

Flash: Plan for the Disruption

Ethernet Storage Forum Members

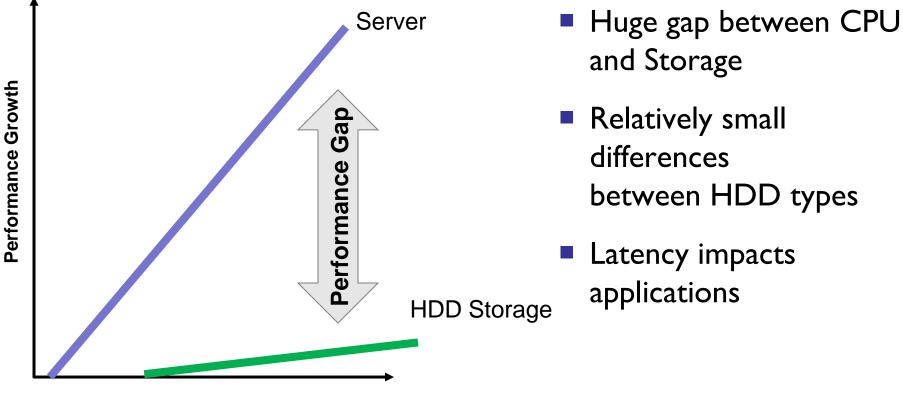
Advancing storage & information technology

Housekeeping

- Presentation with live Q&A at the end
- Questions submitted via web tool will be answered verbally
- Unanswered questions will be placed on <u>www.sniaesfblog.org</u>
- Request complete the 10 second feedback form

4

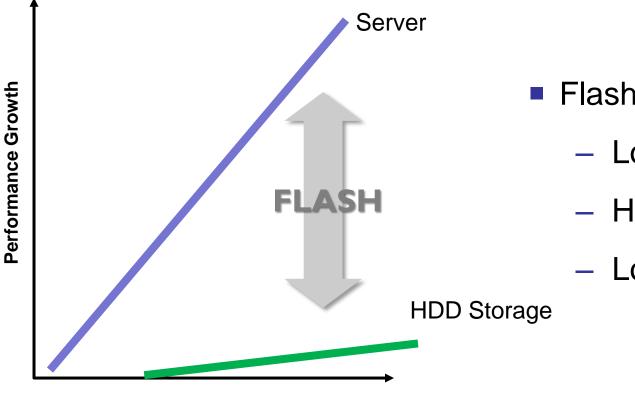
> David Fair, SNIA-ESF Board of Directors


Paul Feresten, SNIA Member

SNIA Webinar Agenda

- Introduction to flash storage
- How flash is being deployed in storage systems
- Considerations and tradeoffs
- Performance benefits of flash in storage
- Trends in non-volatile memory
- Network impact of flash in storage

Performance Gap Challenge


Advancing storage & information technology

Time

Flash is a Game Changer

Advancing storage & information technology

Flash is a game changer

- Lower Latency
- Higher IOPS
- Lower \$ per IOPS

Time

Why Flash in the Data Center Now?

Why flash?

- Capacity efficiency versus DRAM
 - > ~5x better \$ per GB
 - > ~40x better power per GB
- IOPS efficiency versus HDDs
 - > ~40x better \$ per IOPS
 - > ~600x better power per IOPS

Why now?

- Period of rapid density advancements led to HDD-like bit density at lower \$/GB than DRAM
- Innovations in SSD and tiering technology

Advancing storage & information technolog

Flash Implementations

	Controllers / Accelerators Boot Flash
Server Centric Server Integrated	DIMM cards with Flash
	PCIe cards with Flash
Network Centric Server-attached appliances via PCIe, SAS, FC, iSCSI	SSD Arrays in non-HDD form factors SSD Arrays in HDD form factors

NAND-Flash Technologies

Single-Level Cell (SLC) – One bit per cell

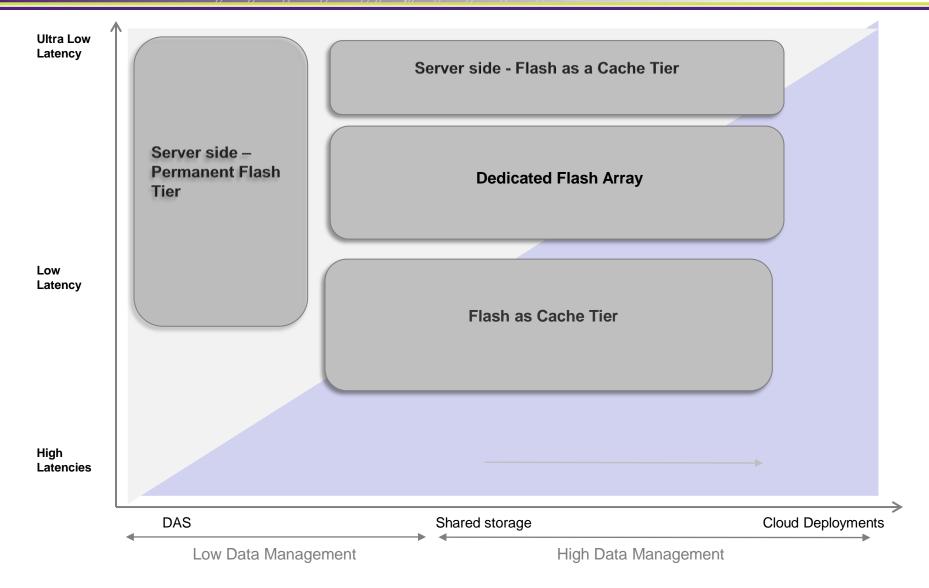
Multi-Level Cell (MLC) – Two or more bits per cell

- Triple Level Cell (TLC) Three bits per cell
- First announcements of MLC-3 & MLC-4 were made in 2009

	SLC	MLC-2	MLC-3	MLC-4
Bits per cell	1	2	3	4
Performance	Fastest	< <u> </u>		Slowest
Endurance	Longest			Shortest
Capacity	Smallest			Largest
Error Prob.	Lowest			Highest
Price per GB	Highest	< <u> </u>		Lowest
Applications	Enterprise	Mostly Consumer	Consumer	Consumer

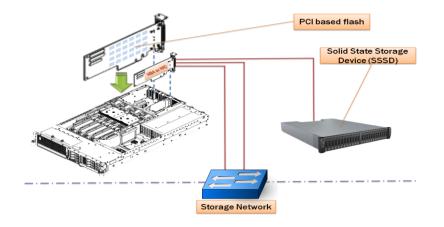
Source: Demartek 2012

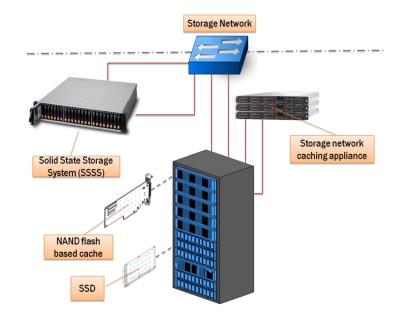
Performance vs. Cost


Advancing storage & information technology

	\$/GB	\$/IOPS	IOPS/watt
SSD (SLC)	\$5 - \$40	\$0.005 - \$0.15	1000 - 15000
SSD (MLC)	\$0.63 - \$4	\$0.004 - \$0.05	1000 - 15000
HDD (enterprise)	\$0.50 - \$1	\$1 - \$3	10 - 30
HDD (desktop)	\$0.05 - \$0.37	\$1 - \$4	10 - 40

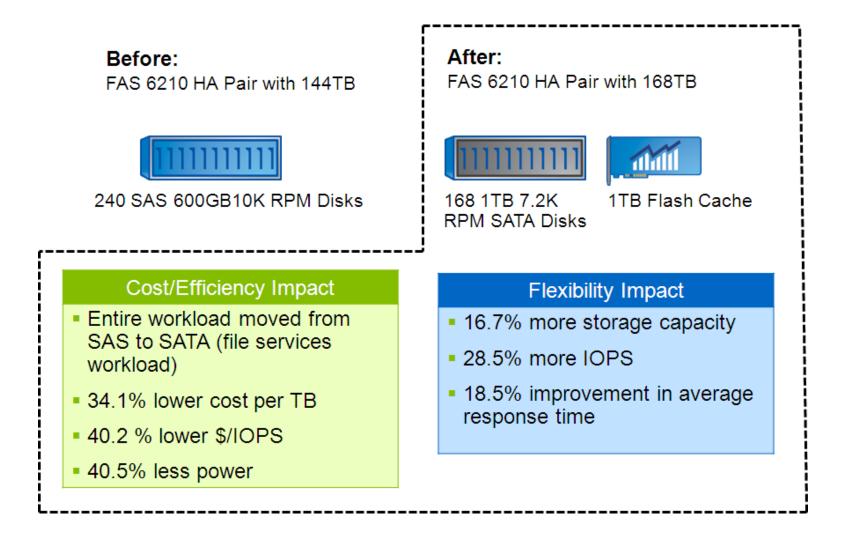
- SSDs are dollars per gigabyte and pennies per IOPS
- HDDs are pennies per gigabyte and dollars per IOPS
- Notes:
 - Prices sampled in early September 2012 and are subject to change
 - SSD pricing includes drive and PCIe card form factors
 - MLC pricing includes eMLC and cMLC
 - The HDD supply chain appears to have recovered from the Thailand flooding that occurred in the Fall of 2011. HDD availability and prices are beginning to return to pre-flood levels.


Flash Deployment

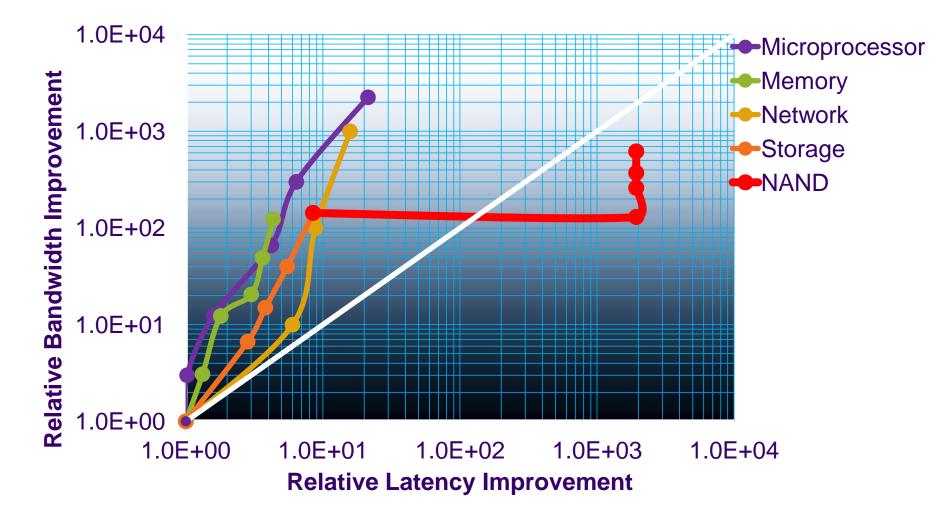


Flash and the Network

Flash Above the Network



Flash Below the Network


Performance and Efficiency Impact

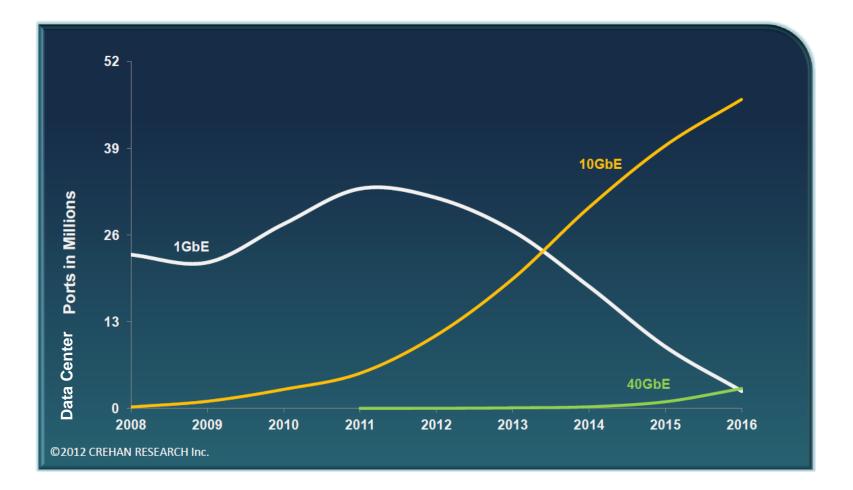
Advancing storage & information technology

NAND Brings Transformational Change To Compute Platforms

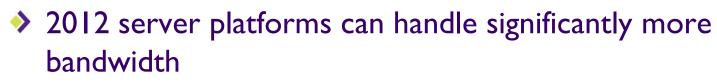
NAND Is Forecast To Continue Sharply Declining In Price

Blended Average Price per GB Comparison (December 2011 vs. May 2012) for All Market Segments, 2010-2016

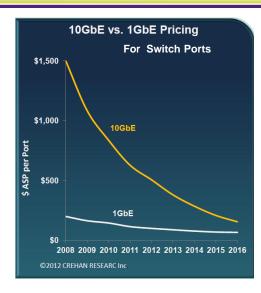
Trends In Non-Volatile Memory (NVM)


We are just beginning to see the impact of NAND in enterprise storage

- The percentage of NAND used in storage systems will continue to increase
- NAND going to get cheaper
 - "IDC expects NAND memory ASP to decline at a CAGR of 38% from 2011 to 2016"*
- NAND is going to get faster
 - Each semiconductor process shrink delivers higher speeds
- Sy the time the industry has absorbed the impact of NAND, it will likely be replaced by something 2 or 3 orders of magnitude even faster
 - Memistors? Phase-change?


What Impact Will NVM Have On Networking Requirements?

Fortunately, For Flash Storage, IOGBE Adoption Is Well Underway Advancing storage & information technology



Reasons Driving 10GbE Adoption (From "10GbE – Key Trends, Drivers and Predictions" SNIA SNIA Webcast)

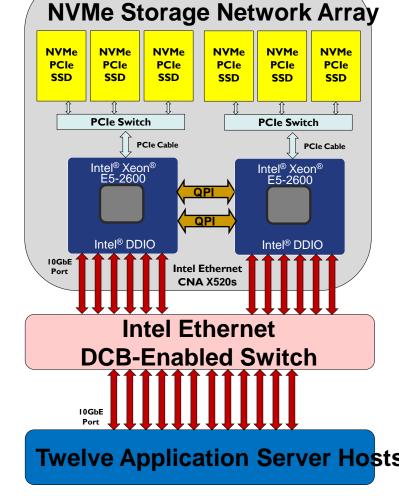
- Virtualization and network consolidation are driving requirements for faster Ethernet
 - Data Center Bridging and FCoE require 10GbE
- Prices for IOGbE switches and adapters are declining sharply
- IOGbE offers lower data center power

- IOGBASE-T and "flexible LOM" are further driving down deployment costs
- And, of course, the increasing prevalence of flash storage

Is IOGbE Enough To Support Flash Storage?

- For IDF 2012, Intel built a SAN with six 32GB prototype SSDs and commercially available switches and Ethernet adapters (NICs) as a technology demo proof of concept
- First key learning was that
 - Fast Storage + Fast Networking ≠ Fast Storage Networking
- Intel chose to work with the Open FCoE and NVM Express stacks because they were available for modifying
 - The Open FCoE stack had been optimized for rotating media
 - The NVMe stack had been optimized for DAS
 - Significant performance enhancements were achieved by harmonizing these two stacks to work together

Intel Achieved 3M IOPS In This Proof Of Concept



- 4k random read IOPS using fio workload
- I2.7 GBps of NVMe SSD throughput
- FCoE traffic peaking at 120 Gbps

3M IOPS SAN Consumes 12 Ports Of 10GbE

Advancing storage & information technology

- This NVMe SAN POC is an indicator of where full NVM as well as hybrid storage is going in terms of peak requirements
- Three ports of 40GbE could support this SAN
- But NVM will penetrate greater percentages of storage
- NVM will get faster
- NVM storage will be a key force driving the transitions of 40GbE and 100GbE

- Over the next five years solid state technologies will have a profound impact on enterprise storage
- It's not just about replacing mechanical media with solid state media
- The architectural balance of memory, cache and persistent storage will change
- Today's solid state implementations in enterprise storage demonstrate these changes
- It's only the beginning...

Questions?

How to contact us:

- David Fair <u>david.l.fair@intel.com</u>
- Paul Feresten <u>paul.feresten@netapp.com</u>
- Full Q&A session from this Webcast will be posted on the SNIA-ESF Blog