NAS and iSCSI Technology Overview

Wolfgang Singer, IBM Austria
SNIA Legal Notices

• The material contained in this tutorial is copyrighted by the SNIA.
• Member companies and individuals may use this material in presentations and literature under the following conditions:
 – Any slide or slides used must be reproduced without modification
 – The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
• This presentation is a project of the SNIA Education Committee.
References to other SNIA Tutorials

Check out SNIA Tutorial:
Get Up to Speed in Storage - for Networking Pros
Networking Technologies: Concepts in Internal and External Networked Storage
IP Storage Protocols – iSCSI
Server and Storage Consolidation: IP Storage Help
Metropolitan and Wide Area Storage Networks
Advanced Data Sharing Technologies
Continue Your SNIA Education Experience At SNW

- Attend Hands-On Labs in:
 - Data Classification
 - Key to Service Level Management
 - Data Security and Protection
 - Data Assurance Solutions to Meet Corporate Requirements
 - IP Storage
 - iSCSI, Your IP SAN
 - Storage Management
 - Manage Storage or Be Managed By It
 - Storage Virtualization
 - Increasing Productivity
 - Zero to SAN
 - Fibre Channel Connectivity in No Time

Sessions begin Monday afternoon, April 16 and continue through Wednesday, April 18.
All sessions in Emma/Maggie/Annie, 3rd Floor of the Hyatt Manchester.
Registration at the SNW Registration area
Target Audience

- CIO/CTO
- Consultants
- Systems Architects and Technologists
- Systems Administrators
- Technical Specialists
Abstract

• Marketplace Directions
• General Differences of DAS, SAN, NAS, iSCSI
• Uses of NAS
• NAS Gateway/Head Architecture and Solutions
• iSCSI Status and Future
Marketplace Directions

• **Trends**
 - Storage growth 20-150% per year
 - Lack of skilled personnel

• **Industry Directions**
 - Pool storage for flexibility
 - Intelligent storage to reduce administrative costs
 - Simpler (less skills required)
 - Automation (less effort)
 - Continuous availability
Connectivity for Storing Data

Direct Attached
- SCSI or FCS
- Application Server
- SCSI Protocol

SAN Attached
- Fibre channel
- SAN
- Application Server
- SCSI Protocol

Network Attached Storage
- IPNetwork
- NAS Appliance
- File Protocol (CIFS,NFS,HTTP,FTP,etc)

NAS Gateway
- IPNetwork
- NAS Gateway
- File Protocol (CIFS,NFS,HTTP,FTP,etc)
- SAN
- SCSI Protocol

iSCSI Attached
- IPNetwork
- iSCSI Appliance
- Block IO Application
- iSCSI Protocol
Uses of NAS

1. Server Storage
 - DataCenter IP Infrastructure
 - Shared Pooled Intelligent Storage
 - Business Problem: Cost, skills, downtime for adding storage to servers

2. Client Storage
 - Internet Intranet
 - Shared Pooled Intelligent Storage
 - Business Problem: Backup/Recovery, adding storage, sharing files

3. File Server Appliance
 - CIFS, NFS, HTTP, HTML, XML, RFC 1852, Multi-Media
 - Business Problem: Availability, performance, skills for serving files

"Storage"

"File Server"
What is Network Attached Storage?

Task-optimized, high performance storage appliance directly attached to IP networks, providing “File Serving” to clients and servers in a heterogeneous environment

- Preloaded file system that provides heterogeneous file sharing
 - Windows (CIFS), UNIX (NFS), Web (HTTP), Novell, FTP, Apple FP
- Installation/Configuration of software for Clients/Appliance
 - Requires minimum IT skills to maintain / install
- Scales from GBs to TBs
- Connects to IP network, mainly running over Ethernet
- Management software
 - Manage & Setup from remote location
- Diagnostic software
 - Predictive Failure Analysis, Alerts
- Fault Tolerant Features
 - Dual, Redundant, Hot Swap Components
- Data Protection Technology
 - Data Protection with RAID, & Backup to Disk & Tape

Preloaded
Preconfigured
Pre-Tuned
Pre-Tested
- Gives the combined benefits of NAS and SAN
 - NAS flexibility and ease of use
 - SAN scalability on the IP network

- Increases the reach of Fibre Channel storage devices
 - Extends beyond topology limitations of Fibre channel
 - Allows FC devices to be used on the IP network
 - Connectivity to switches, directors, RAID controllers and disk arrays

- Leverages the value of Fibre Channel investment
 - Reduces access costs to Fibre devices
 - Allows access to underutilized SAN storage
 - Enables heterogeneous file serving on SAN storage devices
NAS Gateway/Head Architecture

- NAS Gateway offers benefits and characteristics of NAS
 - Connects to IP networks
 - Performs as a file server
 - Heterogeneous file sharing
 - Data protection
 - Clustering and failover features

- NAS Gateway is a NAS Appliance with one exception
 - NAS Gateway supports direct attachment to Fibre Channel storage or connection to a storage device across a SAN.
 - NAS Gateways do not have integrated disks for data storage.
NAS Gateway/Head Solution

- Why purchase additional integrated NAS storage when you already have SAN storage

- Capitalize on your storage investment and purchase NAS functionality without the cost of additional NAS storage

- FC has distance limitations
- FC is costly to deploy when compared to cost of departmental or workgroup class servers

Mix of UNIX & NT Servers
Customer Example

Islands of Storage

SAN/NAS Integration

Benefits

- Storage Consolidation
- Cost effective connection to SAN capacity
iSCSI - An Alternative Technology

SCSI over IP Networks
"SAN" with IP fabric

Two industry Approaches:

iSCSI Appliance (Native iSCSI w/ embedded storage)
iSCSI Gateway (Implemented on Fibrechannel Switch or Standalone Appliance, w/o embedded storage)

1. iClient (initiator) code reroutes SCSI commands over IP network
2. iSCSI target code receives SCSI commands from IP network.
3. SCSI commands then either routed directly to embedded storage (iSCSI Appliance) or routed to FC SAN (iSCSI Gateway)
What is iSCSI?

- Enables the transport of Block I/O data over IP Networks
- Operates on top of TCP through encapsulation of SCSI commands in a TCP/IP data stream
- Transport of iSCSI mainly over Ethernet (LAN/Metro); WAN Protocols (PPP, Frame Relay..) possible as well
What is iSCSI? - cont.

- Transport for SCSI Commands
- End to End protocol (between Initiator and Target)
- Can be implemented on Desktops, Laptops and Servers
- Can be implemented with current TCP/IP Stacks
- Can be implemented completely in a HBA
- Can use existing routers/switches without changes
- Transport includes Security as a base concept
 - Initiator and Target (RADIUS) authentication
 - Uses CHAP, SRP, Kerberos, SPKM
 - Enabled for IPSec Encryption, Digests and anti-Replay
- Defines Discovery as a basic element
- Defines process for Remote Boot, as a basic element
- Excellent SAN solution for servers with less throughput demand today
Benefits of Ethernet in Storage

- **Ethernet is a widely deployed and dominant in the TCP/IP area**
 - Not just the Fortune 200 (as is Fibre Channel)
 - Well understood technology
 - Low acquisition cost
 - Unlimited distance
 - Companies do not have to retrain for TCP/IP networks
- **Ethernet is a scalable technology, supporting 10/100/1000/10000 Mbps**
 - 100 Gbps is on the roadmap
- **Allows the creation of a single physical network using familiar standards**
- **VLAN’s maybe used for separating storage traffic from intranet traffic**
- **Brings Interoperability & Ethernet economics to storage**
- **Enables remote data replication and disaster recovery**
- **Faster implementation than with FC**
Initiators and targets can be implemented in H/W or S/W
Session between initiator and target
 – One or more TCP connections per session
 – Login phase begins each connection
Services (e.g., authentication, security) negotiated during login
TCP Protocol provides
 – Delivery of SCSI commands in order
 – Recovery from lost connections
CPU Load: Fibre Channel vs. TCP/IP

CPU load during transfer of 35 MB/s via Fibrechannel

CPU load during transfer of 8 MB/s via TCP/IP
TCP Overhead

• **TCP Processing**
 – Every TCP connection that is part of an iSCSI session has processing overhead potential
 • Connection setup / teardown
 • TCP state machine:
 – Acknowledge, Timeout, Retransmission
 – Window management
 – Congestion Control
 • TCP segmentation
 • IP fragmentation
 • Checksum calculations
 – TOEs help here very much
 • **Gigabit Ethernet and TOE not mandatory requirements for iSCSI; Many servers are still 100 Mbps connected**
 • **Therefore today, iSCSI mainly used in entry level to mid size servers**
 • **High End Servers may require Gigabit Ethernet and TOE**
Improving IP Storage Performance

• **TCP/IP Off-load Engines (TOEs), key to Gigabit wire speed NICs**
 – Required to be competitive with Fibre Channel
 – 1 Gbps links will NOT require full integrated ASIC
 – Different Implementations: TCP/IP or TCP/IP and iSCSI offload;
 Full TCP/IP stack versus TCP/IP Data Path only offload

• **Several NAS’s already implemented TOEs**
 – 1 Gbps iSCSI NICs available
 • Some with ASIC Chips that includes a TOE and MAC
 • Some with ASIC TOE Chip that include iSCSI and MAC
 – These chips can replace FC chips in Storage Controllers
 • Others just use MIPS or PowerPC processors with SW TCP/IP Stacks
 – 10 Gbps NIC’s available
 • Full integrated ASIC Chips required here
iSCSI & TOE Adapters

Software iSCSI

<table>
<thead>
<tr>
<th>Media Interface</th>
<th>Ethernet</th>
<th>Adapter Driver</th>
<th>TCP/IP</th>
<th>iSCSI</th>
</tr>
</thead>
</table>

Software iSCSI with TCP Off-load

<table>
<thead>
<tr>
<th>Media Interface</th>
<th>Ethernet</th>
<th>Adapter Driver</th>
<th>TCP/IP</th>
<th>iSCSI</th>
</tr>
</thead>
</table>

Hardware iSCSI with TCP Off-load

<table>
<thead>
<tr>
<th>Media Interface</th>
<th>Ethernet</th>
<th>Adapter Driver</th>
<th>TCP/IP</th>
<th>iSCSI</th>
</tr>
</thead>
</table>

Host Processing

Adapter Card
iSCSI Deployments

Same HW Configurations as NAS
Workgroup, Departmental, & Enterprise
(Appliances and Gateways)

Independent iSCSI Deployment

Extending the SAN

In Combination with NAS/FC

NAS & iSCSI Technology Overview
© 2007 Storage Networking Industry Association. All Rights Reserved.

24
Application Protocol Support

FCP SAN

- Application
- Block I/O
- FC Network
- SCSI Protocols
- Pooled Storage

NAS

- Application
- File I/O Protocols
- IP Network
- File Protocols (CIFS, NFS...)
- Pooled Storage
- File I/O results in Block I/O

iSCSI SAN

- Application
- Block I/O
- IP Network
- iSCSI Protocols
- Pooled Storage

Application Protocol Support
Transporting Application Data

DAS

- Computer System
 - Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - SCSI Device Driver
 - SCSI Bus Adapter

SAN

- Computer System
 - Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - SCSI Device Driver
 - FC Host Bus Adapter

iSCSI

- Computer System
 - Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - iSCSI layer
 - TCP/IP stack
 - NIC

NAS

- Computer System
 - Application
 - OS File System
 - I/O Redirector
 - NFS / CIFS
 - TCP/IP Stack
 - NIC

NAS Gateway

- NIC
 - TCP/IP Stack
 - File System + LVM
 - Device Driver

SAN

- Block I/O
 - SAN
 - IP Network
 - FC Host Bus Adapter

- NAS Appliance
 - NIC
 - TCP/IP stack
 - iSCSI layer
 - I/O Bus Adapter

- NAS Gateway
 - NIC
 - TCP/IP Stack
 - File System + LVM
 - Device Driver

- SAN

SNIA Standards & Technology Overview
© 2007 Storage Networking Industry Association. All Rights Reserved.
Up and coming Features

• Key Enhancements
 – Additional Ease of Use
 • Automatic Discovery
 • Automatic Configuration
 – National Language Support
 – Enhanced Hardware
 • iSCSI Native Host Bus Adapter
 • iSCSI “features” on high end storage hardware
 • “Dual Dialect” - NAS and iSCSI support on one Box
 • 10 Gb Ethernet for iSCSI Appliance/Gateway
 • iSER – iSCSI Extension to RDMA
Events and Imminent Releases

• First iSCSI Plugfest in July 2001
• Promontory Summit iSCSI demo in September 2001
 – iSCSI data transfer between east- and westcoast
 • Adaptec, Dell, Hitachi, IBM, Intel, Nishan, Qlogic, Quest
• First Generation iSCSI SNICs
 – Q3-Q4 2001
 • Emulex, Platys, Qlogic, Intel
• iSCSI ratified by IETF in February 2003 (RFC 3720)
• Strong increase of iSCSI implementations in 2006
 – Lots of new products, lots of vendors (e.g. Cisco, Sanrad, LeftHand)
 – Many locations will begin to install in many areas
 – 10 Gig products introduced
• 2007 Year of 1 Gbps iSCSI large volume shipments
 – Also 10 Gigabit Ethernet volume Shipments for Campus Backbones and Host NIC’s
Q&A / Feedback

• Please send any questions or comments on this presentation to SNIA: trackstorage@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Wolfgang Singer
David Dale
Ahmad Zamer
John Hufferd
Walter Dey
Elaine Silber