Databases Acceleration with Non Volatile Memory File System (NVMFS)

Saeed Raja
SanDisk Inc.
MySQL?

- Widely used **Open Source** Relational Database Management System (**RDBMS**)
- Popular choice of database for use in web applications, OLTP, embedded database

Oracle MySQL (Stockholm, Sweden)
- All other MySQL forks are based of Oracles MySQL releases
- InnoDB storage engine

Percona Server (Pleasanton, California, USA)
- Developer of XtraDB storage engine

MariaDB (Helsinki, Finland)
- Founded by Monty, MySQL original author, MariaDB foundation
- Uses XtraDB, joint development with Percona
MySQL Has Strong Momentum!!!

- Leading open source database for Web applications
- #1 Open Source Database in the Cloud¹
 - dbPaaS market is gaining momentum²
 - Amazon RDS offer Oracle MySQL RDBMS engine²
 - Rackspace Cloud Databases offer fully managed instances of MariaDB, MySQL and Percona, with container-based virtualization²
- Integrated with Hadoop in big data platforms

¹Oracle: "State of the Dolphin" Keynote - MySQL Central @ OpenWorld 2014
²Gartner: Market Guide for Database Platform as a Service
Legacy MySQL Challenges

1. Every MySQL write translates to 2 writes to SSD

2. 80% Performance penalty with legacy MySQL compression on

- Application initiates updates to pages A, B, and C.
- MySQL copies updated pages to memory buffer.
- MySQL writes to double-write buffer on the media.
- Once step 3 is acknowledged, MySQL writes the updates to the actual tablespace.

Every MySQL write translates to 2 writes to SSD.

80% Performance penalty with legacy MySQL compression on.

Legend:
- Compression Performance Penalty (Reduction in transaction rate)
- Transaction Rate compared to baseline

Graph:
- Uncompressed (Baseline) 100%
- Legacy MySQL Compression 20%

80% reduction in Trans/Sec

©2015 SanDisk Corporation. All rights reserved.
MySQL stores uncompressed data in 16K pages
- 16K pages are compressed into a fixed compressed page size of 1K, 2K, 4K, 8K
- Compressed page size is chosen at table creation
- Compression is performed using regular software compression libraries (zlib)
- Table updates appended to Page Modification Log (mlog) at the end of the compressed (8K) page
- When mlog gets full, page is recompressed
If recompress operation fails to fit within compressed block size, page is split into 2 pages which triggers an attempt to rebalance the tree.

This is the cause of most of the performance penalty of MySQL compression.
New Primitives for a New Type of Media

Application and File Systems Lagging Behind

<table>
<thead>
<tr>
<th>Media</th>
<th>Primitives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>Open, read, write, rewind, close.</td>
</tr>
<tr>
<td>Disk</td>
<td>Open, read, write, seek, close.</td>
</tr>
<tr>
<td>SSD</td>
<td>Open, read, write, seek, close.</td>
</tr>
</tbody>
</table>
| Fusion ioMemory NVM | Open, read, write, seek, close.
Plus, new primitives to exploit characteristics of non-volatile memory
Basic write + atomic write, Transactional write. Persistent Trim |
SanDisk NVMFS

Value

- Increase life expectancy of flash devices
- Consistent low latency
- Consistent high performance

How?

- Reducing Writes to flash
- Optimize IO Write path for flash
- Applications leverage enhanced I/O interface
SanDisk NVMFS – Solve Double Write Problem with Atomic Write Feature

- Enhanced Life Expectancy of Flash Devices
 - Reduce Writes to flash by half at similar throughput
- Consistent low latency
- Higher performance especially for workloads with datasets that are bigger than DRAM

MySQL with Atomic Write

1. Application initiates updates to pages A, B, and C.
2. MySQL copies updated pages to memory buffer.
3. MySQL writes to actual tablespace, bypassing the double-write buffer step due to inherent atomicity guaranteed by the intelligent device.

A perfect fit for ACID compliant MySQL
Consistent Low Latency

Significantly Lower Latency with SanDisk NVMFS Atomic Write (compared to traditional double-write)

Sysbench - MariaDB 10.0.15, 4000 OLTP TXN injection/second, 99% latency, 220GB data - 10GB buffer pool
SanDisk Accelerated Compression:
- Within 10% of uncompressed performance
- 50% improvement in capacity\(^1\)
- Enhanced life expectancy of flash devices\(^2\)
 - Up to 4x fewer writes to storage
 - With compression and Atomic Write

Compression with almost no performance hit

\(^{1}\)For workloads that compress well. Improvement will vary
\(^{2}\)At Similar Throughput (assuming same load)
SanDisk Acceleration

- Move compression to the lowest layer
- Only store uncompressed 16KB pages in memory. Keep code ‘as is’
- Tables recompressed with each update
- Use TRIM to free unused space
- NVMFS file system reports that less space is used on media
- No limitations due to pre-selected fixed compressed page size
- Very simple

\[
16K = (32) \text{512B Sectors} \\
8K = (16) \text{512B Sectors on Flash}
\]
Compression With Almost No Performance Hit
Write-Heavy Applications

- Enabling NVM compression has little impact on the MySQL transaction rate
- Enabling legacy MySQL compression has 80% penalty

TPC-C like benchmark, 1000 warehouses - 75GB Buffer pool, MariaDB 10.0.15

Legacy MySQL with Compression OFF
MySQL /NVMFS with Compression ON
Legacy MySQL with Compression ON

©2015 SanDisk Corporation. All rights reserved.
Combining Atomic Write with NVM Compression

Reduces MySQL Write Operations to Flash by 70%
Summary

- NVMFS is designed from grounds up for flash storage
- Achieve optimum flash performance and efficiency
- Customers will benefit:
 - Increase life expectancy of flash devices
 - Consistent low latency
 - Consistent high performance