the newly
created PO, while other implementations may choose to assign the same copy ID as the destroyed
one.

Each element in this category is composed of the following attributes:

 Object Identifier Type (objectIdentifierType) – a designation of the naming authority and the
domain within which the object identifier is unique. Identifier values cannot be assumed to be
unique across domains; the combination of objectIdentifierType and objectIdentifierValue
should ensure uniqueness. Examples of naming authority and domain include: URL, DataCite
DOI, ARK, UUID, vendor domain, DLC, DRS, Handle System HDL.

 Object Identifier Locale (objectIdentifierLocale) – the locale of the identifier based on the
Internet Assigned Numbers Authority (IANA).

 Object Identifier Value (objectIdentifierValue) - a Unicode/UTF-8 string for identifier actual
value. There is no limit on the objectIdentifierValue length in the architecture, but the
implementation can have size limits. The objectIdentifierValue can sometimes give a hint
regarding the classification of the data, but this is left to the implementation. Examples of
identifiers values include: http://x.y.z, DOI:123456, urn::xx::dd, hdl:4263537.

Hierarchical Representation
The objectName includes all the non-unique identifiers of the object and we may have 0-* such
identifiers namely this element is optional (O) and we may have multiple such elements repeating (R).

The objectVersionIdentifier includes the unique identifiers of this version of the object and may have 1-
* such identifiers, with at least one such element mandatory (M). Multiple elements may repeat (R).

The objectLogicalIdentifier includes the unique identifier of all the versions originating from the same
ancestor. This element is mandatory (M). There can be only one such element, which is not repeating
(NR).

The objectParentIdentifier includes the unique identifier of the parent object. This element is optional
(O), as not all objects have parents, but if it exists then there can be only one such element, which is
not repeating (NR).

The hierarchical representation of the Object IDs category is as follows:

3 objectInformation (1-*: M, R)

 3.1 objectIdentifiers (1-*: M, R)

© SNIA

 Working Draft SIRF Specification V1.0 21

 3.1.1 objectName (0-*: O, R)

 3.1.1.1 objectIdentifierType (1-1: M, NR)

 3.1.1.2 objectIdentifierLocale (1-1: M, NR)

 3.1.1.3 objectIdentifierValue (1-1: M, NR)

 3.1.2 objectVersionIdentifier (1-*: M, R)

 3.1.2.1 objectIdentifierType (1-1: M, NR)

 3.1.2.2 objectIdentifierLocale (1-1: M, NR)

 3.1.2.3 objectIdentifierValue (1-1: M, NR)

 3.1.3 objectLogicalIdentifier (1-1: M, NR)

 3.1.3.1 objectIdentifierType (1-1: M, NR)

 3.1.3.2 objectIdentifierLocale (1-1: M, NR)

 3.1.3.3 objectIdentifierValue (1-1: M, NR)

 3.1.4 objectParentIdentifier (0-1: O, NR)

 3.1.4.1 objectIdentifierType (1-1: M, NR)

 3.1.4.2 objectIdentifierValue (1-1: M, NR)

 3.1.4.3 objectIdentifierLocale (1-1: M, NR)

5.2 Dates Category

The dates category is used to keep a record of the last time a preservation object was modified and
accessed (both optional), as well as when it was created (mandatory). Note that the modified time is
optional since it is meaningless in a system that does not allow changes after creation. Accessed time
is also optional since some systems do not actively track access, and because it may be costly in a
system that is frequently accessed.

All date/time values are in the ISO 8601:2004 extended representation (YYYY-MM-
DDThh:mm:ss.ssssssZ). The full precision shall be specified, the sub-second separator shall be a ".",
the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The YYYY-
MM-DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-MM-
DDT00:00:00.000000Z.

Hierarchical Representation

3 objectInformation (1-*: M, R)

 3.2 objectDates (1-1: M, NR)

 3.2.1 objectCreationDate (1-1: M, NR)

© SNIA

 Working Draft SIRF Specification V1.0

 3.2.2 objectLastModifiedDate (0-1: O, NR)

 3.2.3 objectLastAccessedDate (0-1: O, NR)

5.3 Related Objects Category

The Related Objects category is used to reference other POs in the SIRF container that relate to the
current PO we describe. Examples of such related objects can be an object that associates context to
the current object, or an object that is representation information (as defined in OAIS) of the current
object.

The Related Objects category has one element:

 Related Object Reference (objectRelatedObjectsReference) – reference to the object that is
related to current object

The objectRelatedObjectsReference element is composed of the following attributes:

 Reference Type (referenceType) – whether internal referencing within the container or
external referencing

 Reference Role (referenceRole) – the type of relation to the current object e.g. whether
"context", "representation information", etc.

 Reference Value (referenceValue) – the unique identifier of the related object. If the object is
an internal PO, the value will be its objectVersionIdentifier.objectIdentifierValue

Hierarchical Representation

3 objectInformation (1-*: M, R)

 3.3 objectRelatedObjects (0-*, O, R)

 3.3.1 objectRelatedObjectsReference (1-1: M, NR)

 3.3.1.1 referenceType (1-1: M, NR)

 3.3.1.2 referenceRole (1-1: M, NR)

 3.3.1.3 referenceValue (1-1: M, NR)

5.4 Packaging Format Category

The Packaging Format category is used to denote the format of the manifest of the PO e.g. PREMIS,
XIP, XFDU. Different preservation objects in the SIRF container may have different packaging
formats.

The Packaging Format category has one element:

 Packaging Format Name (objectPackgingFormatName) – a string that represents the format
of the PO including format version. The string may also include the compression algorithm
name if the PO is compressed.

© SNIA

 Working Draft SIRF Specification V1.0 23

Hierarchical Representation

3 objectInformation (1-*: M, R)

 3.4 objectPackagingFormat (1-1, M, NR)

 3.4.1 objectPackagingFormatName (1-1: M, NR)

5.5 Fixity Category

Fixity is used to demonstrate that the particular content information has not been altered in an
undocumented or unauthorized manner.

The elements of the Fixity category are:
 Last fixity check date (lastCheckDate) – the date of the last fixity check according to ISO

8601:2004, Data elements and interchange formats – Information interchange –
Representation of dates and times, e.g. YYYY-MM-DDThh:mm:ss.ssssssZ.

 Digest information (digestInformation) – information about the multiple fixity checks.

In some systems, the fixity check date is auditable, but we do not mandate that in SIRF as it requires a
significant overhead, and not all systems support that.

The digestInformation element is composed of the following attributes:

 Fixity Originator (digestOriginator) - the agent that created the original digest that is
compared in a fixity check.

 Fixity algorithm (digestAlgorithm) - the specific algorithm used to construct the digest
value. Examples include MD5, SHA-256, Whirlpool.

 Fixity value (digestValue) - the output of the fixity algorithm which is stored so that it can be
compared in future fixity checks. For composite object – the value is the fixity of the manifest.

Hierarchical Representation

We may have multiple triplets: {digestOriginator, digestAlgorithm, digestValue}.

The hierarchical representation of the Fixity category is as follows:

3 objectInformation (1-*: M, R)

 3.5 objectFixity (1-1: M, NR)

 3.5.1 lastCheckDate (1-1: M, NR)

 3.5.2 digestInformation(1-*: M, R)

 3.5.2.1 digestOriginator (1-1: M, NR)

 3.5.2.2 digestAlgorithm (1-1: M, NR)

 3.5.2.3 digestValue (1-1: M, NR)

© SNIA

 Working Draft SIRF Specification V1.0

5.6 Retention Category

A storage system implementing SIRF may optionally implement retention management disciplines into
the system management functionality. Retention management includes implementing a retention
policy, defining a hold policy to enable objects to be held for specific purposes (e.g., litigation), and
defining how the rules for deleting objects are affected by placing either a retention policy and/or a
hold on an object. Preservation object deletion is not a capability of retention management, per se, but
rather is a general system capability. However, preservation object hold describes what happens
when placing either a retention policy and/or a hold on an object.

When a SIRF object’s retention metadata is set, it specifies the time period during which object
deletion shall be prohibited. Objects may have multiple retention periods, however, deletion should be
prohibited if any of those retention periods are active.

Retention metadata may also include holds. A hold enforces read-only data object access and
prohibition of object deletion. Objects may have multiple holds, and while any hold is active, the
system must enforce read-only access to the object and prevent deletion.

While SIRF does provide support for basic retention metadata, the implementation will be dependent
on the underlying system. For example, a system implemented on CDMI may take advantage of
CDMI’s retention mechanisms.
The hierarchical representation of the retention category follows:

Hierarchical Representation

3 objectInformation (1-*: M, R)

 3.6 objectRetention (1-1: O, R)

 3.6.1 retentionType(1-1:M,NR)

 3.6.2 retentionValue(1-1:M,NR)

retentionType can be time_period, with the retentionValue specifying the period during which the
object must be retained, or retentionType can be hold where the value is ignored. All retention holds
must be removed before any modification or deletion of the object is allowed.

5.7 Audit Log Category

The audit log is provided as a place for preserving any important information about how an object has
been accessed or modified. Note that this category is for the audit log of a preservation object, in
contrast to the container audit log described in the Container Information Metadata section. The extent
and contents of an audit log depend on the needs of the specific preservation data store and its use
case. Distinct domains have different audit logs regulations e.g., SEC is for the market domain, FDA is
for the pharmatutical domain. In SIRF, audit logs are stored as SIRF preservation objects. Therefore,
the object’s log information is stored as an object ID in the SIRF catalog. SNIA published a whitepaper
on audit logging for storage that is available at: http://www.snia.org/sites/default/files/SNIA-Logging-
WP.050921.pdf.

© SNIA

 Working Draft SIRF Specification V1.0 25

This category includes just one element:

 Audit Log Reference (objectAuditLogReference) – reference to the object that contains the
audit log

The containerAuditLogReference element is composed of the following attributes:

 Reference Type (referenceType) – whether internal referencing within the container or
external referencing

 Reference Role (referenceRole) – the value should be "AuditLog"
 Reference Value (referenceValue) – the unique identifier of the referenced audit log object. If

the referenced object is an internal preservation object, the value will be its
objectVersionIdentifier.objectIdentifierValue

Hierarchical Representation

3 objectInformation (1-1: M, NR)

 3.7 objectAuditLog (0-*, O, R)

 3.7.1 objectAuditLogReference (1-1: M, NR)

 3.7.1.1 referenceType (1-1: M, NR)

 3.7.1.2 referenceRole (1-1: M, NR)

 3.7.1.3 referenceValue (1-1: M, NR)

5.8 Extension Category

The extension category is a placeholder for data store-specific information. Each organization using
SIRF may use this reserved, general purpose category to add private information or metadata that is
specific to their own domain or data store. The information within this category must be self-describing.
The extension is comprised of a description, the name of the organization and a set of key-value pairs.
This category is not mandatory.

Hierarchical Representation

3 objectInformation (1-*: M, R)

 3.9 objectExtension(0-*, O, R)

 3.9.1 objectExtensionPair(0-*, O, R)

 3.9.1.1 objectExtensionKey(1-1, M, NR)

 3.9.1.2 objectExtensionValue(1-1, M, NR)

3.9.2 objectExtensionOrganization(1-1, M, NR)

3.9.3 objectExtensionDescription(0-1, O, NR)

© SNIA

 Working Draft SIRF Specification V1.0

6. Serialization for SNIA CDMI
The Cloud Data Management Interface (CDMI) [7] is an ISO/IEC 17826:2012 standard that defines an
interoperable format for moving data and associated metadata between cloud providers. CDMI defines
a RESTful interface where data objects can be accessed by standard browsers and internet tools
(subject to owner’s access control lists). CDMI data objects may “order” data services from the cloud
via Data System Metadata (key/value) on the containers or objects.

CDMI has several implementations including an open source implementation on top of OpenStack
Swift.

To enable a CDMI container to be qualified as a SIRF container, we need to add an Extension
specification to CDMI that defines a new field for the capabilities object. This new field will say whether
the cloud supports making a container SIRF-compliant and will point to the SIRF specification.

A CDMI cloud container can be qualified as a SIRF container when:

 The SIRF magic object is mapped to the CDMI container metadata and includes, for example,
specification ID and version, SIRF level, SIRF catalog object ID.

 The SIRF catalog is an object in the CDMI container formatted in JSON (self-describing) that
includes one containerInformation section and multiple ObjectInformation sections - one for each
PO within the container (self-contained). This object should probably be indexed. There is a CDMI
extension to support indexing that its granularity is per object.

 A SIRF preservation object (PO) that is a simple object (contains one element) is mapped to a
CDMI data object. The simple object can be for example a tar/zip.

 A SIRF PO that is a composite object (contains several elements) is mapped to a set of data
objects (one for each element) and a manifest data object that its content includes information
about the elements.

The interface to the SIRF-compliant CDMI container is the regular CDMI interface. In addition, the
CDMI API can be used to store and access the various preservation objects and the catalog object. In
the interface, CDMI content type is used when you need to create/update metadata e.g. updating
container metadata with the fields coming from the magic object. Otherwise, you can use non CDMI
content type.

For example, assume we have a CDMI container named "Patient Container" that is SIRF-compliant
and includes medical encounters and images for the patient. Assume each encounter is a simple
preservation object; each image is a composite preservation object; and since the container is SIRF-
compliant, it also includes a catalog object.

© SNIA

 Working Draft SIRF Specification V1.0 27

Figure 3: SIRF Seralization for CDMI Example

We can read the various preservation objects and the catalog object via CDMI REST API as follows:

GET <root URI>/<PatientContainer>/encounterJan2001

GET <root URI>/<PatientContainer>/chestImage

GET <root URI>/<PatientContainer>/sirfCatalog

6.1 Catalog Serialization: Object IDs Category

The Object IDs category in the SIRF catalog is serialized as follows:

 PO name (objectName) – for simple objects, the value is the CDMI object name that corresponds
to this PO. For composite objects, the value is the name of the manifest data object. Note that
object names are optional in CDMI and also in the SIRF catalog.

 PO version ID (objectVersionIdentifier) – the value is “CDMI” + CDMI container name/ID + CDMI
object name/ID. Object IDs are optional in CDMI but then there is a name. Note that a container
may be renamed which can cause inconsistency.

 PO logical ID (objectLogicalIdentifier) - the value is the PO version ID of the first version of this PO

 PO parent ID (objectParentIdentifier) – the value is the PO version ID of the parent PO

The optional CDMI Versioning Extension specifies interface to manage versioned objects. This is
orthogonal to the metadata stored in the SIRF catalog object. A PO version is different than cloud
object version e.g. for composite PO.

6.2 Catalog Serialization: Fixity Category

The Fixity category in the SIRF catalog is serialized as follows:

© SNIA

 Working Draft SIRF Specification V1.0

 Last fixity check date – the value is according to ISO 8601:2004 that is also used in CDMI dates.

 Fixity Originator (digestOriginator)

 Fixity algorithm (digestAlgorithm) – the value can be the CDMI cdmi_value_hash data system
metadata expressed as a string in the form of ALGORITHM LENGTH e.g., SHA160, SHA256.

 Fixity value (digestValue) - the value can be the CDMI cdmi_hash storage system metadata that
represents the hash of the value of the object, encoded using Base16 encoding rules described in
RFC 4648.

© SNIA

 Working Draft SIRF Specification V1.0 29

7. Serialization for SNIA LTFS
The Linear Tape File System (LTFS) format specification [8] defines LTFS Volumes. An LTFS Volume
holds data files and corresponding metadata to completely describe the directory and file structures
stored on the volume. Files can be written to, and read from, an LTFS Volume using standard POSIX
file operations. The LTFS Volume includes an index in XML that contains metadata similar to
information in disk-based file systems such as file name, dates, extent pointers, extended attributes,
etc. LTFS is becoming the standard for linear tape and is being formalized through SNIA.

An LTFS volume is comprised of a pair of LTFS partitions: a data partition (DP) and an index partition
(IP). Each partition contains a Label Construct followed by a Content Area.

The Label Construct consists of an ANSI VOL1 label, followed by a single file mark, followed by one
record in LTFS Label format, followed by a single file mark. The VOL1 Label includes, for example,
volume identifier (6 bytes), implementation identifier (13 bytes), owner identifier (14 bytes). The LTFS
Label includes, for example, creator, volume UUID, blocksize, compression, partitions ids. Each Label
construct for an LTFS volume must contain identical information except for the Location field of the
LTFS Label.

The Content Area contains zero or more Data Extents and Index Constructs in any order. The last
construct in the Content Area of a complete partition must be an Index Construct. File marks cannot
appear anywhere else on the tape except after the labels and around the indexes.

A LTFS tape container can be qualified also as a SIRF container when the volume format is as
follows:

 The SIRF magic object is mapped to extended attributes of the “LTFS index” root directory. The
magic object includes, for example, specification ID and version, SIRF level, reference to SIRF
catalog.

 The SIRF catalog resides in the index partition and formatted in XML (self-describing) that includes
one containerInformation section and multiple objectInformation sections - one for each PO within
the container (self-contained). LTFS application has rules to indicate what to store in the index
partition. That method can be used to indicate to store the SIRF catalog in the index partition.
Alternatively, the index partition can include a reference to the SIRF catalog that will reside in the
data partition.

 A preservation object (PO) is mapped to an LTFS file or set of files. In case the PO is a simple
object composed of one element, it is mapped to a LTFS file. In case the PO is a composite object
composed of several elements, it is mapped to a set of LTFS files (one for each element) and a
manifest file that its content includes information about the elements.

Generations of the SIRF catalog are not maintained; versions of the POs are maintained by the IDs
category.

The size of the Index Partition is 2 wraps which is 37.5GB in LTO5, and it will be larger on LTO6. The
LTFS index itself will probably never be larger than a fraction of a GB, so space remains available for
the SIRF catalog, and even for additional information e.g. thumbnails of images.

© SNIA

 Working Draft SIRF Specification V1.0 30

Figure 4: SIRF Serialization for LTFS Volume

7.1 Catalog Serialization: Object IDs Category

The Object IDs category in the SIRF catalog is serialized as follows:

 PO name (objectName) – for simple objects, the value is the file name that corresponds to this PO.
For composite objects, the value is the name of the manifest file.

 PO version ID (objectVersionIdentifier) – the value is "LTO” + Tape UUID + LTFS <fileuid>. The
LTFS fileuid is a 64-bit sequence number generated for each LTFS file.

 PO logical ID (objectLogicalIdentifier) - the value is the PO version ID of the first version of this PO

 PO parent ID (objectParentIdentifier) – the value is the PO version ID of the parent PO

7.2 Catalog Serialization: Fixity Category

The Fixity category in the SIRF catalog is serialized as follows:

 Last fixity check date – the value is according to ISO 8601:2004 that is also used in LTFS dates.

 Fixity Originator (digestOriginator)

 Fixity algorithm (digestAlgorithm) – a string for the algorithm name e.g., SHA160, SHA256.

 Fixity value (digestValue) - for composite object it includes the fixity of the manifest file. Then, the
manifest includes the fixities of the elements.

© SNIA

 Working Draft SIRF Specification V1.0

8. Serialization for OpenStack Swift

OpenStack Swift [9] is a highly available, distributed, eventually consistent object/blob store in the
cloud. Swift uses a RESTful interface (HTTP commands, e.g., GET, PUT, POST, DELETE and HEAD)
for the creation, manipulation and deletion of storage objects and metadata.

The serialization for Swift involves mapping SIRF objects to Swift Objects. SIRF containers are
mapped to Swift containers. The magic object is included in the Swift container's metadata. The
catalog is mapped to a file in JSON format [10] in the container (its name is specified in the magic
object; catalog.json is the default). The preservation objects are mapped to Swift objects in the
container and referenced in the catalog.

The retrieval of information is similar to the CDMI serialization:

GET <root URI>/<Container>/<PO name>

GET <root URI>/<Container>/<Catalog file name>

GET <root URI>/<Container>/provenance.po.json (provenance preservation object)

Container provenance is one of the POs (provenance.po.json). Therefore, the catalog references the
container provenance twice: in the container specification (in the container information section), and
as a regular PO.

Below are some examples of using Swift's RESTful API to manipulate SIRF objects. Our example
container only contains one preservation object, which is the provenance information.

1. Retrieving container metadata (HTTP HEAD is used)

HEAD http://$SWIFT_IP:$SWIFT_PORT/v1/$SWIFT_ACCOUNT/ContainerExample

HTTP/1.1 204 No Content
Content-Length: 0
X-Container-Object-Count: 3
X-Container-Meta-Sirfcatalogid: catalog.json
Accept-Ranges: bytes
X-Storage-Policy: Policy-0
X-Container-Meta-Sirflevel: 1
X-Container-Meta-Containerspecification: 1.0
X-Container-Bytes-Used: 4039
X-Timestamp: 1416832358.29789
Content-Type: text/plain; charset=utf-8
X-Trans-Id: txfa2c6026e1ea43c7a440f-0054734cdb
Date: Mon, 24 Nov 2014 15:20:59 GMT

© SNIA

 Working Draft SIRF Specification V1.0 32

The lines in bold correspond to the magic object which is embedded in the header of the HTTP
request.

2. Listing the files in the container named 'ContainerExample' (HTTP GET is used)

GET http://$SWIFT_IP:$SWIFT_PORT/v1/$SWIFT_ACCOUNT/ContainerExample

HTTP/1.1 200 OK
Content-Length: 65
X-Container-Object-Count: 3
X-Container-Meta-Sirfcatalogid: catalog.json
Accept-Ranges: bytes
X-Storage-Policy: Policy-0
X-Container-Meta-Sirflevel: 1
X-Container-Meta-Containerspecification: 1.0
X-Container-Bytes-Used: 4039
X-Timestamp: 1416832358.29789
Content-Type: text/plain; charset=utf-8
X-Trans-Id: tx6642b04344064a029fcc2-0054734d08
Date: Mon, 24 Nov 2014 15:21:44 GMT

ContainerExample-A-Valentine-1.0
catalog.json
provenance.po.json

The lines in bold correspond to the Swift objects in the container. Please note that the container
contains the catalog with the same name specified in the magic object, as well as two POs called
provenance.po.json (which corresponds to the provenance information) and ContainerExample-A-
Valentine-1.0.

3. Retrieving a PO (HTTP GET is used)

GET
http://$SWIFT_IP:$SWIFT_PORT/v1/$SWIFT_ACCOUNT/ContainerExample/ContainerExam
ple-A-Valentine-1.0

HTTP/1.1 200 OK
Content-Length: 990
Accept-Ranges: bytes
Last-Modified: Mon, 24 Nov 2014 15:20:01 GMT
Etag: 8d766d52bdf6d9d18721070f218b29ca
X-Timestamp: 1416842400.31717
Content-Type: application/unknown
X-Trans-Id: tx69de11dc395544d8bf61a-0054734d31
Date: Mon, 24 Nov 2014 15:22:25 GMT

© SNIA

 Working Draft SIRF Specification V1.0

For her this rhyme is penned, whose luminous eyes,
Brightly expressive as the twins of Lœda,
Shall find her own sweet name, that, nestling lies
Upon the page, enwrapped from every reader.
Search narrowly the lines! -- they hold a treasure
Divine -- a talisman -- an amulet
That must be worn at heart. Search well the measure --
The words -- the syllables! Do not forget
The trivialest point, or you may lose your labor!
And yet there is in this no Gordian knot
Which one might not undo without a sabre,
If one could merely comprehend the plot.
Enwritten upon the leaf where now are peering
Eyes scintillating soul, there lie perdus
Three eloquent words oft uttered in the hearing
Of poets, by poets -- as the name is a poet’s, too.
Its letters, although naturally lying
Like the knight Pinto -- Mendez Ferdinando --
Still form a synonym for Truth. -- Cease trying!
You will not read the riddle, though you do the best you can do.

Edgar Allan Poe

The lines in bold corresponds to the contents of the preservation object.

4. Retrieving the catalog (HTTP GET is used)

GET http://$SWIFT_IP:$SWIFT_PORT/v1/$SWIFT_ACCOUNT/ContainerExample/catalog.json

HTTP/1.1 200 OK
Content-Length: 3066
Accept-Ranges: bytes
Last-Modified: Fri, 23 Jan 2015 15:02:39 GMT
Etag: c520a08ed64a5bc714ad2712eb62ed2c
X-Timestamp: 1422025358.98079
Content-Type: application/unknown
X-Object-Meta-Key1: value1
X-Trans-Id: txf2c6ef4e38624a0684b39-0054c2629b
Date: Fri, 23 Jan 2015 15:02:51 GMT

{"catalogId":"catalog.json","containerInformation":{"containerSpecification":{"cont
ainerSpecificationIdentifier":"SIRF-
1.0","containerSpecificationSirfLevel":"1","containerSpecificationVersion":"1.0"},"
containerIdentifier":{"containerIdentifierLocale":"en","containerIdentifierType":"c
ontainerIdentifier","containerIdentifierValue":"ContainerExample"},"containerState"
:{"containerStateType":"ready","containerStateValue":"true"},"containerProvenanceRe
ference":{"referenceRole":"Provenance","referenceType":"internal","referenceValue":
"http://snia.org/sirf/ContainerExample-provenance.po.json-
1.0"},"containerAuditLog":[]},"objectsSet":{"objectInformation":[{"objectIdentifier
s":[{"objectName":[{"objectIdentifierLocale":"en","objectIdentifierType":"name","ob

© SNIA

 Working Draft SIRF Specification V1.0 34

jectIdentifierValue":"provenance.po.json"}],"objectLogicalIdentifier":{"objectIdent
ifierLocale":"en","objectIdentifierType":"logicalIdentifier","objectIdentifierValue
":"http://snia.org/sirf/ContainerExample-
provenance.po.json"},"objectParentIdentifier":{"objectIdentifierLocale":"en","objec
tIdentifierType":"parentIdentifier","objectIdentifierValue":"null"},"objectVersionI
dentifier":{"objectIdentifierLocale":"en","objectIdentifierType":"versionIdentifier
","objectIdentifierValue":"http://snia.org/sirf/ContainerExample-
provenance.po.json-1.0"}}],"objectCreationDate":"2015-01-
23T13:02Z","objectLastModifiedDate":"2015-01-
23T13:02Z","objectLastAccessedDate":"2015-01-
23T13:02Z","objectRelatedObjects":[],"packagingFormat":{"packagingFormatName":"none
"},"objectFixity":{"digestInformation":[{"digestAlgorithm":"SHA-
1","digestOriginator":"ObjectApi","digestValue":"7bec3092783ac1cffe4ff4b0c98958e2b7
76a4e2"}],"lastCheckDate":"20150123130218"},"objectRetention":{"retentionType":"tim
e_period","retentionValue":"forever"},"objectAuditLog":[],"objectExtension":[],"ver
sionIdentifierUUID":"http://snia.org/sirf/ContainerExample-provenance.po.json-
1.0"},{"objectIdentifiers":[{"objectName":[{"objectIdentifierLocale":"en","objectId
entifierType":"name","objectIdentifierValue":"A-
Valentine"}],"objectLogicalIdentifier":{"objectIdentifierLocale":"en","objectIdenti
fierType":"logicalIdentifier","objectIdentifierValue":"ContainerExample-A-
Valentine"},"objectParentIdentifier":{"objectIdentifierLocale":"en","objectIdentifi
erType":"parentIdentifier","objectIdentifierValue":"null"},"objectVersionIdentifier
":{"objectIdentifierLocale":"en","objectIdentifierType":"versionIdentifier","object
IdentifierValue":"ContainerExample-A-Valentine-1.0"}}],"objectCreationDate":"2015-
01-23T13:02Z","objectLastModifiedDate":"2015-01-
23T13:02Z","objectLastAccessedDate":"2015-01-
23T13:02Z","objectRelatedObjects":[],"packagingFormat":{"packagingFormatName":"none
"},"objectFixity":{"digestInformation":[{"digestAlgorithm":"SHA-
1","digestOriginator":"ObjectApi","digestValue":"307257C086B7F24759E2E58D65313ED5FB
C7D6FC"}],"lastCheckDate":"20150123130256"},"objectRetention":{"retentionType":"tim
e_period","retentionValue":"10
years"},"objectAuditLog":[],"objectExtension":[],"versionIdentifierUUID":"Container
Example-A-Valentine-1.0"}]}}

© SNIA

 Working Draft SIRF Specification V1.0

9. Use Case Example

UC8: BioMedical Bank, from the SIRF use cases document [1] is used here to demonstrate the
identifiers in the SIRF catalog. We will use the following actors of a preservation system as defined in
[1] and depicted in Figure 5 below:

 Storage - Storage subsystem that persists numerous preservation objects.

 TP-Service - Today’s preservation service, e.g., OAIS ingest service, transformation service.

 FP-Service - Future preservation service, which may be unknown today.

 T-App - Today’s application that generates digital data, e.g., a word processor, eMail application.

 F-App - Future application, which may be unknown today.

 Reg – Registry that stores representation information of the used storage formats, e.g., the
specification documents of the used formats.

Figure 5: SIRF Actors

The scenario in this use case is as follows. A large hospital, which also has an adjacent academic
medical research center, stores the patients' biomedical data in a biomedical bank, in which data is
preserved for decades. The data is used at the point of care as well as for biomedical research by the
adjacent research center.

Table 2 describes the use case with its associated information in the SIRF container.

Table 2: BioMedical Bank Example

Use Case Flow SIRF Container

1.

T-App ingests via TP-service a PO that
includes a standardized Digital Imaging
and Communications in Medicine (DICOM)
image of the leg of a patient that is a minor.

PO1 for the image is stored in the SIRF
container, and the catalog includes an entry
objectInformation for this PO1 with elements
objectName, objectVersionIdentifier,
objectLogicalIdentifier.

© SNIA

 Working Draft SIRF Specification V1.0 37

2.

Time passes and the patient, who is now
an adult, schedules an appointment to
check a new problem he has encountered
in his leg.

During that time PO1 may be subject to
transformations for logical preservation. For
example PO2 may be created in the SIRF
container and the catalog will include an entry
objectInformation for this PO2 with elements
objectName, objectVersionIdentifier,
objectLogicalIdentifier that is identical to
objectLogicalIdentifier of PO1 and
objecParentIdentifier that is identical to
objectVersionIdentifier of PO1.

3.

FP-service will identify the data needed for
the scheduled appointment using
reference, context and provenance
information.

The SIRF catalog that may have an online
version is searched to find the PO1 and PO2
information.

4.

The identified Preservation Objects will be
a-priory brought from an offline media to an
online media to be timely accessible for the
appointment.

SIRF container is accessed to download PO1

and PO2

The POs provenance and authenticity can be
verified.

5.
F-App at point of care accesses the
identified POs for the patient via FP-
Service.

This activity is in a higher layer and does not
involve the SIRF container.

6.

More time passes and a researcher from
the adjacent academic medical research
center wants to access that image for
research purposes. According to HIPAA
regulations, the researcher can get just a
de-identified image.

The SIRF container includes a PO100 for the de-
identification module, and the SIRF catalog
includes an entry objectInformation for this
PO100. SIRF container is accessed to execute
the de-identification module on PO1 and PO2

7. F-App accesses the de-identified PO via
FP-Service.

This activity is in a higher layer and does not
involve the SIRF container.

© SNIA

 Working Draft SIRF Specification V1.0

References

[1] Self-contained Information Retention Format (SIRF) use cases and functional requirements,
working draft - version 0.5a, SNIA, September 2010,
http://www.snia.org/tech_activities/publicreview/SIRF_Use_Cases_V05a_DRAFT.pdf

[2] "Towards SIRF: Self-contained Information Retention Format", Simona Rabinovici-Cohen, Mary G.
Baker, Roger Cummings, Sam Fineberg, and John Marberg, Proceedings of the Annual
International Systems and Storage Conference (SYSTOR), May 30-June 1, 2011, Haifa, Israel.
https://www.research.ibm.com/haifa/projects/storage/datastores/papers/systor56-rabinovici-
cohen.pdf

[3] OpenSIRF: http://200.144.254.4:4061/opensirf-core-javadoc/
[4] "Storlet Engine for Executing Biomedical Processes within the Storage System", Simona

Rabinovici-Cohen, Ealan Henis, John Marberg and Kenneth Nagin, Proceedings of the 7th
International Workshop on Process-oriented Information Systems in Healthcare (ProHealth),
September 2014, Eindhoven, the Netherlands.

[5] PREMIS: PREservation Metadata: Implementation, Strategies,
http://www.loc.gov/standards/premis

[6] W3C Prov Model Primer: http://www.w3.org/TR/prov-primer/
[7] CDMI: Cloud Data Management Interface,

http://snia.org/sites/default/files/CDMI_SNIA_Architecture_v1.0.1.pdf
[8] LTFS: Linear Tape File System (LTFS) Format Specification,

http://www.trustlto.com/LTFS_Format_To_Print.pdf
[9] OpenStack Swift: http://swift.openstack.org
[10] JSON: http://json.org

© SNIA

 Working Draft SIRF Specification V1.0 39

Appendix A – XML schema for the SIRF catalog

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="sirfCatalog">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="catalogId"/>
 <xs:element name="containerInformation" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="containerSpecification" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="containerSpecificationIdentifier"/>
 <xs:element type="xs:byte" name="containerSpecificationSirfLevel"/>
 <xs:element type="xs:float" name="containerSpecificationVersion"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="containerIdentifier" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="containerIdentifierLocale" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="containerIdentifierType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="containerIdentifierValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="containerState" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="containerStateType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="containerStateValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="containerProvenanceReference" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="referenceRole" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:anyURI" name="referenceValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="containerAuditLog" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="containerAuditLogReference" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="referenceRole" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

© SNIA

 Working Draft SIRF Specification V1.0

 <xs:element name="objectsSet" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectInformation" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectIdentifiers" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectName" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="objectIdentifierLocale" maxOccurs="1"
minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectLogicalIdentifier" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="objectIdentifierLocale" maxOccurs="1"
minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectParentIdentifier" maxOccurs="1" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="objectIdentifierLocale" maxOccurs="1"
minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectVersionIdentifier" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="objectIdentifierLocale" maxOccurs="1"
minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectIdentifierValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:string" name="objectCreationDate" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectLastModifiedDate" maxOccurs="1" minOccurs="0"/>
 <xs:element type="xs:string" name="objectLastAccessedDate" maxOccurs="1" minOccurs="0"/>
 <xs:element name="objectRelatedObjects" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectRelatedObjectsReference" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="referenceRole" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

© SNIA

 Working Draft SIRF Specification V1.0 41

 </xs:complexType>
 </xs:element>
 <xs:element name="packagingFormat" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="packagingFormatName" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectFixity" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="digestInformation" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="digestAlgorithm" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="digestOriginator" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="digestValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:long" name="lastCheckDate" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectRetention" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="retentionType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="retentionValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectAuditLog" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectAuditLogReference" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="referenceRole" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceType" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="referenceValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="objectExtension" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="objectExtensionPair" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="objectExtensionKey" maxOccurs="1" minOccurs="1"/>
 <xs:element type="xs:string" name="objectExtensionValue" maxOccurs="1" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:string" name="objectExtensionDescription" maxOccurs="1"
minOccurs="0"/>
 <xs:element type="xs:string" name="objectExtensionOrganization" maxOccurs="1"
minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:anyURI" name="versionIdentifierUUID"/>
 </xs:sequence>

© SNIA

 Working Draft SIRF Specification V1.0

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

© SNIA

 Working Draft SIRF Specification V1.0 43

 Appendix B – Sample XML catalog
<sirfCatalog>
 <catalogId>catalog.xml</catalogId>
 <containerInformation>
 <containerSpecification>
 <containerSpecificationIdentifier>SIRF-1.0</containerSpecificationIdentifier>
 <containerSpecificationSirfLevel>1</containerSpecificationSirfLevel>
 <containerSpecificationVersion>1.0</containerSpecificationVersion>
 </containerSpecification>
 <containerIdentifier>
 <containerIdentifierLocale>en</containerIdentifierLocale>
 <containerIdentifierType>containerIdentifier</containerIdentifierType>
 <containerIdentifierValue>SampleContainer</containerIdentifierValue>
 </containerIdentifier>
 <containerState>
 <containerStateType>ready</containerStateType>
 <containerStateValue>true</containerStateValue>
 </containerState>
 <containerProvenanceReference>
 <referenceRole>Provenance</referenceRole>
 <referenceType>internal</referenceType>
 <referenceValue>http://snia.org/sirf/SampleContainer-provenance.po.json-1.0</referenceValue>
 </containerProvenanceReference>
 <containerAuditLog>
 <containerAuditLogReference>
 <referenceRole>AuditLog</referenceRole>
 <referenceType>external</referenceType>
 <referenceValue>http://link.to/auditLog</referenceValue>
 </containerAuditLogReference>
 </containerAuditLog>
 <containerAuditLog>
 <containerAuditLogReference>
 <referenceRole>AuditLog</referenceRole>
 <referenceType>internal</referenceType>
 <referenceValue>audit_log_object_version_identifier</referenceValue>
 </containerAuditLogReference>
 </containerAuditLog>
 </containerInformation>
 <objectsSet>
 <objectInformation>
 <objectIdentifiers>
 <objectName>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>name</objectIdentifierType>
 <objectIdentifierValue>provenance.po.json</objectIdentifierValue>
 </objectName>
 <objectLogicalIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>logicalIdentifier</objectIdentifierType>
 <objectIdentifierValue>http://snia.org/sirf/SampleContainer-provenance.po.json</objectIdentifierValue>
 </objectLogicalIdentifier>
 <objectParentIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>parentIdentifier</objectIdentifierType>
 <objectIdentifierValue>null</objectIdentifierValue>
 </objectParentIdentifier>
 <objectVersionIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>versionIdentifier</objectIdentifierType>
 <objectIdentifierValue>http://snia.org/sirf/SampleContainer-provenance.po.json-1.0</objectIdentifierValue>
 </objectVersionIdentifier>
 </objectIdentifiers>
 <objectCreationDate>2015-01-20T12:57Z</objectCreationDate>
 <objectLastModifiedDate>2015-01-20T12:57Z</objectLastModifiedDate>
 <objectLastAccessedDate>2015-01-20T12:57Z</objectLastAccessedDate>

© SNIA

 Working Draft SIRF Specification V1.0

 <packagingFormat>
 <packagingFormatName>none</packagingFormatName>
 </packagingFormat>
 <objectFixity>
 <digestInformation>
 <digestAlgorithm>SHA-1</digestAlgorithm>
 <digestOriginator>ObjectApi</digestOriginator>
 <digestValue>7bec3092783ac1cffe4ff4b0c98958e2b776a4e2</digestValue>
 </digestInformation>
 <lastCheckDate>20150120125706</lastCheckDate>
 </objectFixity>
 <objectRetention>
 <retentionType>time_period</retentionType>
 <retentionValue>forever</retentionValue>
 </objectRetention>
 <versionIdentifierUUID>http://snia.org/sirf/SampleContainer-provenance.po.json-1.0</versionIdentifierUUID>
 </objectInformation>
 <objectInformation>
 <objectIdentifiers>
 <objectName>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>sample name 2</objectIdentifierType>
 <objectIdentifierValue>Poem 'Alone' by Edgar Allan Poe</objectIdentifierValue>
 </objectName>
 <objectName>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>sample name 1</objectIdentifierType>
 <objectIdentifierValue>'Alone' - a poem written by Edgar Allan Poe</objectIdentifierValue>
 </objectName>
 <objectLogicalIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>logicalIdentifier-2</objectIdentifierType>
 <objectIdentifierValue>SWIFT-SampleContainer-http://snia.org/sirf/SampleContainer/UUID-Alone
 </objectIdentifierValue>
 </objectLogicalIdentifier>
 <objectParentIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>parentIdentifier-2</objectIdentifierType>
 <objectIdentifierValue>null</objectIdentifierValue>
 </objectParentIdentifier>
 <objectVersionIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>versionIdentifier-2</objectIdentifierType>
 <objectIdentifierValue>SWIFT-SampleContainer-http://snia.org/sirf/SampleContainer/UUID-Alone-1.0-2
 </objectIdentifierValue>
 </objectVersionIdentifier>
 </objectIdentifiers>
 <objectIdentifiers>
 <objectName>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>name</objectIdentifierType>
 <objectIdentifierValue>Poem 'Alone' written by Edgar Allan Poe in 1829</objectIdentifierValue>
 </objectName>
 <objectLogicalIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>logicalIdentifier</objectIdentifierType>
 <objectIdentifierValue>http://snia.org/sirf/SampleContainer/UUID-Alone</objectIdentifierValue>
 </objectLogicalIdentifier>
 <objectParentIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>parentIdentifier</objectIdentifierType>
 <objectIdentifierValue>null</objectIdentifierValue>
 </objectParentIdentifier>
 <objectVersionIdentifier>
 <objectIdentifierLocale>en</objectIdentifierLocale>
 <objectIdentifierType>versionIdentifier</objectIdentifierType>
 <objectIdentifierValue>http://snia.org/sirf/SampleContainer/UUID-Alone-1.0</objectIdentifierValue>

© SNIA

 Working Draft SIRF Specification V1.0 45

 </objectVersionIdentifier>
 </objectIdentifiers>
 <objectCreationDate>2015-01-20T12:57Z</objectCreationDate>
 <objectLastModifiedDate>2015-01-20T12:57Z</objectLastModifiedDate>
 <objectLastAccessedDate>2015-01-20T12:57Z</objectLastAccessedDate>
 <objectRelatedObjects>
 <objectRelatedObjectsReference>
 <referenceRole>sample related reference role 1</referenceRole>
 <referenceType>sample related reference type 1</referenceType>
 <referenceValue>sample related reference value 1</referenceValue>
 </objectRelatedObjectsReference>
 </objectRelatedObjects>
 <objectRelatedObjects>
 <objectRelatedObjectsReference>
 <referenceRole>sample related reference role 2</referenceRole>
 <referenceType>sample related reference type 2</referenceType>
 <referenceValue>sample related reference value 2</referenceValue>
 </objectRelatedObjectsReference>
 </objectRelatedObjects>
 <packagingFormat>
 <packagingFormatName>none</packagingFormatName>
 </packagingFormat>
 <objectFixity>
 <digestInformation>
 <digestAlgorithm>SHA-1</digestAlgorithm>
 <digestOriginator>ObjectApi</digestOriginator>
 <digestValue>E0C3782686641E7D36185C1DE8581E59C2FC4D60</digestValue>
 </digestInformation>
 <lastCheckDate>20150120125706</lastCheckDate>
 </objectFixity>
 <objectRetention>
 <retentionType>time_period</retentionType>
 <retentionValue>10 years</retentionValue>
 </objectRetention>
 <objectAuditLog>
 <objectAuditLogReference>
 <referenceRole>AuditLog</referenceRole>
 <referenceType>sample audit log type 1</referenceType>
 <referenceValue>sample audit log value 1</referenceValue>
 </objectAuditLogReference>
 </objectAuditLog>
 <objectAuditLog>
 <objectAuditLogReference>
 <referenceRole>AuditLog</referenceRole>
 <referenceType>sample audit log type 2</referenceType>
 <referenceValue>sample audit log value 2</referenceValue>
 </objectAuditLogReference>
 </objectAuditLog>
 <objectExtension>
 <objectExtensionPair>
 <objectExtensionKey>extension key example 3</objectExtensionKey>
 <objectExtensionValue>extension value example 3</objectExtensionValue>
 </objectExtensionPair>
 <objectExtensionPair>
 <objectExtensionKey>extension key example 4</objectExtensionKey>
 <objectExtensionValue>extension value example 4</objectExtensionValue>
 </objectExtensionPair>
 <objectExtensionDescription>sample extension description 2</objectExtensionDescription>
 <objectExtensionOrganization>sample extension organization 2</objectExtensionOrganization>
 </objectExtension>
 <objectExtension>
 <objectExtensionPair>
 <objectExtensionKey>extension key example 1</objectExtensionKey>
 <objectExtensionValue>extension value example 1</objectExtensionValue>
 </objectExtensionPair>
 <objectExtensionPair>
 <objectExtensionKey>extension key example 2</objectExtensionKey>

© SNIA

 Working Draft SIRF Specification V1.0

 <objectExtensionValue>extension value example 2</objectExtensionValue>
 </objectExtensionPair>
 <objectExtensionDescription>sample extension description 1</objectExtensionDescription>
 <objectExtensionOrganization>sample extension organization 1</objectExtensionOrganization>
 </objectExtension>
 <versionIdentifierUUID>http://snia.org/sirf/SampleContainer/UUID-Alone-1.0</versionIdentifierUUID>
 </objectInformation>
 </objectsSet>
</sirfCatalog>

© SNIA

 Working Draft SIRF Specification V1.0 47

Appendix C – Sample JSON catalog

{
 "catalogId": "catalog.json",
 "containerInformation": {
 "containerSpecification": {
 "containerSpecificationIdentifier": "SIRF-1.0",
 "containerSpecificationSirfLevel": "1",
 "containerSpecificationVersion": "1.0"
 },
 "containerIdentifier": {
 "containerIdentifierLocale": "en",
 "containerIdentifierType": "containerIdentifier",
 "containerIdentifierValue": "SampleContainer"
 },
 "containerState": {
 "containerStateType": "ready",
 "containerStateValue": "true"
 },
 "containerProvenanceReference": {
 "referenceRole": "Provenance",
 "referenceType": "internal",
 "referenceValue": "http://snia.org/sirf/SampleContainer-provenance.po.json-1.0"
 },
 "containerAuditLog": [
 {
 "containerAuditLogReference": {
 "referenceRole": "AuditLog",
 "referenceType": "internal",
 "referenceValue": "audit_log_object_version_identifier"
 }
 },
 {
 "containerAuditLogReference": {
 "referenceRole": "AuditLog",
 "referenceType": "external",
 "referenceValue": "http://link.to/auditLog"
 }
 }
]
 },
 "objectsSet": {
 "objectInformation": [
 {
 "objectIdentifiers": [
 {
 "objectName": [
 {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "name",
 "objectIdentifierValue": "provenance.po.json"
 }
],
 "objectLogicalIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "logicalIdentifier",
 "objectIdentifierValue": "http://snia.org/sirf/SampleContainer-provenance.po.json"
 },
 "objectParentIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "parentIdentifier",
 "objectIdentifierValue": "null"
 },
 "objectVersionIdentifier": {
 "objectIdentifierLocale": "en",

© SNIA

 Working Draft SIRF Specification V1.0

 "objectIdentifierType": "versionIdentifier",
 "objectIdentifierValue": "http://snia.org/sirf/SampleContainer-provenance.po.json-1.0"
 }
 }
],
 "objectCreationDate": "2015-01-20T16:11Z",
 "objectLastModifiedDate": "2015-01-20T16:11Z",
 "objectLastAccessedDate": "2015-01-20T16:11Z",
 "objectRelatedObjects": [],
 "packagingFormat": {
 "packagingFormatName": "none"
 },
 "objectFixity": {
 "digestInformation": [
 {
 "digestAlgorithm": "SHA-1",
 "digestOriginator": "ObjectApi",
 "digestValue": "7bec3092783ac1cffe4ff4b0c98958e2b776a4e2"
 }
],
 "lastCheckDate": "20150120161103"
 },
 "objectRetention": {
 "retentionType": "time_period",
 "retentionValue": "forever"
 },
 "objectAuditLog": [],
 "objectExtension": [],
 "versionIdentifierUUID": "http://snia.org/sirf/SampleContainer-provenance.po.json-1.0"
 },
 {
 "objectIdentifiers": [
 {
 "objectName": [
 {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "sample name 2",
 "objectIdentifierValue": "Poem 'Alone' by Edgar Allan Poe"
 },
 {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "sample name 1",
 "objectIdentifierValue": "'Alone' - a poem written by Edgar Allan Poe"
 }
],
 "objectLogicalIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "logicalIdentifier-2",
 "objectIdentifierValue": "SWIFT-SampleContainer-http://snia.org/sirf/SampleContainer/UUID-Alone"
 },
 "objectParentIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "parentIdentifier-2",
 "objectIdentifierValue": "null"
 },
 "objectVersionIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "versionIdentifier-2",
 "objectIdentifierValue": "SWIFT-SampleContainer-http://snia.org/sirf/SampleContainer/UUID-Alone-
1.0-2"
 }
 },
 {
 "objectName": [
 {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "name",
 "objectIdentifierValue": "Poem 'Alone' written by Edgar Allan Poe in 1829"

© SNIA

 Working Draft SIRF Specification V1.0 49

 }
],
 "objectLogicalIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "logicalIdentifier",
 "objectIdentifierValue": "http://snia.org/sirf/SampleContainer/UUID-Alone"
 },
 "objectParentIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "parentIdentifier",
 "objectIdentifierValue": "null"
 },
 "objectVersionIdentifier": {
 "objectIdentifierLocale": "en",
 "objectIdentifierType": "versionIdentifier",
 "objectIdentifierValue": "http://snia.org/sirf/SampleContainer/UUID-Alone-1.0"
 }
 }
],
 "objectCreationDate": "2015-01-20T16:11Z",
 "objectLastModifiedDate": "2015-01-20T16:11Z",
 "objectLastAccessedDate": "2015-01-20T16:11Z",
 "objectRelatedObjects": [
 {
 "objectRelatedObjectsReference": {
 "referenceRole": "sample related reference role 2",
 "referenceType": "sample related reference type 2",
 "referenceValue": "sample related reference value 2"
 }
 },
 {
 "objectRelatedObjectsReference": {
 "referenceRole": "sample related reference role 1",
 "referenceType": "sample related reference type 1",
 "referenceValue": "sample related reference value 1"
 }
 }
],
 "packagingFormat": {
 "packagingFormatName": "none"
 },
 "objectFixity": {
 "digestInformation": [
 {
 "digestAlgorithm": "SHA-1",
 "digestOriginator": "ObjectApi",
 "digestValue": "E0C3782686641E7D36185C1DE8581E59C2FC4D60"
 }
],
 "lastCheckDate": "20150120161103"
 },
 "objectRetention": {
 "retentionType": "time_period",
 "retentionValue": "10 years"
 },
 "objectAuditLog": [
 {
 "objectAuditLogReference": {
 "referenceRole": "AuditLog",
 "referenceType": "sample audit log type 1",
 "referenceValue": "sample audit log value 1"
 }
 },
 {
 "objectAuditLogReference": {
 "referenceRole": "AuditLog",
 "referenceType": "sample audit log type 2",
 "referenceValue": "sample audit log value 2"

© SNIA

 Working Draft SIRF Specification V1.0

 }
 }
],
 "objectExtension": [
 {
 "objectExtensionPair": [
 {
 "objectExtensionKey": "extension key example 2",
 "objectExtensionValue": "extension value example 2"
 },
 {
 "objectExtensionKey": "extension key example 1",
 "objectExtensionValue": "extension value example 1"
 }
],
 "objectExtensionDescription": "sample extension description 1",
 "objectExtensionOrganization": "sample extension organization 1"
 },
 {
 "objectExtensionPair": [
 {
 "objectExtensionKey": "extension key example 3",
 "objectExtensionValue": "extension value example 3"
 },
 {
 "objectExtensionKey": "extension key example 4",
 "objectExtensionValue": "extension value example 4"
 }
],
 "objectExtensionDescription": "sample extension description 2",
 "objectExtensionOrganization": "sample extension organization 2"
 }
],
 "versionIdentifierUUID": "http://snia.org/sirf/SampleContainer/UUID-Alone-1.0"
 }
]
 }
}

