SNIA SSSI - PCIe Round Table

- Standards
- Technology / Architecture
- Deployment Strategies

Presentations by:

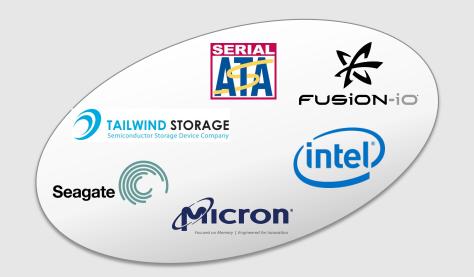
Fusion-io - Intel - Micron - Sata-IO - Seagate - Tailwind

Solid State Storage Initiative

SNIA Winter Symposium SSSI Face to Face Monday 23 January 2012 10:00 AM - 1:00 PM St. Claire Hotel, San Jose CA

Webex: https//snia.webex.com Meeting No. 795 947 658 Password: sssi2012 Telecon: 1-877-270-2716 ID: 0021 Password: 8520

Agenda


1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

PCIe Solid State Storage - Higher Performance / Lower Latencies

Solid State Storage PCIe . . .

a Round Table

What are issues facing Adoption of PCIe Solid State Storage devices?

- Standards for PCIe Attached Storage
- Technology & Architectural Issues
- Mass Storage Ecosystem Adoption & Optimization
- Market & Product Positioning
- Deployment Strategies

	SNIA Solid State Storage Perfo	ormance Tes	st Specification (PTS)
PTS-E	PTS-E PTS Enterprise ver 1.0		PTS Client ver 1.0
ideas, me SNIA goal		<image/> <section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header>	
	April 26, 2011		

SNIA PTS-C & PTS-E Specifications: Standardizing SSD Performance Test

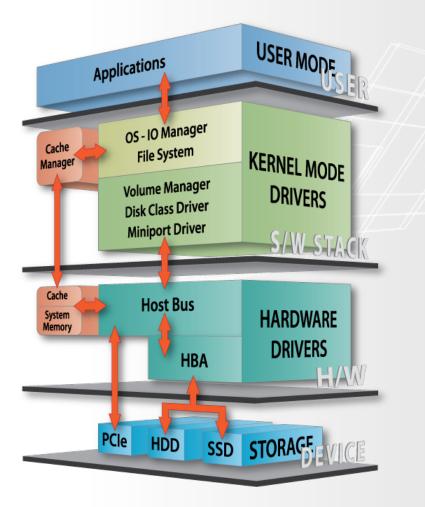
SNIA SSSI Solid State Performance Test Spec link:

www.snia.org/tech activities/standards/curr standards/pts

Understanding SSD Performance Project link:

www.snia.org/forums/sssi/pts

Understanding SSD Performance White Paper & Powerpoint link:


www.snia.org/forums/sssi/knowledge/education

Understanding SSD Performance Webcast link:

www.brighttalk.com/webcast/663/40549

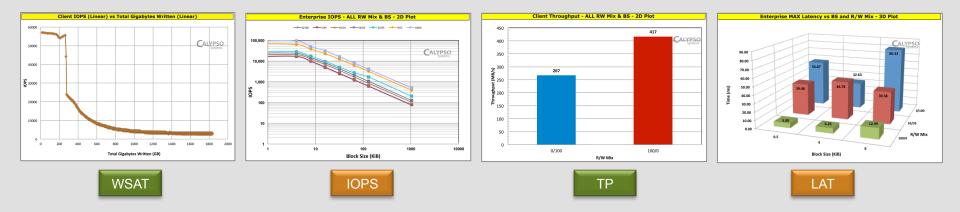
PTS Provides a Standardized Methodology to Compare SSD Performance

IOs Traverse the SW / HW Stack

- Storage IOs Must Traverse the SW/HW Stack
- IOs are subject to cache, OS task switching & timing, driver fragmentation & coalescing
- IO can be different at the Device & System level
- Can lose 1:1 correspondence original IO & Physical Device IO
- Performance is Heavily influenced by SW / HW Stack

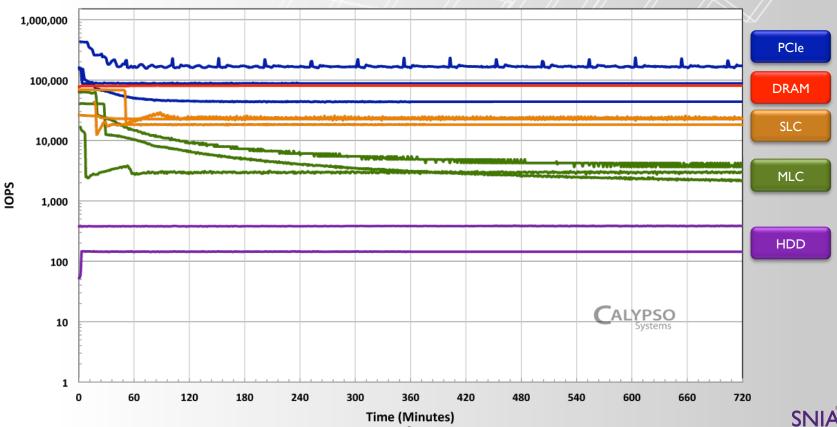
Solid State Performance Issues

- Solid State Performance is MUCH Faster than HDD Storage
- SSDs must be optimized to Storage Ecosystem
- Solid State Storage employ Virtual Mapping of PBA to LBA
- Asymmetric Read / Write Response Times for Flash
- Response Time & Cost varies for DRAM, PCIe, SLC, MLC, HDD

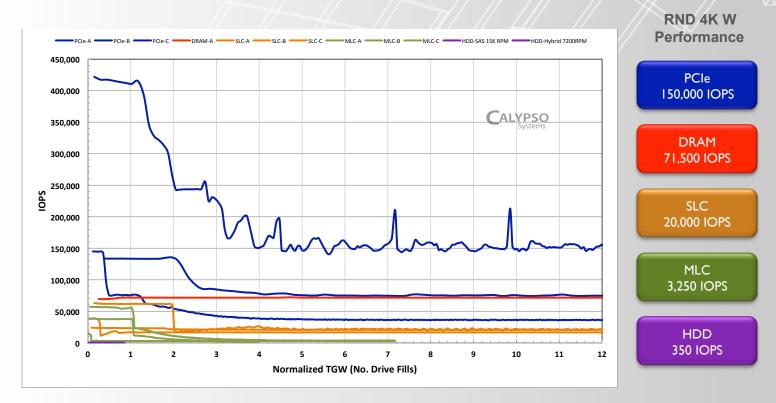

	Reference Test P	latform (RTP 2.0)			
	Hardware	Software	Software		
Processor Single Intel Xeon 5580W 3.2 Ghz 4 core		Operating System - Back End	CentOS 5.6		
Motherboard	Intel 5520 HC	Test Software - Back End	CTS 6.5		
RAM	12 GB ECC DDR3	Front End - GUI	Chrome Browser		
НВА	6 Gb/s LSI 9212-4e-4i	Front End: OS, Database	Windows 7 / MySQL		

PTS Reference Test Platform - Allows Comparison of PCIe, SAS, SATA, HDD Performance

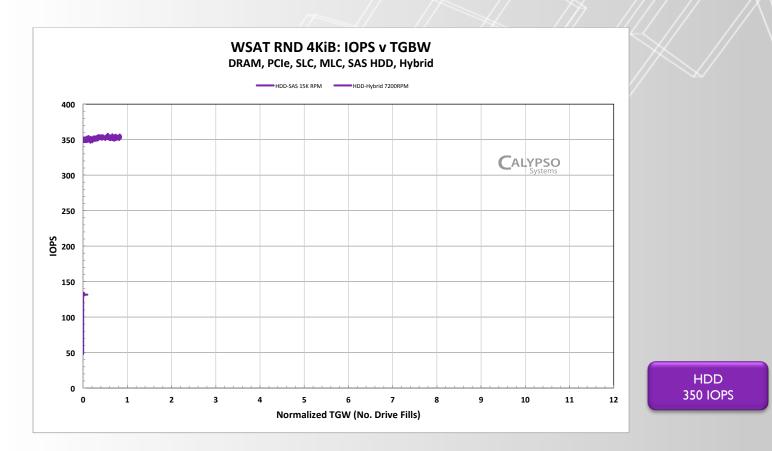
PTS rev 1.0 Performance Tests					
Test Test Description WSAT Continuous RND 4KiB W from FOB, No PC		Purpose	Metric		
		FOB Performance Evolution over Time	IOPS		
IOPS	Large & Small Block RND IOs at Steady State	Steady State IO Transfer Rate per second	IOPS		
Throughput	Large Block SEQ R/W Data Transfer at Steady State	Steady State Bandwidth Speed	MB/Sec		
Latency	AVE & MAX Response Times measured at a single OIO	Steady State IO Response Time Latency	mSec		



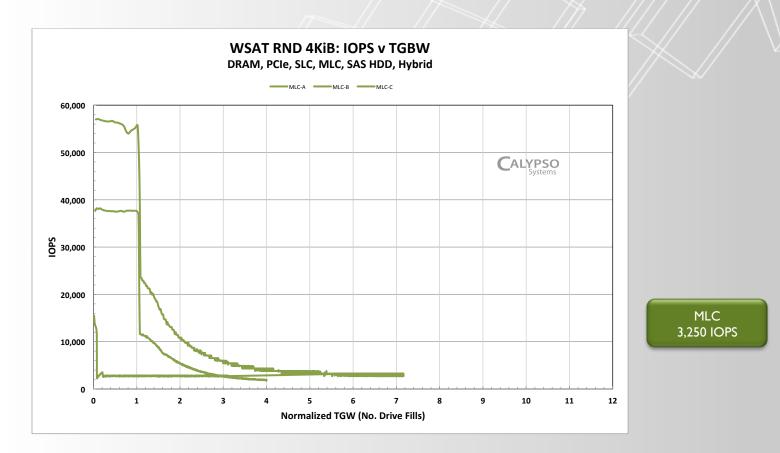
WSAT Test is useful to Evaluate Solid State Small Block RND Write Behavior

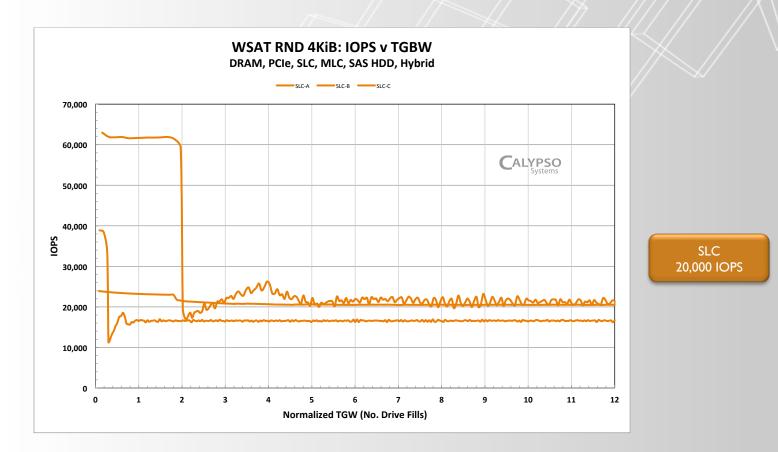

Solid State Storage Technology - RND 4KiB Write Performance*

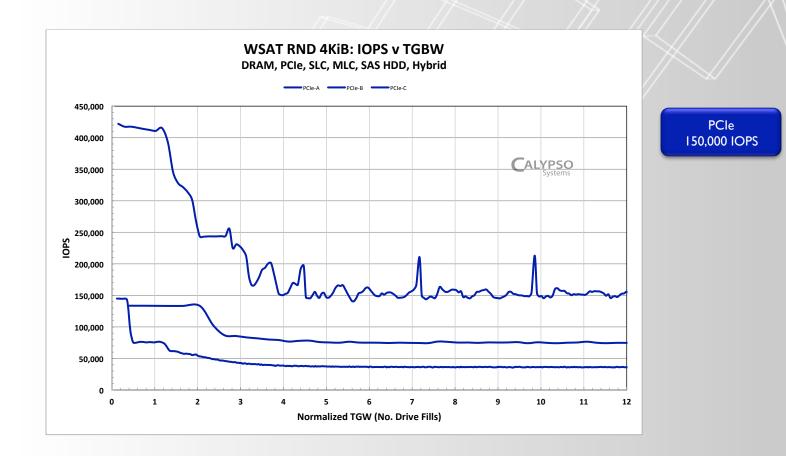
* All Data SNIA PTS-E 1.0 WSAT Test Compliant

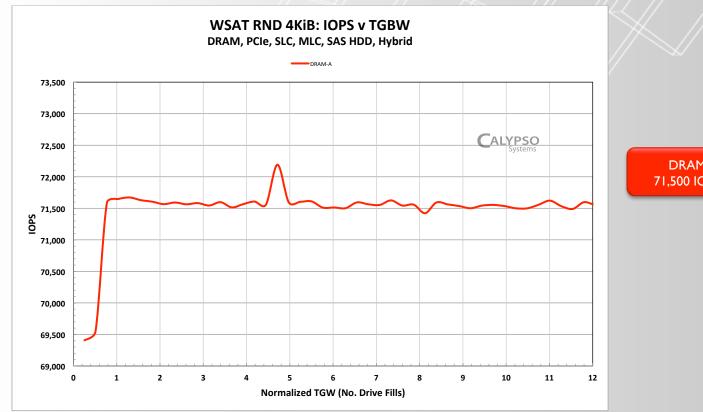


WSAT: RND 4KiB W - IOPS v TGBW


* All Data SNIA PTS-E 1.0 WSAT Test Compliant







Solid State Storage Initiative

DRAM 71,500 IOPS

Agenda

1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

January 2012

2

Abstract

PCIe SSD Form Factor has the attractive attributes that PCIe brings to SSD storage, and adds more capabilities from the existing storage form factors.

Mark Meyers, Intel

PCIe SSD Form Factor

Mark is a Server Platform Architect working in Intel's Datacenter and Connected System group.

Mark is technical chair of the Enterprise SSD Form Factor WG which includes definition of proposed SFF-8639 connector.

Mark has been at Intel for 12 years in various server and IO architecture projects.

Previous employers includes Siemens Nixdorf, Pyramid Technology, and an early stint at Intel.

PCIe SSD Form Factor for SNIA 2011 Winter Symposium

Mark Myers Intel Datacenter Platform Architect January 23, 2012

Introduction

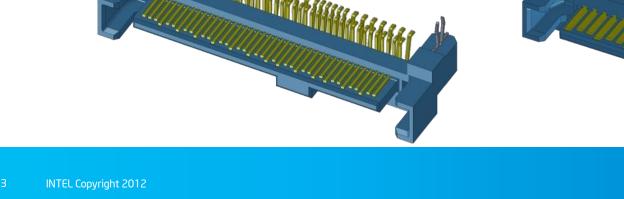
Goal

- Status of the PCIe SSD Form Factor WG summary
- PCIe as a Storage Interface
- Common configurations
- Technical Attributes

Enterprise PCIe SSD Form Factor WG Status

Defined usages and requirement and connector (SFF-8639)

• 5 promoters: Dell, IBM, Fujitsu, EMC, Intel; >50 contributor companies


Rev 1.0 Specification Approved http://www.ssdformfactor.org/

Mechanical piece is SFF-8639 <u>ftp://ftp.seagate.com/sff/SFF-8639.PDF</u>

Looks like existing SAS connector with pins all across both sides

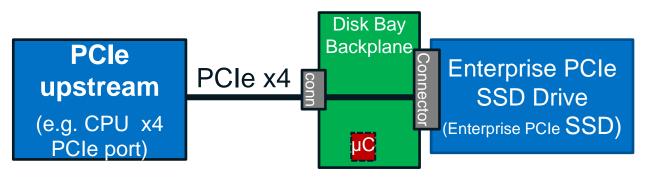
Datacenter Group Platform Architecture

Interoperates with existing SATA/SAS connector

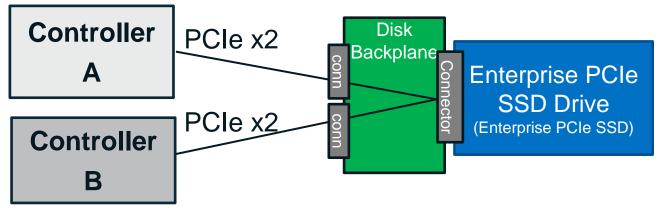
PCIe as a Storage Interface

PCIe value

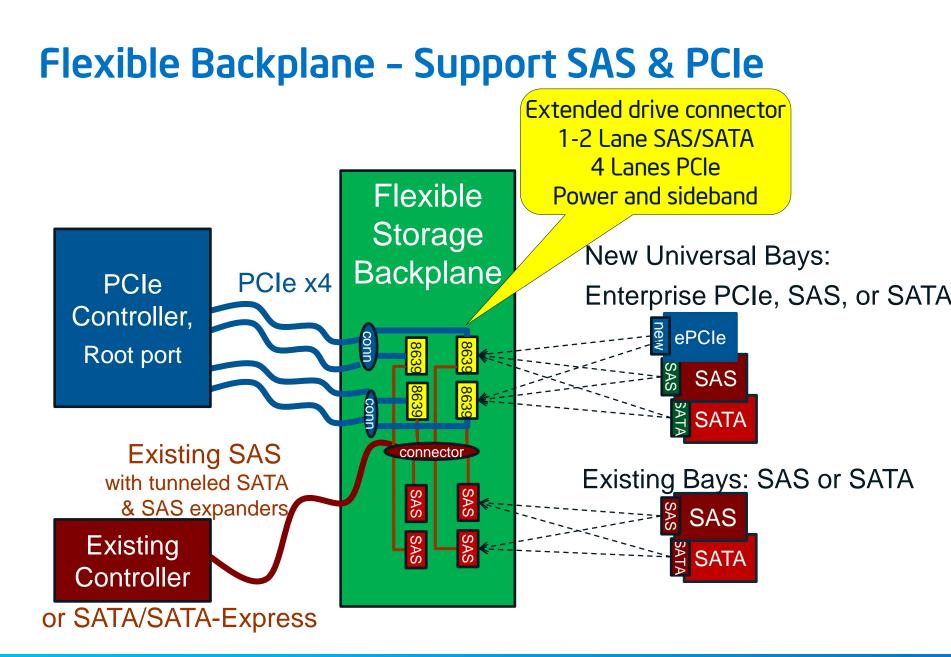
- Industry standard, high BW, multilane, low latency interconnect
- Flexible attach models, discoverable, and supports many form factors → Our work adds a classic 3.5" or 2.5" disk form factor


PCIe as high performance interface; Many storage interfaces;

- Hard Disks stay on SATA/SAS for long time, even for many SSDs
- High performance SSD will move to PCIe higher BW & low latency
- PCIe supports multiple device types: NVM-Express, SOP, proprietary
 - Advocate NVMe as standard block device
 - Expect interface models to evolve as devices improve

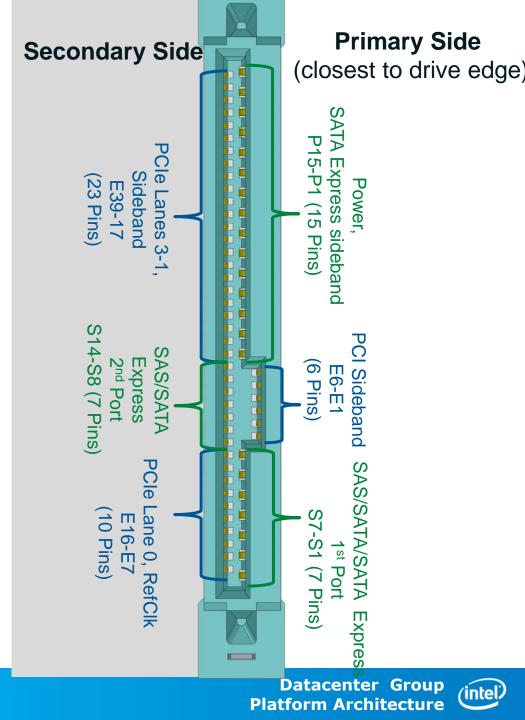


Common Usages: Servers x4, Dual Port storage


Typical Server configuration

Typical High Availability Storage configuration

(intel)


Drives Supported

Support drive types

- Enterprise PCIe x4 SSDs
 - Server x4, Storage Dual Port x2
- Existing SAS drive (dual port)
- Existing SATA drives
- Emerging SATA-Express x1-x2
- Emerging x4 SAS

Support Flexible Backplanes

- Enterprise x4 PCIe SSDs
- SAS/SATA HDDs

Technical Attributes of Specification

- 6 High speed lanes
 - 4 new lanes for Enterprise PCle
 - 2 existing lanes for SAS/SATA
- Side Band
 - Enterprise: RefClk, ePCleRst#, SM-Bus, 3.3VAux, DualPort
 - Client/Shared: IfDet#, PRSNT#, cPCleRst#, Rsvd (pwr mgt)
 - Removed 3.3V, Enterprise SSD supports 12V only
- Keying
 - Support universal receptacle
 - Key to block SATA-express Cable to x4 drive
 - Key to block Enterprise x4 cable to SATA/SAS drive

Conclusion

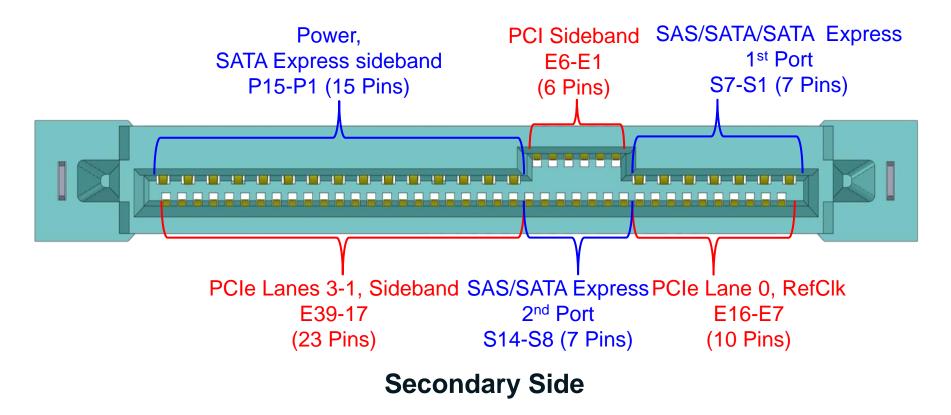
Enterprise PCIe SSD Form Factor Specification

- Rev 1.0 Approved and Released
- Expect products this year based on standard

Supports Flexible Storage Backplanes

- High Performance Enterprise x4 PCIe SSDs
 - Using existing PCle root ports
- Existing SAS/SATA drives
- Emerging SATA-Express and x4 SAS

Thank You


10 INTEL CONFIDENTIAL

Additional Detail

Overview of Connector Pins

Primary Side (closest to drive edge)

(intel)

Pin out

Drive	Usage	Signal Description	Name	Mating	Pin #	
		Ground	GND	2nd	51	
input	SAS+SATA	SAS/SATA/SATAe 0 TX+	S0T+ (A+)	3rd	52	
input	SAS+SATA	SAS/SATA/SATAe 0 TX-	S0T- (A-)	3rd	53	
		Ground	GND	2nd	54	
outout	SAS+SATA	SAS/SATA/SATAe 0 800 -	SOR- (B-)	3rd	55	0
output		SAS/SATA/SATAe 0 Rcv +	SOR+ (B+)	3rd	56	
output		Ground	GND	2nd	57	
input	Dual Port	ePCIe RefClk + (port B)	RefClk1+	3rd	E1	4
input	Dual Port	ePCIe RefClk – (port B)	RefClk1-	3rd	E2	d
input	ePCIe opt	3.3V for SM bus	3.3Vaux	3rd	E3	d
input	Dual Port	ePCIe Reset (port B)	ePERst1#	3rd	E4	d
input	ePCle	ePCIe Reset (port A)	ePERst0#	3rd	E5	9
		Reserved	RSVD	3rd	E6	9
input	SATAe	Reserved(WAKE#/OBFF),	RSVD(Wake#)	3rd	P1	
	+SAS4	SASAct2	/SASAct2			
Bi-Qic	SATAe	SATAe Client /SAS reset	sPCIeRst/SAS	3rd	P2	
input	SATAe	Reserved (<u>DevSLP</u> #)	RSVD(<u>DevSLP</u> #)	2nd	P3	
output	SATAe + ePCle	Interface Detect (Was GND-precharge)	IfDet#	1st	P4	
	all	Ground	GND	2nd	P5	
	all	Ground	GND	2nd	P6	
NC	SAS+SATA	Precharge		2nd	P7	
NC	SAS+SATA	SATA, SATAe, SAS only	5 V	3rd	P8	
NC	SAS+SATA			3rd	P9	
	all	Presence (Drive type)	PRSNT#	2nd	P10	
Bi-Qic	all	Activity(output)/Spinup	Activity	3rd	P11	
	all	Hot Plug Ground	GND	1st	P12	
input	all	Precharge		2nd	P13	
input	all	All – 12V	12 V	3rd	P14	
input	all	Only power for ePCIe SSD		3rd	P15	

Þ

Q

ePCle → Enterprise PCle (separate from SATA/SAS)

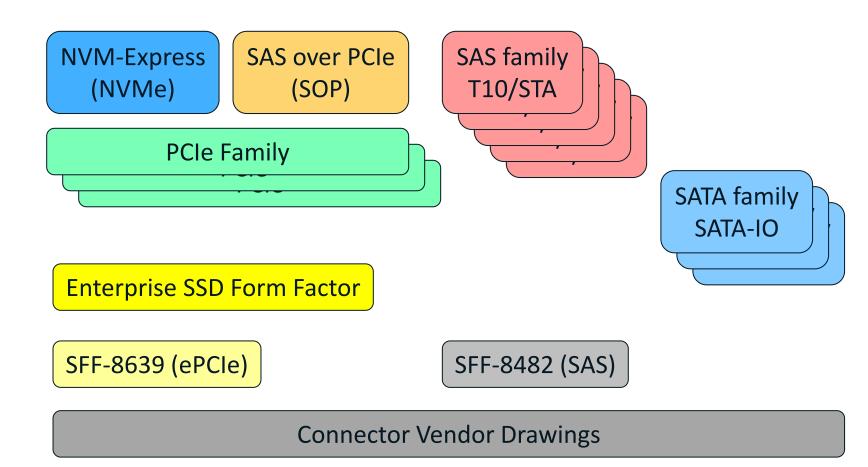
SATAe → SATA Express (Client PCle- muxed on SATA/SAS signals)

SAS4 → SAS x4

L		Pin #			Usage	Drive	
L	Þ.	E7	3rd	RefClk0+	ePCIe Primary RefClk +	ePCle	input
L	Þ.	E8	3rd	RefClk0-	ePCIe Primary RefClk -	ePCIe	input
L	Þ	E9	2nd	GND	Ground		
L	Þ	E10	3rd	PETpO	ePCIe 0 Transmit +	ePCle	input
L	Þ	E11	3rd	PETnO	ePCIe 0 Transmit -	ePCle	input
L	Þ	E12	2nd	GND	Ground		
L	Þ	E13	3rd	PERnO	ePCIe O Receive -	ePCIe	output
L	Þ.	E14	3rd	PERpO	ePCIe 0 Receive +	ePCIe	output
L	Þ	E15	2nd	GND	Ground		
L	Þ	E16	3rd	RSVD	Reserved		
L	Þ	58	2nd	GND	Ground		
L	Þ	59	3rd	S1T+	SAS/SATAe 1 Transmit +	SAS+SATAe	input
L	Þ	510	3rd	S1T-	SAS/SATAe 1 Transmit -	SAS+SATAe	input
L	Þ	511	2nd	GND	Ground		
L	Þ	512	3rd	S1R-	SAS/SATAe 1 Receive -	SAS+SATAe	output
L	Þ	513	3rd	S1R+	SAS/SATAe 1 Receive +	SAS+SATAe	output
L	Þ	514	2nd	GND	Ground		
L	Þ	E17	3rd	RSVD	Reserved		
L	P	E18	2nd	GND	Ground		
L	P	E19	3rd	PETp1/S2T+	ePCIe 1 /SAS 2 Transmit +	ePCIe+SAS4	input
L	P	E20	3rd	PETn1/S2T-	ePCIe 1 /SAS 2 Transmit -	ePCIe+SAS4	input
L	P	E21	2nd	GND	Ground		
L	P	E22	3rd	PERn1/S2R-	ePCIe 1 /SAS 2 Receive -	ePCIe+SAS4	output
L	P	E23	3rd	PERp1/S2R+	ePCIe 1 /SAS 2 Receive +	ePCIe+SAS4	output
L	E	E24	2nd	GND	Ground		
L	E	E25	3rd	PETp2/S3T+	ePCIe2 / SAS 3 Transmit +	ePCIe+SAS4	input
L	E.	E26	3rd	PETn2/S3T-	ePCIe2 / SAS 3 Transmit -	ePCIe+SAS4	input
L	Ε.	E27	2nd	GND	Ground		
L	E.	E28	3rd	PERn2/S3R-	ePCIe 2 / SAS 3 Receive -	ePCIe+SAS4	output
L	Ε.	E29	3rd	PERp2/S3R+	ePCIe 2 / SAS 3 Receive +	ePCIe+SAS4	output
L	Ε.	E30	2nd	GND	Ground		
L	Ľ.	E31	3rd	PETp3	ePCIe 3 Transmit +	ePCle	input
L		E32	3rd	PETn3	ePCIe 3 Transmit -	ePCle	input
L	E I	E33	2nd	GND	Ground		
	E	E34	3rd	PERn3	ePCIe 3 Receive -	ePCle	output
		E35	3rd	PERp3	ePCIe 3 Receive +	ePCle	output
	5	E36	2nd	GND	Ground		
	E.	E37	3rd	SMCK	SM-Bus Clock	PCIe opt	Bi-DIr
	E.	E38	3rd	SMDat	SM-Bus Data	PCIe opt	Bi-Qir
		E39	3rd	DualPortEn#	ePCIe 2x2 Select	Dual Port	input

Keying

- Prevent mating if will not work
- Support Universal Receptacle
 - accepts any drive
 - Driver carrier provide keying
- Cable block for client cables
 - Prevent client service calls


	SATA drive	SATA Express drive	SAS drive	Enterprise PCIe drive
interprise backplane	Works- system supports (carrier key)	Works- if system supports (carrier key)	Works- if system supports (carrier key)	Works
SAS backplane	Works with STP	Mates-Nonfunctional (requires STP+) (carrier key)	Works	Mates-nonfunctional (carrier key)
SATA Express backplane/laptop	Works	Works	Blocked-Key	Blocked-Key
TA backplane/laptop		Blocked-Key	Blocked-Key	Blocked-Key
Enterprise cable	Blocked-Key	Blocked-Key	Blocked-Key	Works
SAS cable	Works	Mates-Nonfunctional (requires STP+)	Works	Mates-nonfunctional & no detent retention
ATA Express cable	Works	Blocked-Key	Blocked-Key	Blocked-Key
SATA cable	Works	Blocked-Key	Blocked-Key	Blocked-Key

ጣ

Layers of Standards

Agenda

1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

Marty Czekalski, Seagate

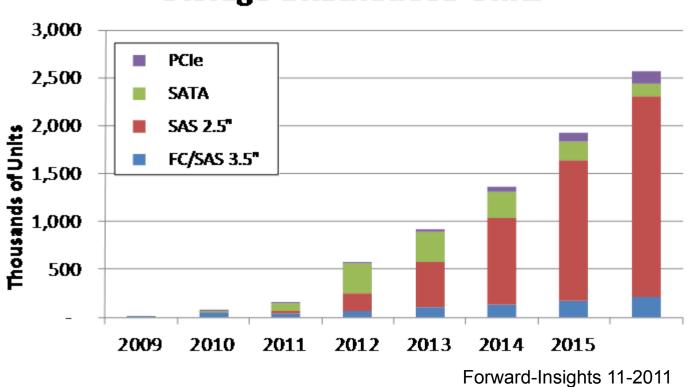
Standards and Deployment Models

Abstract:

There are multiple standardization activities ongoing for PCIe based storage, some aspects of which overlap. Additionally, there are multiple deployment/provisioning options that will exist in the marketplace. A overview of these activities and issues will be discussed.

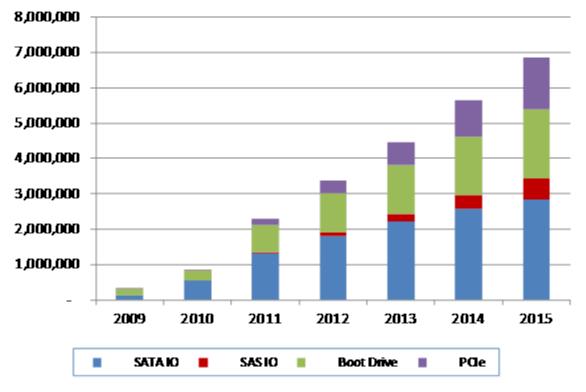
Marty Czekalski brings over thirty years of senior engineering management experience in advanced architecture development for Storage and IO subsystem design, ASIC, and Solid State Storage Systems.

He is currently Sr. Staff Program Manager within Seagate's Strategic Planning and Development Group.



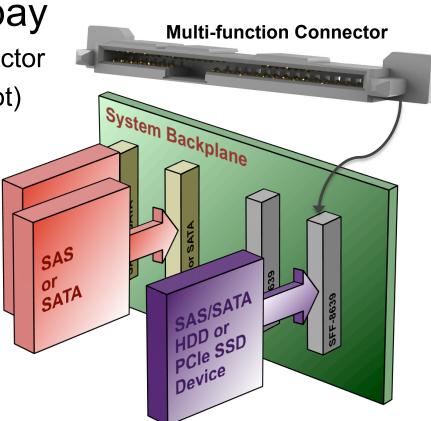
PCIe SSD Alternatives

SAS is the preferred SSD Interface for Storage Systems



Storage-attached SSD Units

Server Attached SSDs


Server-attached SSD Units

Forward-Insights 11-2011

Multi-Function Bay

- Multi-function SAS/PCIe bay
 - Uses SFF-8639 Multi-function connector
 - High performance (up to 25W per slot)
 - Hot swap, serviceability (SAS)
 - High availability (2 fault domains)
 - Supports a range of devices (system dependent)
 - 12Gb/s SAS
 - 6Gb/s SATA
 - MultiLink SAS (4 SAS Ports)
 - PCIe SSDs (emerging)
 - NVMe, SOP-PQI, Proprietary
 - SATA Express

SFF-8639 Signals

Drive	Usage	Signal Description	Name	Mating	Pi		
[Ground	GND	2nd	s		
input	SAS+SATA	SAS/SATA/SATAe 0 Tx+	S0T+ (A+)	3rd	s		
input	SAS+SATA	SAS/SATA/SATAe 0 Tx -	S0T- (A-)	3rd	s		
		Ground	GND	2nd	s		
output	SAS+SATA	SAS/SATA/SATAe 0 Rcv -	SOR- (B-)	3rd	s		
output	SAS+SATA	SAS/SATA/SATAe 0 Rcv +	SOR+ (B+)	3rd	s		
		Ground	GND	2nd	s		F
input	Dual Port	ePCIe RefClk + (port B)	RefClk1+	3rd	E		
input	Dual Port	ePCIe RefClk – (port B)	RefClk1-	3rd	E		IE -
input	ePCle opt	3.3V for SM bus	3.3Vaux	3rd	E		
	Dual Port	ePCIe Reset (port B)	ePERst1#	3rd	E	٩.,	R
input	ePCle	ePCle Reset (port A)	ePERst0#	3rd	E	٩.,	P
mpar	ci oic	Reserved	RSVD	3rd	[I.
_	SATAe	Reserved(WAKE#/OBFF),		510	<u> </u>		q
input	+SAS4	SASAct2	RSVD(Wake#) /SASAct2	3rd	F		
Bi-Dir	SATAe	SATAe Client /SAS reset	sPCIeRst/SAS	3rd	P		
input	SATAe	Reserved (DevSLP#)	RSVD(DevSLP#)	2nd	F		
output	SATAe + ePCle	Interface Detect (Was GND-precharge)	IfDet#	1st	P		
	all	Ground	GND	2nd	P		
	all	Ground	0110	2nd	P		
NC	SAS+SATA	Precharge		2nd	P		
NC	SAS+SATA	SATA, SATAe, SAS only	5 V	3rd	F		
NC	SAS+SATA			3rd	F		
	all	Presence (Drive type)	PRSNT#	2nd	P:		
Bi-Dir	all	Activity(output)/Spinup	Activity	3rd	P:		
	all	Hot Plug Ground	GND	1st	P:		
input	all	Precharge		2nd	P		
input	all	All – 12V	12 V	3rd	P:		
input all Only power for ePCIe SSD 3rd P					P:		
ePCIe → Enterprise PCIe (separate from SATA/SAS) SATAe → SATA Express (Client PCIe- muxed on SATA/SAS signals)							

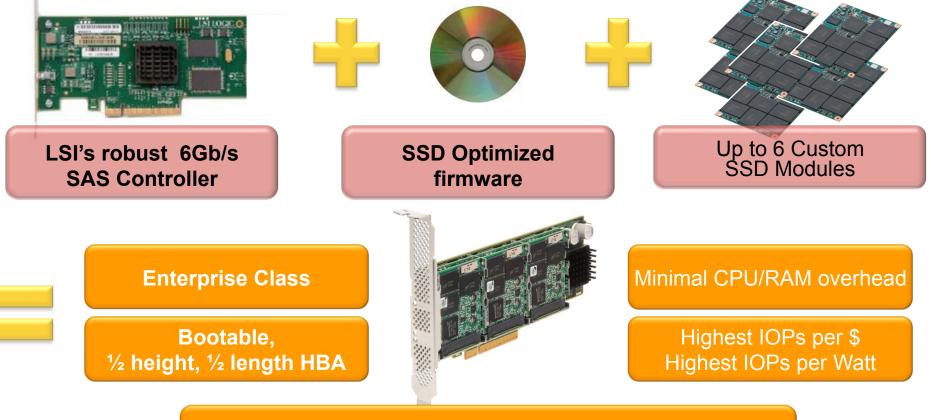
7	Y.						
L		Pin #	Mating	Name	Signal Description	Usage	Drive
L	Þ.	E7	3rd	RefClk0+	ePCIe Primary RefClk +	ePCle	input
L	Þ.	E8	3rd	RefClk0-	ePCIe Primary RefClk -	ePCle	input
L	Þ.	E9	2nd	GND	Ground		
L	Þ	E10	3rd	PETp0	ePCIe 0 Transmit +	ePCle	input
L	Þ	E11	3rd	PETn0	ePCIe 0 Transmit -	ePCle	input
L	Þ	E12	2nd	GND	Ground		
L	Þ	E13	3rd	PERn0	ePCle 0 Receive -	ePCle	output
L	Ρ.	E14	3rd	PERp0	ePCle 0 Receive +	ePCle	output
L	Ρ.	E15	2nd	GND	Ground		
L	Ρ.	E16	3rd	RSVD	Reserved		
L	P	S8	2nd	GND	Ground		
L	P	S9	3rd	S1T+	SAS/SATAe 1 Transmit +	SAS+SATAe	input
L	P	S10	3rd	S1T-	SAS/SATAe 1 Transmit -	SAS+SATAe	input
L	E.	S11	2nd	GND	Ground		
L	Ľ	S12	3rd	S1R-	SAS/SATAe 1 Receive -	SAS+SATAe	output
L	Ľ	S13	3rd	S1R+	SAS/SATAe 1 Receive +	SAS+SATAe	output
L	Ľ	S14	2nd	GND	Ground		
L	Ľ.	E17	3rd	RSVD	Reserved		
L	Ε.	E18	2nd	GND	Ground		
L	5	E19	3rd	PETp1/S2T+	ePCle 1 /SAS 2 Transmit +	ePCIe+SAS4	input
L	Ε.	E20	3rd	PETn1/S2T-	ePCIe 1 /SAS 2 Transmit -	ePCIe+SAS4	input
L		E21	2nd	GND	Ground		
L	6	E22	3rd	PERn1/S2R-	ePCIe 1 /SAS 2 Receive -	ePCIe+SAS4	output
L		E23	3rd	PERp1/S2R+	ePCIe 1 /SAS 2 Receive +	ePCIe+SAS4	output
L	6	E24	2nd	GND	Ground		
L		E25	3rd	PETp2/S3T+	ePCle2 / SAS 3 Transmit +	ePCIe+SAS4	input
L		E26	3rd	PETn2/S3T-	ePCIe2 / SAS 3 Transmit -	ePCIe+SAS4	input
L	þ.	E27	2nd	GND	Ground		
L	þ.	E28	3rd	PERn2/S3R-	ePCle 2 / SAS 3 Receive -	ePCIe+SAS4	output
L	Þ.	E29	3rd	PERp2/S3R+	ePCle 2 / SAS 3 Receive +	ePCIe+SAS4	output
L	þ.	E30	2nd	GND	Ground		
L	Þ.	E31	3rd	PETp3	ePCIe 3 Transmit +	ePCle	input
L	Þ	E32	3rd	PETn3	ePCIe 3 Transmit -	ePCle	input
L	Þ	E33	2nd	GND	Ground		
L	Þ.	E34	3rd	PERn3	ePCle 3 Receive -	ePCle	output
	Þ	E35	3rd	PERp3	ePCle 3 Receive +	ePCle	output
	Þ	E36	2nd	GND	Ground		
	P	E37	3rd	SMClk	SM-Bus Clock	PCIe opt	Bi-DIr
	P	E38	3rd	SMDat	SM-Bus Data	PCIe opt	Bi-Dir
		E39	3rd	DualPortEn#	ePCIe 2x2 Select	Dual Port	input
3							

From: SFF-8639 Rev. 0.5, January 3, 2012

T10/STA Standards Update

- Performance Enhancements
 - 12Gb/sec SAS (2013 Product Shipments)
 - Copy Offload
- Power management
 - Ability to adjust power consumption vs performance
- Multi-function (SAS/PCIe) serviceable bay
 - SFF-8639 Connector
- SCSI over PCIe (SOP-PQI)
 - Direct attached devices (e.g. SSDs)
 - HBAs, RAID controllers, and Bridge devices
- New device types SMR, SSD Commands & Hints

Enterprise Interfaces: PCIe SSDs


	Native	Aggregator	
Commands/Transport	PCle (FTL ¹ in host/ main memory)	PCIe SCSI or SATA (Multiple SSDs & controller on card)	
Committee	None	None	
Standards Based	No	Yes	
Performance with Flash	High	High	
CPU/Memory Overhead	High-Low	Low	
Latency with short queue	Very Low	Low	
Latency with deep queue	Moderate	Low	
Use Case Extensibility	Case Extensibility No		
Maturity	Evolving	Based on Proven Industry Architectures	
Enterprise feature set (PI, Security, Mgmt, etc.)	No	Depends on implementation	
		¹ FTL : Flash Translation Layer	

LSI WarpDrive SLP-300 PCIe Solid State Storage Acceleration Card

Base LSI Data Protection Layer (DPL) & Storage Management

Application Acceleration for IO Intensive and Latency Sensitive Workloads

Enterprise Interfaces: The Future of PCIe SSDs

	SOP/PQI ¹	NVMe ²	
Commands/Transport	PCle SOP/PQI ³ Controller (FTL in controller) F F	PCIe Controller F F	
Committee	T10/INCITS ⁴	Industry Working Group	
Standards Based	Yes (ANSI/ISO)	No	
Performance with Flash	Very High	Very High	
CPU Overhead	Low	Low	
Latency with short queue	Very Low	Very Low	
Latency with deep queue	Low	Low	
Use Case Extensibility	Yes (RAID, HBA, etc.)	No (NVM only)	
Maturity	Investment Protection	TBD	
Enterprise feature set (PI, Security, Mgmt, etc.)	Full Support	Limited	
¹ SOP : SCSI over PCI Express ² NVMe : Non- Volatile Memory Expres ³ PCIe Queuing Interface	S		

1/23/12 ⁴INCITS : International Committee for Information Technology Standards

- Preserves Storage Investment Logical SCSI
- Broad <u>Open</u> Industry Standards Support
- Dynamic Platform for Storage Innovation
- Enterprise Proven RAS (Hot Plug)
- Multi-Host, High Queue Depths, Concurrency
- Depth & Breath of Infrastructure
- Ease of integration with existing management infrastructures & features
- Compliments PCIe Attached Storage

So who wins? - TBD

- NVMe has an early lead in development, but not hardened yet
- SOP is behind NVMe in development, but has a more robust ecosystem
- Support across industry is fragmented
- Market is still small, can it sustain the current level of investment?
- SAS controllers > 1 Million IOPS diminish PCIe SSD differentiation
- Once the PCIe capable bays are available, any PCIe device can be packaged in a 2.5" FF and used, in as long as a driver exists.
 - Creates confusion and fragment the market
- Open issues remain
 - Interoperability Electrical spec for the bay??
 - Hot plug?
 - Compliance testing?
- Will additional form factors emerge and further fragment the market

Agenda

1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

Abstract:

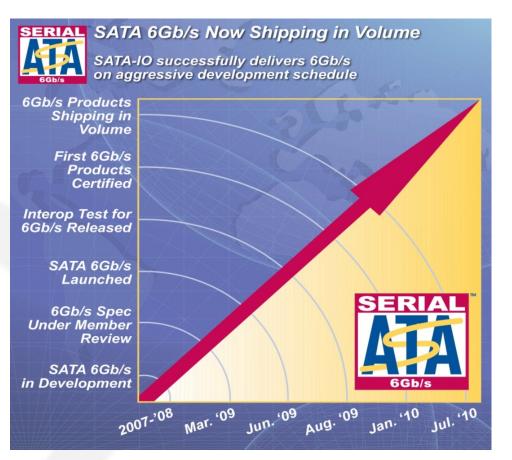
Since its introduction in 2001, SATA technology has evolved from a solely client/server storage interface to provide low-cost, high performance storage solutions for a wide variety of applications. There is an emerging segment of the client storage market, SSDs and hybrid HDDs, that requires higher performance than today's 6Gb/s SATA. To meet the needs of this segment, SATA-IO introduced SATA Express, a new specification that provides higher performance by utilizing readily available, fast, and scalable PCI Express connectivity while preserving established SATA software compatibility. This presentation will describe the details of SATA Express and the implications for devices and systems that will support it.

Paul Wassenberg, SATA-IO

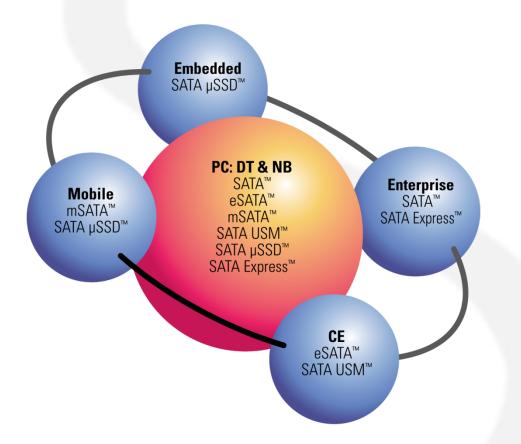
SATA-IO & SATA Express – PCIe for Client Storage

Paul Wassenberg has over 20 years of experience in data storage and has been deeply involved with storage interface technology, including SATA since its inception. Early in his career, he was a storage controller designer, before moving into Marketing in the HDD industry, and eventually into storage semiconductors.

Paul currently holds the position of Director, Product Marketing with Marvell Semiconductor. In that role, he has responsibility for transceiver technology and HDD/SSD storage standards. He is on the SATA-IO board of directors and chairs the SNIA Solid State Storage Initiative. Paul holds BSEE and MBA degrees from San Jose State University.


SATA Express

Evolving SATA for High Speed Storage


January 23, 2012

SATA for PC Client Storage

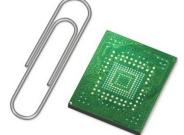
- A Mature Interface
 - SATA is the de facto standard for PC storage; also widely implemented in mobile and enterprise applications
 - Adoption of SATA 6Gb/s technology is strong

A Growing Ecosystem

SATA implementations are becoming increasingly application specific

Since its introduction, SATA has evolved into new application spaces and now provides storage interface solutions for HDDs, ODDs, SSDs, and Hybrid HDDs in client PC, mobile, enterprise, CE, and embedded storage markets

Example Application-Specific Implementations


mSATA (mobile applications)

SATA µSSD (embedded applications)

 SATA Universal Storage Module (consumer electronics, PC applications)

Application Speed Requirements

- Today, most applications are well-served by SATA 6Gb/s and will be for the foreseeable future
- However, SSDs and Hybrid HDDs will soon require greater speeds than those enabled by the current generation of SATA

Introducing SATA Express™

- To meet speed requirements in SSD/hybrid drive applications, SATA-IO is developing SATA Express ™
 - Combines SATA software infrastructure with the PCI Express® (PCIe®) interface
 - Utilizes standard register-level interface such as AHCI
 - Provides up to 8Gb/s and 16Gb/s
 - One lane or two lanes of PCIe
 - Defines new device and motherboard connectors to support both new SATA Express and current SATA devices
 - Will coexist with other application-specific SATA formats

SATA Express Connectors

SATA Express connector supports PCIe and SATA

- Mechanism to detect device interface
- Allows a single motherboard / backplane connector to support both interfaces

SATA Express supports HDD-compatible form factors

 Enables system-level mechanical compatibility

SATA-IO is developing backward compatible connectors for SATA Express motherboards & devices

SATA Express Benefits

- Provides a cost-effective solution for increasing device interface speed
- Specification can be completed and implemented relatively quickly, since both SATA and PCIe are already widely implemented
- Helps ensure seamless coexistence between SATA and PCIe
- Protects developer investments in both interfaces

Next Steps And Timeline

SATA Express is currently under development within the SATA-IO Cable & Connector Work Group

Completed specification expected within 2012

In the meantime, SATA-IO will continue to optimize the existing SATA infrastructure for a wide variety of applications

 SATA will continue to be the mainstream storage interface for the foreseeable future

Agenda

	1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
	2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
	3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
76	4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
	5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
11	6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
	7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
	8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

Janene Ellefson, Micron

PCle 2.5" Form Factor

Abstract:

A key factor standing in the way of widespread PCIe SSD adoption is serviceability of the current card form factor. In most hosts, the card form factor requires that the system be powered down and the unit be opened up to remove the existing card and insert a new card. This is not optimal given the widespread adoption of virtualization. Powering down a machine can disrupt overall system efficiency. Providing the industry with a robust form factor that can be serviceable and still provide PCIe highperformance capability will be a game changer and will increase adoption.

The 2.5-inch form factor is an overall industry standard, and when coupled with a PCIe interface and a SATA/SAS combo connector, it becomes a portable, compact, hot-pluggable PCIe device that is very compelling and enables better performance and serviceability in enterprise systems. Enterprise applications everywhere will benefit from the increased performance, lower energy consumption compared to HDDs, and hot plug serviceability.

Janene Ellefson is the Product Marketing Manager for Enterprise PCIe SSDs and is responsible for worldwide PCIe SSD marketing efforts.

She joined Micron in 1989 and has spent the majority of her Micron career in various marketing roles, supporting NOR Flash and NAND Flash products.

Ms. Ellefson holds a BS from the University of Phoenix in business and marketing.

PCIe 2.5" Form Factor

Janene Ellefson

Product Marketing Manager – PCIe SSD

©2011 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

January 23, 2012

Advantages of PCIe over SATA/SAS SSDs

Higher Performance

Lower power consumption

Lots of advantages for PCIe Enterprise would use it more if they could

What's Holding it Back?

- Too much space
- Limited PCIe Slots
- Power down required

Todays PCIe form factors are not optimal for Enterprise serviceability

Propose the 2.5" PCIe Form Factor

2.5" Advantages

- PCIe performance
- Common Form Factor
- Compactness

- Serviceability
- Lower TCO
- Supports RAID

Summary

- PCIe offers lots of advantages Adoption rates are low
- Today's PCIe form factors are not optimal for Enterprise serviceability
- 2.5" Form Factor: All the performance of PCIe with the serviceability standards of SATA/SAS
- 2.5" = increase PCIe adoption

Agenda

1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

January 2012

convention designs still utilize I/O interfaces such as PCIe. As such, conventional designs have storage access imbalances Although, memory system technology has been utilizing DRAM-based approaches, many business applications require even larger memory spaces in order to take advantage of more recent CPU technology advancement. In this presentation, the use of the extended memory access architecture will be introduced.

As a venture partner of the Harbor Pacific Capital, Dr. Moon J. Kim serves as the CEO of TailWind Storage company. Most recently, Dr. Kim served as the Vice-Chairman & CEO Technology Advisor of Samsung Electronics Corp., where he led several special projects. He also served the executive technology advisor of LG and the senior managing executive of Exponent, a New York based technology consulting company. Dr. Kim is specialized in IO and memory architecture on HPC and main frame servers. During his 28 years in IBM R&D, he led and managed all aspects of IT technology and server development. He held the prestigious title of IBM Master Inventor and has led numerous Emerging Technology developments. He has produced over 130 inventions and has authored several system and IT technology books and published numerous technical papers. He is an expert on the technology industry in Asia. Recently he was awarded twice by the Chinese Academy of Science for this work on the China National Supercomputing Grid and multicore processor development He can be reached at mikim@harborpac.com and (650) 690-0795. (845) projects. 702-2422

Dr. Moon Kim, Phd, *Tailwind*

As storage devices are used in memory technologies (e.g., flash and DDR devices) in order to speed up data access,

storage system designs have not been changed. That is,

Convergence of Memory and Storage IO Architecture

Abstract:

AILWIND STORAGE

SNIA Presentation

January 2012

Dr. Moon J Kim

A New Era in Storage Architecture

- High IO demand causes IO congestion. DRAM has the highest bandwidth and least latency for CPUs, thus making it reasonable to exploit DRAM as an IO channel.
- Conventional IOs, such as PCIe, demand too many supporting resources for the IO itself, and several CPU cycles are required to move the data.
- New and innovative technologies are needed to bring IOs closer to CPU.

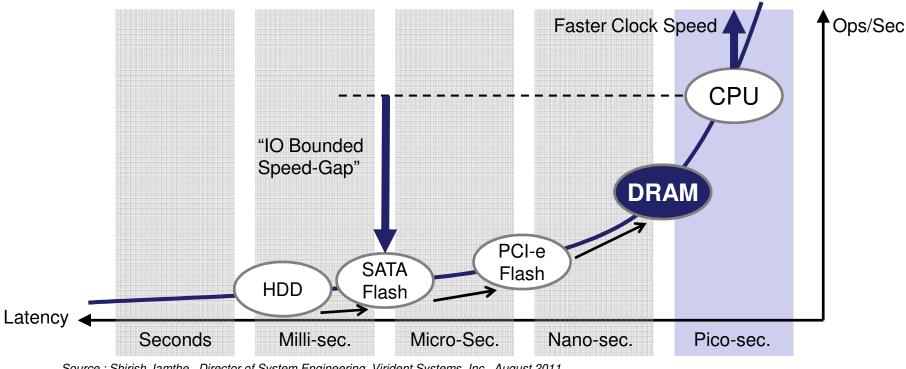
Expanded Storage Architecture

George et al.

- [54] DYNAMIC RECONFIGURATION OF MAI STORAGE AND EXPANDED STORAGE BY MEANS OF A SERVICE CALL LOGICAL PROCESSOR
- [75] Inventors: Jonel George, Pleasant Valley; Stev Gardner Glassen, Wallkill; Matthe Anthony Krygowski, Hopewell Junction; Moon Ju Kim, Wappinger Falls; Allen Herman Preston; Davi Emmett Stucki, both of Poughkeeps all of N.Y.
- [73] Assignee: International Business Machines Corporation, Armonk, N.Y.
- [21] Appl. No.: 635,537
- [22] Filed: Apr. 22, 1996

Related U.S. Application Data

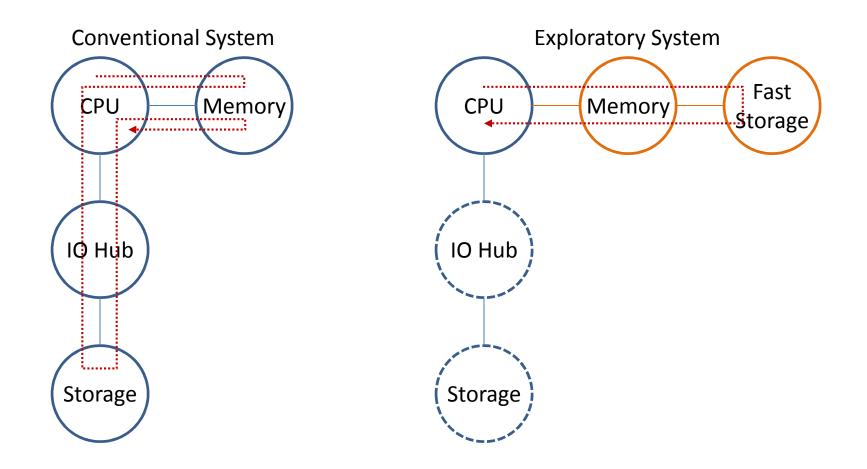
[63] Continuation of Ser. No. 70,588. Jun. 1. 1993. abandoned


TAILWIND STORAGE

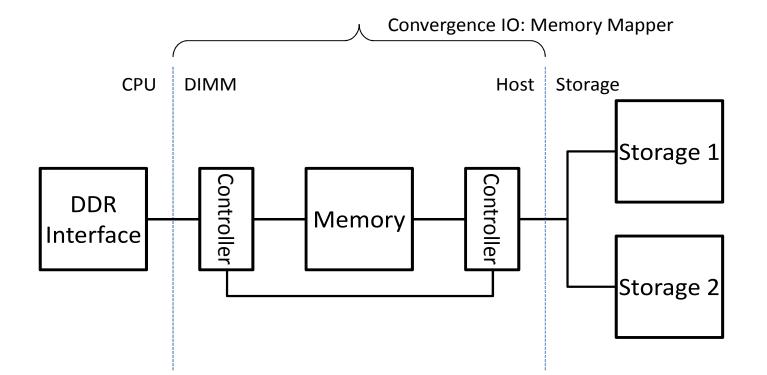
			US006026462A			
Un	ited S	States Patent [19]	[11]	Patent Number:	6,026,462	
Geo	rge et a	l.	[45]	Date of Patent:	*Feb. 15, 2000	
[54]		ORAGE AND EXPANDED E REASSIGNMENT FACILITY	[58] Fi	eld of Search 711/206, 170; 74/		
[75]	Inventors:	Jonel George, Pleasant Valley; Steven	[56]	References Ci	ted	
		Gardner Glassen, Wallkill; Matthew Anthony Krygowski, Hopewell Junction; Moon Ju Kim, Wappingers Falls; Allen Herman Preston; David Emmett Stucki, both of Poughkeepsie,	U.S. PATENT DOCUMENTS			
				5,322 5/1990 Stimac et al. 1,055 12/1997 George et al.		
		all of N.Y.		Examiner—Tuan V. Thai		
[73]	Assignee:	International Business Machines	Attorney, L. Augst	Agent, or Firm—Lane, A	itken & McCann; Lynn	
. ,	0	Corporation, Armonk, N.Y.	[57]	ABSTRAC	r	
[*]	Notice:	This patent is subject to a terminal dis- claimer.	A data	processing system has a which provides a common	processing unit and a	
[21]	Appl. No.:	: 08/897,449		age is initially assigned as 1 storage during power on.		
[22]	Filed:	Jul. 22, 1997	assignme	ent, storage assigned as ma	ain storage or expanded	
	Related U.S. Application Data Division of application No. 08/635,537, Apr. 22, 1996, Pat. No. 5,704,055, which is a continuation of application No. 08/070,588, Jun. 1, 1993, abandoned. 5,479,631 12/1995 Manners et al.		storage may be unassigned and thus returned to the common pool. Once returned to the common pool, the storage may be reassigned as either main storage or expanded storage. The			
[62]			storage reassignment is done dynamically without requiring a reset action and transparent to the operating system and any active application programs			
	Assistant	Examiner—Tod R. Swann Examiner—Tuan V. Thai Agent, or Firm—Lynn L. Augspurger; La r	aurence J.			
	[57]	ABSTRACT				
	A data p	rocessing system has a processing un	uit and a			

CONFIDENTIAL

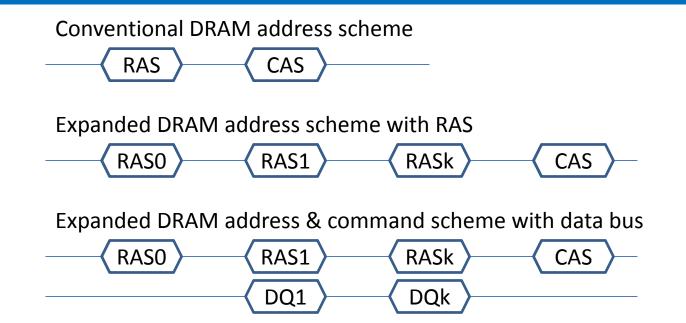
Problem – Increasing need for faster storage


As CPUs reach faster clock speeds, storage ullettechnologies have evolved to reduce the "Speed-Gap" between the CPU and the storage device.

Source : Shirish Jamthe , Director of System Engineering, Virident Systems, Inc., August 2011


New Architecture Consideration

CONFIDENTIAL


DDR+ Extension and Memory Mapper

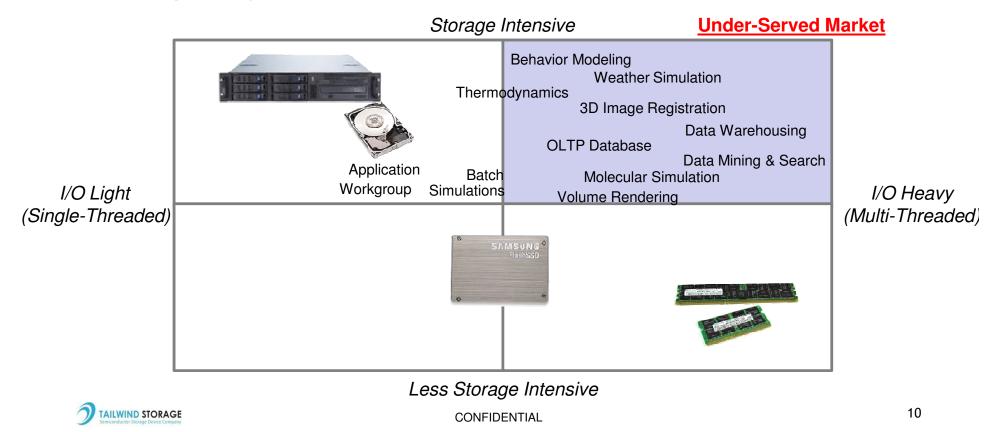
CONFIDENTIAL

Example Implementation

• Slight modification and expansion of SDRAM address scheme allows infinite address space extension, additional command mode, status register space, etc.

New Architecture

- Memory space can extend additional description tag stored in specified register and memory location.
- Memory space and thread are virtualized within the limited memory space.
- Thread sees physical address space.
- OS maintains virtualization of threads.
- Storage is connected through memory-to-storage mapper.
- Memory can serve as a large off-CPU cache of storage.
- Storage should be fast enough to support memory operation.
- Storage can be accessed directly.


Tailwind Storage Company

- Tailwind's <u>DDR-based storage technology</u> meets the increasing need for ultra-fast storage devices that match faster CPUs.
- Tailwind Storage prototypes have been approved by major OEM partners.
- Tailwind maintains a robust IP portfolio.
- Tailwind's team has over 100 years of IO & Memory experience in storage system technology.

Problem – High Performance Computing Environment

 Existing storage technologies are unable to fully meet demanding performance in <u>multi-threaded</u>, <u>data-heavy</u> <u>computing environments</u>.

NAND Flash Memory Technology

- NAND technology maintains a lower effective capacity.
- IOPS testing: latency is effective and favorable under NAND. It <u>may not reflect</u> the real memory operations.
- NAND scaling usually increases latency.

Solution – Benefits of Our DDR Storage Products

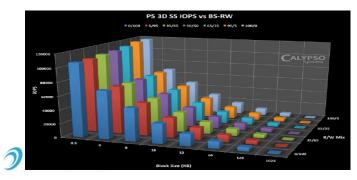
Expandable

Unbeatable Speed

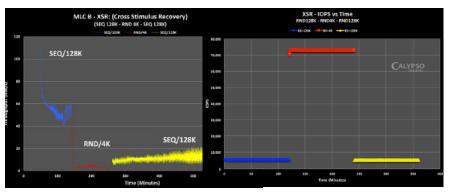
- Much faster than flash based SSD
- Access to storage is closer to speed of CPU

Sustainable Performance

- No performance degradation*
- Symmetric read/write performance
- Linear and transparent
- Consistent performance regardless of workload mix


Our Solution – DDR Advantages

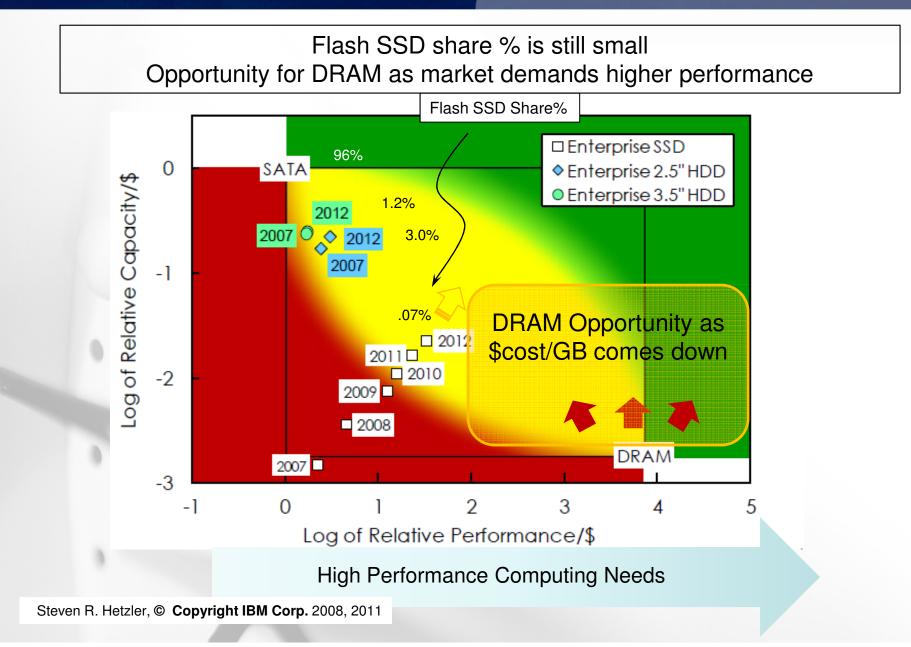
Latency


 Faster than Flash SSD and HDD , in the order of nanoseconds instead of milliseconds or microseconds

Sustainability of Performance**

- No performance degradation
- Symmetric, and linear read/write performance
 - Read / Write Parity
 - Consistent performance regardless of work load mix

Fast transition in handling mix block sizes**



No idle recovery required, minimum background garbage collection**

**Actual test results by an independent test service CONFIDENTIAL company with Tailwind's Pro-E

IT Storage Hierarchy, Trends and Opportunity

Our Solution – Y 2011 Early Adopter products

- Pro Extended
 - 64GB DDR, 700MB/s
 - Initial evaluation completed with prototype from OEM
- Hybrid SSD Storage & Server \bullet
 - 8 Core CPU, 512GB DDR, 5GB/s
 - Evaluation approved by major OEM for market development
- Super-Mini
 - 8 Core CPU, 1TB DDR, 16GB/s
 - Customer evaluation in progress

Y2012 TW Product Specification

Feature	*Pro-Extreme Prototype	Backdraft	2 nd Backdraft
Memory technology	DDR2 SDRAM	DDR3 SDRAM	DDR3 SDRAM
Capacity	64GB	512GB max.	1024GB max.
Host interface	PCIe Gen. 1, 4x	PCIe Gen. 2, 8x	PCIe Gen. 2, 16x
Host bandwidth	0.8GB/s	4GB/s	8GB/s
Form factor	Full length PCIe	Half, full, dual PCIe	Half, full, dual PCIe

Contact Information

For more information:

Dr. Moon J Kim

- <u>mjkim@tailwindstorage.com</u>
- Tel: 650-690-0795
- 525 University Ave, Suite 100, Palo Alto, CA 94301

Agenda

	1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
	2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
	3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
	4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
	5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
Ï	6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
	7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstein, Fusion-io
	8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

performance improvements for their applications and databases. This talk will explore customer input, reactions, and lessons on new models of deploying NAND flash using PCIe, along with taking a look at the future. Today the industry is on the cusp of a new storage continuum. PCIe as a storage mechanism now spans everything from high end servers like the HP DL 980 with up to 16 PCIe I/O expansion slots, all the way down to Thunderbolt, a consumer focused link based on PCIe. There are also important industry initiatives underway like SCSI Express and activities within T10. This talk will cover some of the latest proposals and how the industry and customers stand to benefit from these developments.

Abstract:

In a matter on no time, at least in storage years, NAND flash has emerged in the data center as a force changing the storage landscape. Perhaps no area where this impact has been more visible and more dramatic is in the placement of NAND flash close to the CPUs. By placing process-critical data close to the CPU customers see leap fold performance improvements for their applications and databases.

Gary Orenstein, Fusion-io

PCIe – Lessons from the Front Lines; and a Look to the Future

VP of Products, Fusion-io, Gary has served in leadership roles at numerous data center infrastructure companies. Prior to Fusion-io he was the vice president of marketing at MaxiScale, focused on web scale file systems and acquired by Overland Storage.

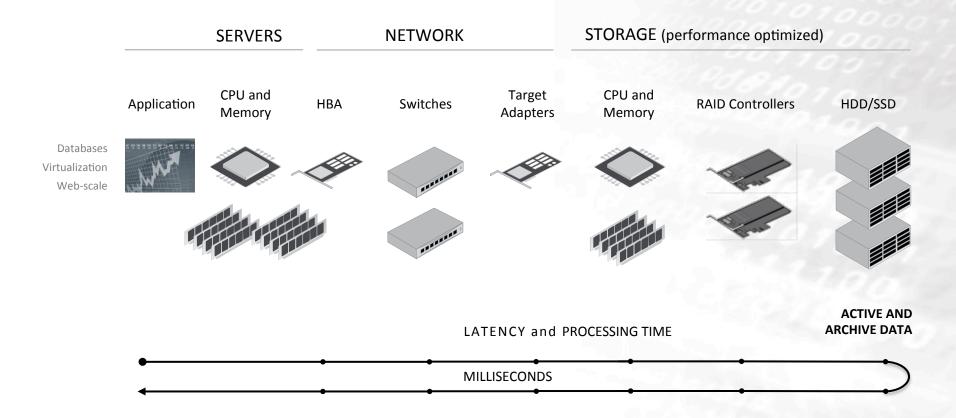
Prior to MaxiScale, he was the vice president of marketing and business development at Gear6, focusing on storage and web caching. He also served as vice president of marketing at Compellent which went public and 2007, and was a cofounder at Nishan Systems, acquired by McDATA/Brocade.

January 2012

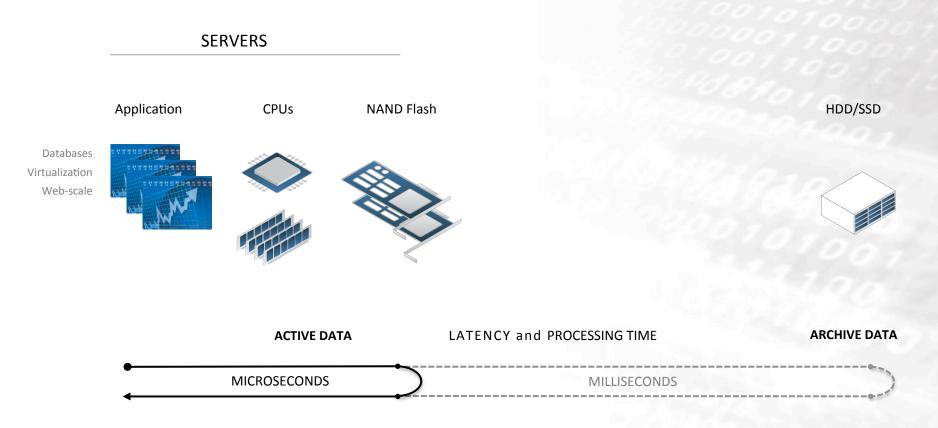
FUSION-10

PCIe Storage - Lessons From the Front Lines and a Look to the Future Gary Orenstein, VP of Products

SNIA Winter Symposium January 2012

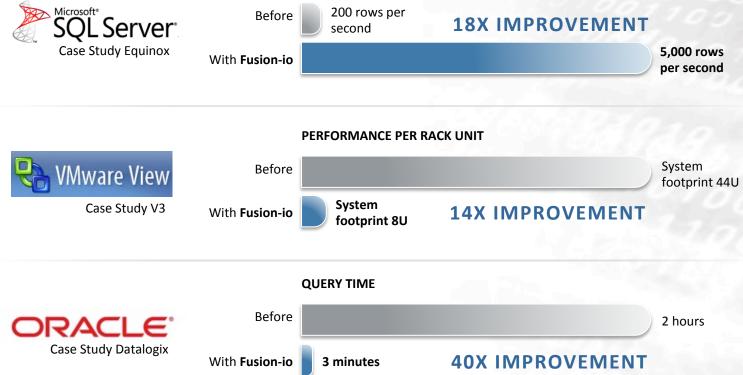

TICOLD FOR CONTRACTOR OF CONTA

Lessons



TRADITIONAL ARCHITECTURE

FUSION-10



APPLICATION ACCELERATION EXAMPLES

AVERAGE DATABASE THROUGHPUT

Turning

Point

for PCIe

Consumer	SMB/SME	Enterprise
• USB	• SATA	• SAS
• SATA	• SAS	• FC
• IDE	• FC	• IB

THUNDERBOLT PCIE DEVICES

FUSION-iO

January 23, 2012

FUSION-10

· 8				
	III 200 F .			
				, s
		***** ** [*]		

Up to 11 full height/full length slots supported

2410 GB x 11

26.5TB per server

x11

SMB/SME Enterprise Consumer **PCle**

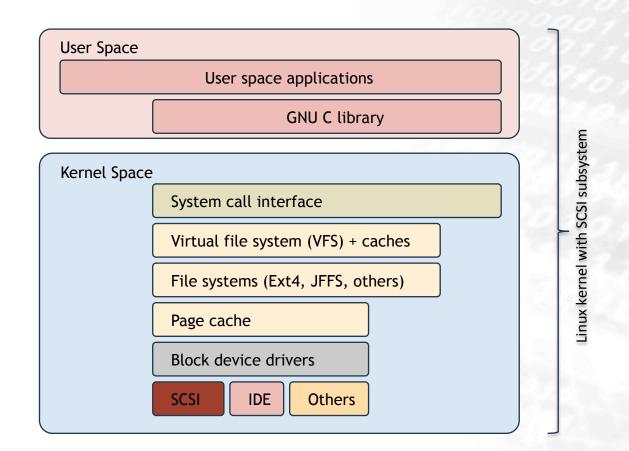
Express

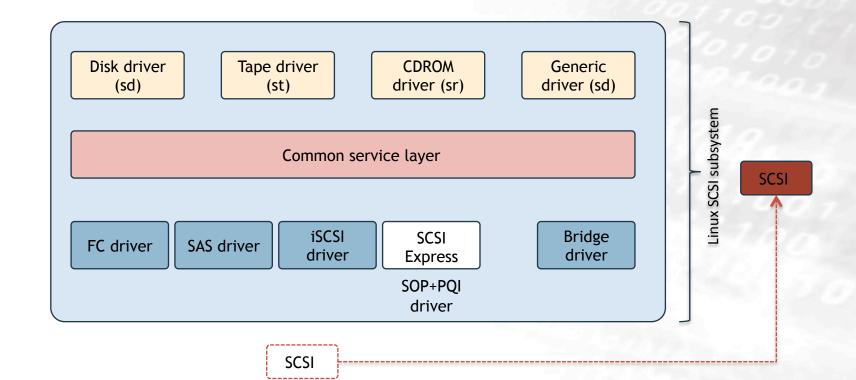
A set of industry initiatives delivering a PCIe Express based enterprise storage solution

Industry Initiative	Focus
SCSI Over PCIe (SOP)	Streamline SCSI command set optimized for solid state
PCIe Queuing Interface (PQI)	Flexible and extensible transport layer
Universal drive connector	Supporting current and emerging devices
PCIe physical layer	Drive error handling and asynchronous hot add/ remove
Native OS support	Standard drivers to support range of devices

SCSI EXPRESS AND NVM EXPRESS

FUSION-iO


SCSI Express	NVM Express (NVMe)
A standard to combine SCSI and PCIe	A register level interface for host software to communicate with a non-volatile memory subsystem
Enterprise Roots (SCSI based)	Consumer Deats (ATA based)
SCSI reliability and dependability	Consumer Roots (ATA based)
Extensible configurations	Limited configuration support


- Embrace PCIe
- Fill gap between DRAM and HDD
- Embrace SCSI
- Work together on standards
- Ensure a quality ecosystem

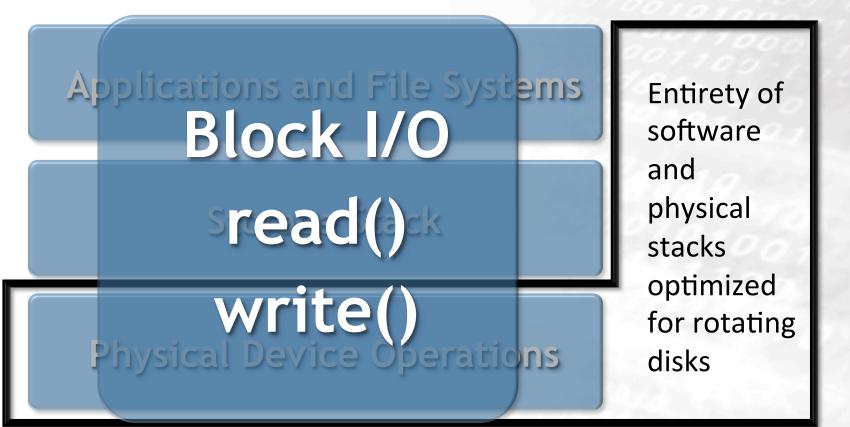
LINUX KERNEL WITH SCSI SUBSYSTEM FUSION-IO

FUSION-iO

Don't forget

software

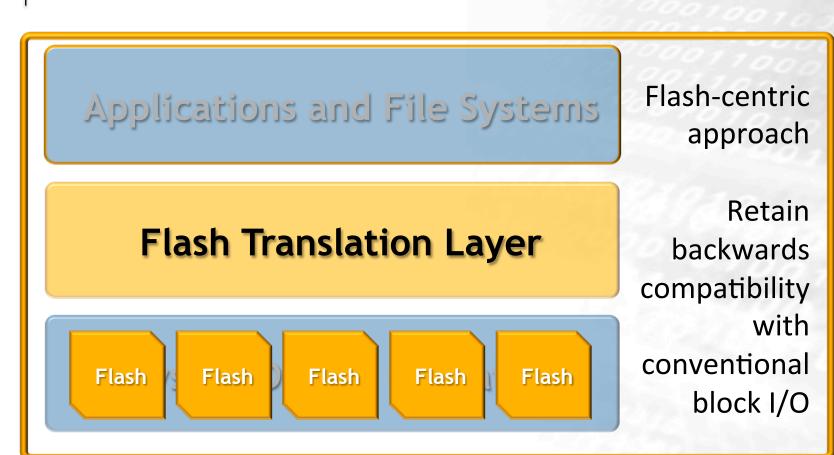
Is GPS technology a new map or new architecture?



Applications and File Systems

Storage Stack

Physical Device Operations



FUSION-iO'

Asymmetric read/write latencies

Write-impact on durability

Unique erase characteristics

FLASH AS A NEW ARCHITECTURE

X

FUSION-10

FUSION-iO'

Input

Logical Block Address (LBA)

Flash Translation Layer

Output Commands to Physical NAND flash

- Virtualize the storage layer
- Retain compatibility with conventional block I/O
- Deliver new flash-native capabilities

Atomic Writes

ATOMIC WRITES

FUSION-iO'

23 December 2011

11-229r1 SBC-3 SPC-4 Atomic writes

To: T10 Technical Committee

From: Rob Elliott, HP (elliott@hp.com) and Ashish Batwara, Fusion-io (abatwara@fusionio.com)
 Date: 23 December 2011
 Subject 11-22911 SBC-3 SPC-4 Atomic writes

Revision history

Revision 0 (7 May 2011) First revision Revision 1 (23 December 2011) Incorporated feedback from CAP WG 2011-09-14; created a new ATOMIC WRITE command with multiple LBA ranges. Added Ashish Batwara as co-author.

References

Atomic Writes for data integrity and consistency in shared storage devices for clusters. Michael Okun and Armon Barak, Future Generation Computer Systems 20(4), 539-547 (2004). See http://www.veizmann.ac.lineurobiology/labs/lampl/mush/humla.huml and http://www.cs.huji.ac.lineurobiology/labs/lampl/mush/humla.huml and http://www.cs.huji.ac.lineurobiology/labs/lampl/mush/humla.huml and Conference on Agorithms and Architectures for Parallel Processing (ICASPP02), 2002.

Beyond Block I/O: Retinking Traditional Storage Primitives. Xiangyong Ouyang (Fusion-io) and Ohio State), David Nellans (Fusion-io), Robert Wipfel (Fusion-io), David Flynn (Fusion-io), Dabaleswar K. Panda (Ohio State). 17th IEEE International Symposium on High-Performance Computer Architecture (HCCA-17), 2011. See http://david.nellans.org/files/HPCA-2011.pdf and http://nowida.cse.ohio-state.edu/publications/conf-presentations/2011/ouyangx-hpca2011-sildes.pdf.

Overview

Some types of storage devices (e.g., NAND-flash based SSDs) do not overwrite data in place like others (e.g., HDDs); new writes are directed to new storage locations, and the old locations maintain the old data until they are later reclaimed. These devices may have the ability to revert back to the old data in case something goes awry during the write (e.g., power is lost). If an application client is able to rely on this fact, it can avoid performing its own transactional logging operations, increasing performance.

The 2004 Okun/Barak paper defines a new atomic write operation that provides these semantics: "A storage device that supports Atomic Write (AW) guarantees that either all the blocks in a write operation are written or no blocks are written at all."

The 2011 Ouyang/Nellans/et al. paper implemented an atomic write primitive with a NAND-flash based storage device for a MySQL database (see http://www.mysql.com) with the InnoDB transactional storage engine (see http://www.innodb.com), measuring:

- a) 43% reduction in data written to storage;
- b) 20% reduction in transaction latency; and
- c) 33% throughout improvement

Benefits

An atomic multi-block write (ATOMIC WRTE) command batches multiple write I/O operations into a single logical group written as a whole or rolled back upon falure. These multi-block writtens, which are naive to the hardware, resolve a problem of indeterminate status of failed writes that often requires two-part write – onee write to for the data in-place and another write to update the journal of the activity. Avoiding one extra write doubles the life of SDs. Additionally, by moving the write-atomicity down the stack link the storage device, it is possible to significantly simplify the applications, fleesystems, or operating systems which conventionally do extra processing to guarantee the consistency and integrity of data. In summary, atomic write command eliminates the major overhead, simplifies applications, increases the storage and write-bandwidth, and doubles the eliminate SDs.

Benefits of the atomic write command include:

- a) increased write endurance
- b) increased performance
- c) fewer write I/Os
- A) simplify applications
- B) keep applications from managing atomicity

1

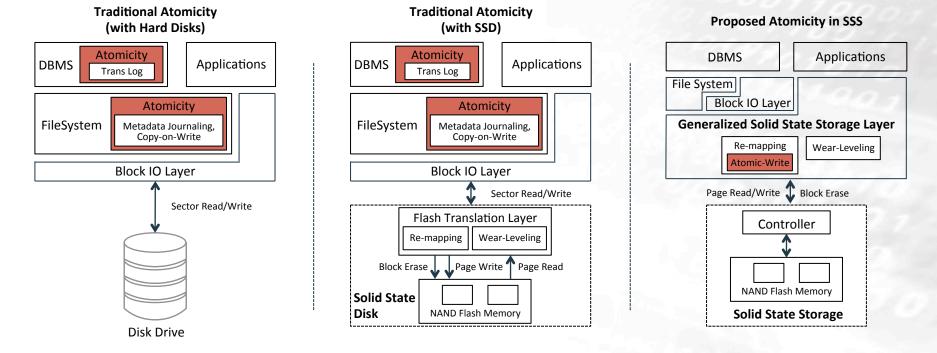
http://www.t10.org/

Doc:11-229R1

IT IS ABOUT TRANSACTIONS

- Building block of applications and databases
- Transactional
 Semantics
 - Data Integrity
 - Concurrency
 - Crash Recovery

- Applications
- File Systems
- Databases
- Web Services
- Search Engines
- Mission Critical Computing



Batch multiple I/O operations into a single logical group

 Multiple I/Os are persisted as a whole or rolled back upon failure

ATOMIC WRITES - OPTIMIZED

FUSION-iO

Moving the Atomic-Write Primitive into Storage Stack

MySQL Extension for Atomic Writes

Gary Orenstein

go@fusionio.com

@garyorenstein

THANK YOU

Agenda

1.	10:15 AM - 10:30 AM	Introduction - SSS Performance	Eden Kim, Chair SNIA SSS TWG
2.	10:30 AM - 10:45 AM	PCIe SSD Form Factor	Mark Meyers, Intel
3.	10:45 AM - 11:00 AM	Standards & Deployment Models	Marty Czekalski, Seagate
4.	11:00 AM - 11:15 AM	SATA-IO & SATA Express - PCIe for Client Storage	Paul Wassenberg, Sata-IO
5.	11:30 AM - 11:45 AM	PCIe 2.5" Form Factor	Janene Ellefson, Micron
6.	11:45 AM - 12:00 PM	Convergence of Memory & Storage IO Architecture	Moon Kim, Tailwind
7.	12:15 PM - 12:30 PM	Lessons from the Front Lines & Lessons for the Future	Gary Orenstien, Fusion-io
8.	12:30 PM - 1:00 PM	Panel Question & Answers / Working Lunch	

PCIe Round Table . . Questions for the Panel

- · Will any one of the competing PCIe interface standards prevail as the Industry Standard and why?
- Is PCIe SSS suitable for both Client and Enterprise Applications?
- How does the higher cost per GB of PCIe Solid State Storage affect adoption?
- Will PCIe SSS become standardized as a Block IO device driver?
- What does one DO with a million IOPS? i.e. limitations of bus, bandwidth, system optimization
- Doesn't the move to virtualization work against the adoption of DAS-oriented PCIe SSD??
- Does PCIe flash make more sense as a memory or as a storage element?

Thank You for your Participation in the PCIe Round Table at the 2012 SNIA Face-to-Face

