The material contained in this tutorial is copyrighted by the SNIA.

Member companies and individuals may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced without modification
- The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.
Continuous Available Commodity Storage

- We shall discuss an alternative cost effective means of building a SAN using iSCSI on a TCP/IP network. We propose an architecture for which the main features are that the storage is inexpensive, continuously available, scalable to LAN/WAN, flexible and has high performance.

- The key components of the solution are the Controller and the Optimized IP Storage node which may be built using commodity hardware. These components may be placed together in a single node or in two different nodes giving rise to 2-layer and 3-layer architectures. We also aim to derive a theoretical framework for measuring performances of these architectures.

- This session will appeal to Storage Developers and Managers, in SMI segment, who are entering into the area of IP storage networking.
Storage Architectures

Direct-Attached Storage (DAS)

Network-Attached Storage (NAS)

IP Storage Area Network
DAS, SAN, iSCSI and NAS
iSCSI Layered Model

Transparencyly encapsulates SCSI Command Descriptor Blocks (CDBs)
Research Issues in iSCSI based SAN

Performance

- Speed of Ethernet – 100 MBPS (now 1 GB to 10 GB)
- Speed of PCI bus – 133 MHz (now 800 MHz PCI Express)
- Overhead of TCP/IP protocol
- Overhead of iSCSI protocol

Security

- IPSec
- Challenge Handshake Authentication Protocol (CHAP)/Secure Remote Protocol (SRP)
- Encryption/Authentication
State of the Art

![Graph showing streaming I/O performance for different vendors](image-url)
QOS parameters for IP SAN

❖ **Cost**
 - Commodity hardware such as Ethernet, SATA hard disks and existing Servers/Desktops

❖ **Performance**
 - Caching and Parallelism

❖ **Scalability**
 - Clustering

❖ **Availability**
 - Clustering
An Efficient Architecture

❖ Technology
 ✷ Caching, Parallelism, Distributed Computing and Clustering

❖ Intelligent Controller
 ✷ Block Virtualization
 ✷ Caching
 ✷ Redundant Array of Inexpensive Nodes (RAIN) cluster management software for addition/deletion of nodes in cluster

❖ Lazy Replication
❖ Tiered Storage
❖ Optimized IP Storage Array
Optimized IP Storage Array

❖ iSCSI Optimization
 ♦ Parameter negotiation
 ♦ MaxRecvDataSegmentLength, ImmediateData, InitialR2T, MaxBurstLength, FirstBurstLength, MaxConnections
 ♦ Parallel iSCSI
 ♦ Multiple physical network connections with an algorithm to execute out of order commands in parallel while exploiting operation semantics

❖ OS optimization
 ♦ Tweaking OS Parameters: Jumbo Frame, Checksum offloading to NIC, Zero-Copy in TCP/IP
 ♦ OS kernel Modification: disk and network based processing only
Optimized IP Storage Array

- **Multilevel Caching**
 - Cache at initiator to avoid TCP/IP overheads
 - Cache at target to avoid disk access delays and
 - Cache at NIC card to overcome interconnect bus bottleneck
3 Layer Architecture

Set of IP storage Array i.e. commodity machines each running optimized iSCSI target
Cluster of commodity machines each running optimized iSCSI target and Controller module
Scalability & Availability

- Adding a new optimized storage node leads to:
 - Capacity expansion
 - Performance improvement through Load Balancing
 - Adding controller node in 3-layer architecture further adds to performance.

- Availability = MTBF/(MTBF+MTTR)

- RAIN makes sure that MTTR is very small due to fast switching of processing of a failed node to another functional node in the cluster.
Performance Benchmarks for SAN

❖ Throughput (MB/sec)
 • Number of bytes accessed per second or, the number of I/O operations (transactions) which includes both read and write operations, carried out per second.

❖ Response Time (ms)
 • The response time is the time taken to finish a storage operation i.e. time lag between the submission of a block access request and getting its result back. It includes queuing time and latency as well.
Theoretical Performance

Assumptions

- NVRAM, so read and write in cache only.
- Write back strategy
- Same bandwidth, ‘B’, between all nodes in the cluster
- Same number of sequences for both read and write requests, ‘N’ which is the number of sequences for data transfer as part of iSCSI protocol
Theoretical Performance

\[\text{Response Time} = N \times C + N \times \left[P \times T_{\text{cacheaccess}} + (1-P) \times T_{\text{clusterdataaccess}} \right] + N \times RTT + S/B \]

Where,

- \(C \) is the system dependent time taken for data encapsulation.
- \(T_{\text{cacheaccess}} \) is time to read from cache at controller.
- \(T_{\text{clusterdataaccess}} \) is time to read data of size \(S \) from hard disk.
- \(S \) is the size of data to read or write from network storage.
- \(b_{\text{max}} \) is maximum data that can be received at target/initiator.
- \(RTT \) is the round trip time.
- \(P \) is the probability to find data in cache (Hit ratio).
Theoretical Performance

Response Time = \((S/b_{\text{max}}*(1-P))/C_n\)

\[S/B+\text{THDaccess}/C_n+S/b_{\text{max}}(C+\text{RTT})]+\]

\[S/b_{\text{max}*P*T_{\text{cacheaccess}}}+S/b_{\text{max}}*(C+\text{RTT})+S/B\]

Where,

- \(N\) is the number of sequences for data transfer as part of iSCSI protocol
- \(C\) is the system dependent time taken for data encapsulation.
- \(T_{\text{cacheaccess}}\) is time to read from cache at controller.
- \(\text{THDaccess}\) is time to read data of size \(S\) from hard disk.
- \(\text{RTT}\) is the round trip time delay in the network between any two nodes.
- \(B\) is the bandwidth provided by the underlying TCP/IP network.
- \(C_n\) is the number of nodes in the cluster.
- \(S\) is the size of data to read or write from network storage
- \(b_{\text{max}}\) is maximum data that can be received at target/initiator.
- \(P\) is the probability to find data in cache (Hit ratio).
Theoretical Performance

Size = 2MB

Size = 4MB
Infiniband iSCSI Storage

- Add InfiniBand support to existing iSCSI based product lines
- Leverage InfiniBand’s high Performance
- Leverage iSCSI management tools
Infiniband based iSCSI

- **Data Path – Over InfiniBand Verbs/CMA**
 - High Bandwidth, Low Latency, RDMA

- **Control Path – Using iSCSI headers**
 - Discovery, naming, security, error-recovery, booting, etc.

- **Leverages the wide adoption of iSCSI**
 - OS code and storage products
 - Management tools and standard interfaces
 - Standardization, Testing and Protocol maturity
 - End-user training
InfiniBand based iSCSI

- InfiniBand solutions leverage the iSER (iSCSI RDMA) protocol.

- iSER brings significantly greater performance to iSCSI and leverages the protocol’s existing comprehensive management capabilities, allowing heterogeneous storage environments to utilize a single protocol and management infrastructure.

- iSER over 10 Gbps (SDR) and 20 Gbps (DDR) InfiniBand delivers markedly better performance than Fibre Channel at significantly lower costs.
Strategies for IPSAN

➢ High Performance Computing Environments
➢ Availability – SLA Guarantees by HA Levels
➢ Cost - Total Cost of Ownership (TCO)
➢ Scalability – Virtualization, Clustering
➢ Interoperability
➢ Manageability (Virtualization, Self-Configuring, Self-Optimizing with Workload & Self-Healing …)
➢ Security – IPsec6 vs. CIM based
Related Work in Literature

♦ Literature

♦ Caching

♦ Parallel iSCSI

Check out SNIA Tutorial:
IP Storage, 2006
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: trackstorage@snia.org

Many thanks to the following individuals for their contributions to this tutorial.
- SNIA Education Committee

Rekha Singhal
Zia Saquib

Brandy Barton
Nancy Clay

Rob Peglar