NAS and iSCSI Technology Overview

Wolfgang Singer, IBM Austria
The material contained in this tutorial is copyrighted by the SNIA.

Member companies and individuals may use this material in presentations and literature under the following conditions:
- Any slide or slides used must be reproduced without modification
- The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the Author nor the Presenter is an attorney and nothing in this presentation is intended to be nor should be construed as legal advice or opinion. If you need legal advice or legal opinion please contact an attorney.

The information presented herein represents the Author's personal opinion and current understanding of the issues involved. The Author, the Presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

Marketplace Directions
General Differences of DAS, SAN, NAS, iSCSI
Uses of NAS
NAS Gateway/Head Architecture and Solutions
iSCSI Status and Future
Check out SNIA Tutorial:
Storage Consolidation with IP Storage
How NAS Systems Participate in Data Protection
Running Database Applications on NAS
Target Audience

- CIO/CTO
- Consultants
- Systems Architects and Technologists
- Systems Administrators
- Technical Specialists
Marketplace Directions

• **Trends**
 - Storage growth 20-150% per year (depending on the industry)
 - Lack of skilled personnel

• **Industry Directions**
 - Pool storage for flexibility
 - Intelligent storage to reduce administrative costs
 - Simpler (less skills required)
 - Automation (less effort)
 - Continuous availability
Unified Storage

Multi-Protocol

- NAS
- IP SAN
- FC SAN
- FCoE (in the future)
Connectivity for Storing Data

Direct Attached
- SCSI or FCS
- Application Server
- SCSI Protocol

SAN Attached
- Fibre channel
- Application Server
- SCSI Protocol

Network Attached Storage
- IPNetwork
- Clients & Servers
- File Protocol (CIFS, NFS, HTTP, FTP, etc)
- NAS Appliance

NAS Gateway
- IPNetwork
- Clients & Servers
- File Protocol (CIFS, NFS, HTTP, FTP, etc)
- NAS Gateway
- SCSI Protocol

iSCSI Attached
- IPNetwork
- Block IO Application
- iSCSI Protocol
- iSCSI Appliance

NAS and iSCSI Technology Overview
© 2008 Storage Networking Industry Association. All Rights Reserved.
Uses of NAS

1. Server Storage
 - Data Center IP Infrastructure
 - NAS
 - Shared Pooled Intelligent Storage
 - Business Problem: Cost, skills, downtime for adding storage to servers

2. Client Storage
 - Internet Intranet
 - NAS
 - Shared Pooled Intelligent Storage
 - Business Problem: Backup/Recovery, adding storage, sharing files

3. File Server Appliance
 - Internet Intranet
 - NAS
 - CIFS, NFS, HTTP, HTML, XML, RFC 1852, Multi-Media
 - Business Problem: Availability, performance, skills for serving files

"Storage"

"File Server"
What is Network Attached Storage?

Task-optimized, high performance storage appliance directly attached to IP networks, providing “File Serving” to clients and servers in a heterogeneous environment

- Preloaded file system that provides heterogeneous file sharing
 - Windows (CIFS), UNIX (NFS), Web (HTTP), Novell, FTP, Apple FP

- Installation/Configuration of software for Clients/Appliance
 - Requires minimum IT skills to maintain / install

- Scales from GBs to TBs

- Connects to IP network, mainly running over Ethernet

- Management software
 - Manage & Setup from remote location

- Diagnostic software
 - Predictive Failure Analysis, Alerts

- Fault Tolerant Features
 - Dual, Redundant, Hot Swap Components

- Data Protection Technology
 - Data Protection with RAID, & Backup to Disk & Tape

Preloaded
Preconfigured
Pre-Tuned
Pre-Tested
- Gives the combined benefits of NAS and SAN
 - NAS flexibility and ease of use
 - SAN scalability on the IP network

- Increases the reach of Fibre Channel storage devices
 - Extends beyond topology limitations of Fibre channel
 - Allows FC devices to be used on the IP network
 - Connectivity to switches, directors, RAID controllers and disk arrays

- Leverages the value of Fibre Channel investment
 - Reduces access costs to Fibre devices
 - Allows access to underutilized SAN storage
 - Enables heterogeneous file serving on SAN storage devices
NAS Gateway offers benefits and characteristics of NAS:
- Connects to IP networks
- Performs as a file server
- Heterogeneous file sharing
- Data protection
- Clustering and failover features

NAS Gateway is a NAS Appliance with one exception:
- NAS Gateway supports direct attachment to Fibre Channel storage or connection to a storage device across a SAN.
- NAS Gateways do not have integrated disks for data storage.
Why purchase additional integrated NAS storage when you already have SAN storage

Capitalize on your storage investment and purchase NAS functionality without the cost of additional NAS storage

- FC has distance limitations
- FC is costly to deploy when compared to cost of departmental or workgroup class servers
Customer Example

Islands of Storage

SAN/NAS Integration

Benefits

- Storage Consolidation
- Cost effective connection to SAN capacity
iSCSI - An Alternative Technology

SCSI over IP Networks
"SAN" with IP fabric

Two industry Approaches:

iSCSI Appliance (Native iSCSI w/ embedded storage)
iSCSI Gateway (Implemented on Fibrechannel Switch or Standalone Appliance, w/o embedded storage)

1 iClient (initiator) code reroutes SCSI commands over IP network

2 iSCSI target code receives SCSI commands from IP network.

3 SCSI commands then either routed directly to embedded storage (iSCSI Appliance) or routed to FC SAN (iSCSI Gateway)
What is iSCSI?

- Enables the transport of Block I/O data over IP Networks
- Operates on top of TCP through encapsulation of SCSI commands in a TCP/IP data stream
- Transport of iSCSI mainly over Ethernet (LAN/Metro); WAN Protocols (PPP, Frame Relay..) possible as well
What is iSCSI? - cont.

• Transport for SCSI Commands
• End to End protocol (between Initiator and Target)
• Can be implemented on Desktops, Laptops and Servers
• Can be implemented with current TCP/IP Stacks
• Can be implemented completely in a HBA
• Can use existing routers/switches without changes
• Transport includes Security as a base concept
 • Initiator and Target (RADIUS) authentication
 • Uses CHAP, SRP, Kerberos, SPKM
 • Enabled for IPSec Encryption, Digests and anti-Replay
• Defines Discovery as a basic element
• Defines process for Remote Boot, as a basic element
• Excellent SAN solution for servers with less thruput demand today
Benefits of Ethernet in Storage

- Ethernet and TCP/IP are widely deployed and dominant
 - Not just the Fortune 1000 (as is Fibre Channel)
 - Well understood technology
 - Low acquisition cost
 - Unlimited distance (with TCP/IP)
 - Companies do not have to retrain for TCP/IP networks
- Ethernet is a scalable technology, with 10/100/1000/10000 Mbps
 - 100 Gbps is on the roadmap
- Allows the creation of a single physical network using familiar standards
- VLAN’s maybe used for separating storage traffic from intranet traffic
- Brings Interoperability & Ethernet economics to storage
- Enables remote data replication and disaster recovery
- Faster implementation than with FC
Initiators and targets can be implemented in H/W or S/W

Session between initiator and target
- One or more TCP connections per session
- Login phase begins each connection

Services (e.g., authentication, security) negotiated during login

TCP Protocol provides
- Delivery of SCSI commands in order
- Recovery from lost connections
CPU Load: Fibre Channel vs. TCP/IP

- CPU load during transfer of 35 MB/s via Fibrechannel
- CPU load during transfer of 8 MB/s via TCP/IP
TCP Overhead

- **TCP Processing**
 - Every TCP connection that is part of an iSCSI session has processing overhead potential
 - Connection setup / teardown
 - TCP state machine:
 - Acknowledge, Timeout, Retransmission
 - Window management
 - Congestion Control
 - TCP segmentation
 - IP fragmentation
 - Checksum calculations
 - TOEs help here very much

- **Gigabit Ethernet and TOE not mandatory requirements for iSCSI;**
 - Many servers are still 100 Mbps connected

- **Therefore today, iSCSI mainly used in entry level to mid size servers**

- **High End Servers may require Gigabit Ethernet and TOE**
• TCP/IP Off-load Engines (TOEs), help at Gigabit wire speed NICs
 ‣ Required to be competitive with Fibre Channel
 ‣ 1 Gbps links will NOT require full integrated ASIC
 › Increase in system processor speeds might be sufficient
 ‣ Different Implementations: TCP/IP or TCP/IP and iSCSI offload;
 ‣ Defacto standard software TOE support with “TCP Chimney”

Several NAS’s already implemented TOEs
 ‣ 1 Gbps iSCSI NICs available
 › Some with ASIC Chips that includes a TOE and MAC
 › Some with ASIC TOE Chip that include iSCSI and MAC
 ‣ These chips can replace FC chips in Storage Controllers
 › Others just use MIPS or PowerPC processors with SW TCP/IP Stacks
 ‣ 10 Gbps NIC’s available
 › Full integrated ASIC Chips required here

Use Jumbo Frames ➔ 20-50% performance increase
iSCSI & TOE Adapters

Software iSCSI
- SCSI Port to OS
- iSCSI
- TCP/IP
- Adapter Driver

Software iSCSI with TCP Off-load
- SCSI Port to OS
- iSCSI
- TCP/IP
- Adapter Driver

Hardware iSCSI with TCP Off-load
- SCSI Port to OS
- iSCSI
- TCP/IP
- Adapter Driver

Host Processing

Adapter Card
NAS and iSCSI Technology Overview
© 2008 Storage Networking Industry Association. All Rights Reserved.

iSCSI Deployments

Same HW Configurations as NAS
Workgroup, Departmental, & Enterprise
(Appliances and Gateways)

Independent iSCSI Deployment

Extending the SAN

In Combination with NAS/FC

NAS and iSCSI Technology Overview
© 2008 Storage Networking Industry Association. All Rights Reserved.
Application Protocol Support

FCP SAN

- Application
- Block I/O
- FC Network
 - SCSI Protocols
- Pooled Storage

NAS

- Application
- File I/O Protocols
- IP Network
 - File Protocols (CIFS, NFS...)
- File I/O results in Block I/O
- Pooled Storage

iSCSI SAN

- Application
- Block I/O
- IP Network
 - iSCSI Protocols
- Pooled Storage

NAS and iSCSI Technology Overview
© 2008 Storage Networking Industry Association. All Rights Reserved.
Transporting Application Data

DAS

- Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - SCSI Device Driver
 - SCSI Bus Adapter

SAN

- Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - SCSI Device Driver
 - FC Host Bus Adapter

iSCSI

- Application
 - OS File System
 - Database System
 - LVM
 - Raw Partition
 - iSCSI layer
 - TCP/IP stack
 - NIC

NAS

- Application
 - OS File System
 - I/O Redirector
 - NFS / CIFS
 - TCP/IP Stack
 - NIC

NAS Appliance

- NIC
- TCP/IP Stack
- File System + LVM
- Device Driver

NAS Gateway

- NIC
- TCP/IP Stack
- File System + LVM
- Device Driver

Block I/O

- SAN
- IP Network

NAS and iSCSI Technology Overview
© 2008 Storage Networking Industry Association. All Rights Reserved.
Up and coming Features

• Key Enhancements
 ◦ Additional Ease of Use
 ▶ Automatic Discovery
 ▶ Automatic Configuration
 ◦ National Language Support
 ◦ Enhanced Hardware
 ▶ iSCSI Native Host Bus Adapter
 ▶ iSCSI “features” on high end storage hardware
 ▶ “Dual Dialect” - NAS and iSCSI support on one Box
 ▶ 10 Gb Ethernet for iSCSI Appliance/Gateway
 ▶ iSER – iSCSI Extension to RDMA
Events and Imminent Releases

- **First iSCSI Plugfest in July 2001**
- **Promontory Summit iSCSI demo in September 2001**
 - iSCSI data transfer between east- and westcoast
 - pioneered by 8 companies
- **iSCSI ratified by IETF in February 2003 (RFC 3720)**
- **Strong increase of iSCSI implementations in 2008**
 - Lots of new products (including Unified Storage), lots of vendors
 - Many locations will begin to install in many areas
 - 10 Gigabit products introduced
 - Also 10 Gigabit Ethernet volume Shipments for Campus Backbones and Host NIC’s
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: tracknetworking@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Wolfgang Singer
David Dale
Ahmad Zamer
John Hufferd
Walter Dey
Elaine Silber
Paul Massiglia
Joe White