Industry perspective
Cloud trends
Cloud native storage architecture
adrian cockcroft @adrianco
Baffling-late-adopters as a Service
Retweeted by Andrew Clay Shafer
Expand
Typical reactions to my Netflix talks…

“You guys are crazy! Can’t believe it” – 2009

“What Netflix is doing won’t work” – 2010

It only works for ‘Unicorns’ like Netflix” – 2011

“We’d like to do that but can’t” – 2012

“We’re on our way using Netflix OSS code” – 2013
What I learned from my time at Netflix

- Speed wins in the marketplace
- Remove friction from product development
- High trust, low process, no hand-offs between teams
- Freedom and responsibility culture
- Don’t do your own undifferentiated heavy lifting
- Use simple patterns automated by tooling
- Self service cloud makes impossible things instant
Demands on IT Increased 1000x

Compete or lose in the market!
How fast can you innovate?
Non-Cloud Product Development

Months before you find out whether the product meets the need

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS
IaaS Based Product Development

Weeks before you find out whether the product meets the need

- **Software provisioning** is undifferentiated heavy lifting – replace it with **PaaS**

- **Business Need**
 - Documents
 - Weeks

- **Software Development**
 - Specifications
 - Weeks

- **Deployment and Testing**
 - Reports
 - Days

- **Customer Feedback**
 - It sucks!
 - Days
Process Hand-Off Steps for Feature Development on PaaS

- Product Manager
- Developer
- BI Analytics Team
PaaS Based Product Feature Development

Days before you find out whether the feature meets the need

Building your own business apps is undifferentiated heavy lifting – use SaaS
What Happened?

Rate of change increased

Cost and size and risk of change reduced
Cloud Trends
Cloud Enterprise IT Adoption

Adoption vs. Time

Ignore, Ignore, Ignore, "No", "No", "No", dammit, "Oh No", "Oh fuck"

Rest of World

Enterprise IT

You Are Here

By Simon Wardley http://enterpriseitadoption.com/
What happened in the “price war” announcements?

Google Cloud
- Demo: Live instance migration
- Sustained Usage Pricing
 - Discount for over 25%/month
- New Google DNS Service
- New MS Windows Support
- Price cuts
 - Storage 2.6 cents/GB/month
 - Storage access 1 cent/10k ops
 - 32% reduction in instance cost
 - Cost for n1-standard == m3

Amazon Web Services
- Demo: Workspaces Cloud VDI
- New High Memory Instances
 - r3 cheaper & bigger than m2
- Updated Storage Instances
 - i2 cheaper & bigger than hi1
- Price cuts
 - S3 2.75-3.0 cents/GB/month
 - S3 access 0.4 cent/10k ops
 - m3 cheaper & faster than m1
 - c3 cheaper & faster than c1
What Was Missing Last Week

Google Cloud
- No big enterprise customers
- No reservation options
- Need more regions and zones
- Need lower inter-zone latency
- No SSD options

Amazon Web Services
- No per minute billing
- Need simpler discount options
- Need more regions and zones
- No integrated PaaS strategy
- No instance migration
- Need update for m1

Too many architectural differences make using both interchangeably tricky
How does IT get there?
"This is the IT swamp draining manual for anyone who is neck deep in alligators.” Adrian Cockcroft, Cloud Architect at Netflix

Continuous Deployment for Speed

New book 2014

Flow Conference:
Flowcon 2013 – See videos
Flowcon 2014 – September…
Speed wins in the marketplace
Cloud Native Storage Architecture
Cloud Native Storage Requirements

- Write data quickly
- Don’t lose data
- Read back quickly
- Read back what I wrote…
- Distribute data globally
- With low cost
- And not run out of space.
- Make big profits for existing vendors
Traditional vs. Cloud Native Storage Architectures

- **Database Master**
 - Fabric
 - Storage Arrays

- **Database Slave**
 - Fabric
 - Storage Arrays

- **Cassandra Zone A nodes**
- **Cassandra Zone B nodes**
- **Cassandra Zone C nodes**

- **Business Logic**
- **Cloud Object Store Backups**
Storage Node Options

- AWS – Create clusters of 100s of Cassandra nodes automatically
 From nothing exists to writing data 10min after launching (see live demo)

- Older Node Specifications
 AWS m2.4xlarge – 68GB RAM, 1Gbit net, 2x840GB disks, 500 iops
 AWS h1.4xlarge – 60GB RAM, 10Gbit net, 2TB SSD, 100000 iops
 AWS hs1.8xlarge – 117GB RAM, 10Gbit net, 24x2TB disk, 2.6Gbyte/s

- Current Node Specifications – Intel Ivybridge v2
 AWS i2.xlarge – 30GB RAM, 10Gbit net, 800GB SSD, 45000 iops
 AWS i2.8xlarge – 244GB RAM, 10Gbit net, 8x800GB SSD, 365000 iops
Write Data Quickly

How it works
- Apache Cassandra
- Write to RAM on local node
- Duplicate to remote node RAM
- Flush to local disk every 10 sec
- Huge sequential writes
- Immutable pre-sorted files
- Infrequent compaction merge

Speed and Scale
- Ack local copy, microseconds
- Ack remote copy, net latency
- Quorum write 2 out of 3 option
- Over 1M writes/s in production
- Scales linearly with nodes
- Netflix runs to 288 nodes/cluster
- Others over 1000 nodes
Don’t Lose Data - Durability

- Triple replication of data - one replica per building (Availability Zone)
- Hinted handoff for down nodes
- Copy immutable files to S3 for backup, remote regions for archive
- Replica checksum compares
- Efficient anti-entropy repair
- Support option from Datastax
Benchmarking Global Cassandra

Write intensive test of cross region replication capacity
16 x hi1.4xlarge SSD nodes per zone = 96 total
192 TB of SSD in six locations up and running Cassandra in 20 minutes

Test Load

1 Million reads
After 500ms
CLONE with no Data loss

Validation Load

1 Million writes
CLONE (wait for one replica to ack)

Test Load

US-West-2 Region - Oregon

US-East-1 Region - Virginia

Inter-Zone Traffic

Inter-Region Traffic
Up to 9Gbits/s, 83ms

18TB backups from S3
Do the Math on Costs

● Traditional Architecture Costs
 Nodes + Database licenses + SAN fabric switches + Storage arrays + Management tools + Replication tools + Backup tools + Tape backup drives + Off-site tape storage + Network switches + Power/cooling etc.

● Cloud Native Architecture Costs
 Nodes (includes storage) + Cassandra support + S3 backup

● Cloud Native Benchmarking
 Pay only for the hours that the cluster is running

● Cloud Native Capacity Planning
 Start small, grow the cluster only when it’s filling up, no downtime
Cloud Native Storage Requirements Met

- Write data quickly – millions of low latency ops/s
- Don’t lose data – triple AZ replication, backups to S3
- Read back quickly – millions of low latency ops/s
- Read back what I wrote… - checksums and automatic repairs
- Distribute globally – Cassandra cross-regional replication
- With low cost – using lots of cheap internal SSD
- And not run out of space – scales up to “plaid” (beyond ludicrous)
- Make big profits for existing vendors – sorry…
Cloud Native for High Availability at Scale

NetflixOSS at netflix.github.com and techblog.netflix.com

Over 40 projects, PaaS, NoSQL, Big Data, etc.
Priam – Cassandra co-process

- Runs alongside Cassandra on each instance
- Fully distributed, no central master coordination
- S3 Based backup and recovery automation
- Bootstrapping and automated token assignment.
- Centralized configuration management
- RESTful monitoring and metrics
- Automated online re-size to double node count
Cassandra Astyanax Java Client Recipes

- Distributed row lock (without needing zookeeper)
- Multi-region row lock
- Uniqueness constraint
- Multi-row uniqueness constraint
- Chunked and multi-threaded large file storage
- Reverse index search
- All rows query
- Durable message queue
- Contributed: High cardinality reverse index
Staash - Generic Data Access Layer Microservice

- Storage Tier As A Service over Http “STaaSH”
- Polyglot persistence via unified REST API
- Cassandra/Astyanax Recipe Implementations
- Cassandra and MySQL supported now
- More datastores under development…
- Will allow polyglot “join” across datastores
What’s Next?

- Cassandra with local disk replaces Oracle/MySQL, SAN, Array etc.
- AWS S3 and Google Data Store replace tape for backup/archive
- Cloud prices halve every two years
- Epic Google and AWS price war (spoiler: everyone else dies…)
- How and when will Google compete with AWS SSD options?
- SSD moves to the memory channel, for even lower latency
SO, WHAT IS MEMORY CHANNEL STORAGE?

+ An Architecture (not a single product)
 + Enables Flash Storage to Directly Interface on the Memory Channel
+ Presents as a Block I/O Device
 + Can be Managed just like Existing Storage Devices
+ DDR3 Interface, Standard RDIMM Physical Form Factor
 + Plugs into Standard DIMM Slots
 + Self-contained, No External Connections Required
Any Questions? Presentations by @adrianco

- Battery Ventures http://www.battery.com
- Adrian’s Blog http://perfcap.blogspot.com
- Netflix Slideshare http://slideshare.com/netflix

- Monitorama Opening Keynote Portland OR - May 7th, 2014
- GOTO Chicago Opening Keynote May 20th, 2014
- DevOps Summit at Cloud Expo New York – June 10th, 2014
- Qcon New York – June 11th, 2014
- GOTO Copenhagen/Aarhus – Denmark – Oct 25th, 2014