pNFS, parallel storage for grid, virtualization and database computing

Joshua Konkle, Chair NFS SIG
The material contained in this tutorial is copyrighted by the SNIA.

- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

- This presentation is a project of the SNIA Education Committee.

- Neither the Author nor the Presenter is an attorney and nothing in this presentation is intended to be nor should be construed as legal advice or opinion. If you need legal advice or legal opinion please contact an attorney.

- The information presented herein represents the Author's personal opinion and current understanding of the issues involved. The Author, the Presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

pNFS, parallel storage for grid, virtualization and database computing

This session will appeal to Virtual Data Center Managers, Database Server administrators, and those that are seeking a fundamental understanding of pNFS. This session will cover the four key reasons to start working with NFSv4 today. Explain the storage layouts for parallel NFS; NFSv4.1 Files, Blocks and T10 OSD Objects. We’ll conclude the session with use cases for database access, enterprise and desktop virtualization, including deduplication options.
Tutorial Agenda

- Introduction to NFS and NFS Special Interest Group
- NFS v4 – Security, High Availability, Internationalization and Performance (SHIP)
- pNFS – Layout Overview
 - Files based access
 - Block based access
 - Object based access
- pNFS – OpenSource Client Status
- pNFS Use Cases – Virtualization, Database, etc
SNIA’s NFS Special Interest Group

- NFS SIG drives adoption and understanding of pNFS across vendors to constituents
 - Marketing, industry adoption, Open Source updates
- NetApp, EMC, Panasas and Sun founders
 - NetApp and Panasas act as co-chairs
- Deliver Panels/Sessions on NFSv4.1 when possible
 - E.g. SNW Europe in October, Super Computing 2009
- Developing (Q3CY09) pNFS 101 document
 - Scale-out paradigm Enterprise and HPC
Network File System
- Protocol to make data stored on file servers available to any computer on a network
- NFS clients are included in all common Operating Systems, e.g. Linux, Solaris, AIX, Windows etc..
- Application and OSI layers (remote procedure calls)

NFS Server; Inspiration to NAS and appliances
- Commodity Operating Systems have NFS servers
- NAS Appliance – Control, Consistency and Cadence
- Vendors offer commodity hardware, w/ management software
NFSv4 SHIP is sailing

<table>
<thead>
<tr>
<th>Functional</th>
<th>Business Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>ACLs for authorization</td>
<td>Compliance, improved access, storage efficiency</td>
</tr>
<tr>
<td>Kerberos for authentication</td>
<td></td>
</tr>
<tr>
<td>High availability</td>
<td></td>
</tr>
<tr>
<td>Client and server lease management</td>
<td>High Availability, Operations simplicity, cost</td>
</tr>
<tr>
<td>with fail over</td>
<td>containment</td>
</tr>
<tr>
<td>International characters</td>
<td></td>
</tr>
<tr>
<td>Unicode support for utf8 characters</td>
<td>Global file system for multinational organizations</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Multiple read, write, delete</td>
<td>Better network utilization for all NFS clients</td>
</tr>
<tr>
<td>operations per RPC call</td>
<td></td>
</tr>
<tr>
<td>Delegate locks, read and write</td>
<td>Leverage NFS client hardware for better I/O</td>
</tr>
<tr>
<td>procedures to clients</td>
<td></td>
</tr>
</tbody>
</table>

Lower costs and increase productivity with NFSv4
NFSv4 - HA and Performance

- **High Availability via Leased Lock**
 - Client renews lease on server file lock @ n Seconds
 - Client fails, lock is not renewed, server releases lock
 - Server fails, on reboot all files locked for n Seconds
 - Gives clients an n Second grace period to reclaim locks

- **Performance via Delegations**
 - File Delegations allow client workloads for single writer and multiple reader
 - Clients can perform all reads/writes in local client cache
 - Delegations are leased and must be renewed
 - Delegations reduce lease lock renewal traffic
The Evolution of Storage

Market Adoption Cycles

Direct-Attached Storage Networked Storage Future

2000 2010? ?

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
Evolving Requirements

- Economic Trends
 - Cheap and fast computing clusters
 - Cheap and fast network (GigE to 10GigE)

- Performance
 - Exposes single threaded bottlenecks in applications
 - Evolution of computing models
 - Reduced time to market, response time

- Powerful compute systems
 - Analysis begets more data, at exponential rates
 - Competitive edge (IOPS)
NFS – What’s the problem?

- **In-band data access model**
 - Easy to build, Limited in scale
 - Well-defined failure modes
 - Limited load balancing options

- **Results in Limitations**
 - Islands of storage
 - Server and Appliance HW
 - Networking and I/O
Performance, Management and Reliability

- Random I/O and Metadata intensive workloads
 - Memory and CPU are hot spots
 - Load balancing limited to pair of NFS heads
 - Limited to dual-head configuration

- Compute farms are growing larger in size
 - NFS head can handle a 1000+ NFS clients
 - NFS head hardware comparable to client CPU, I/O, Memory
 - NFS head requires more spindles to distribute the I/O

- Reliability and availability are challenging
 - Data striping limited to single head and disks
 - Non-disruptive upgrades affect dual-head configurations
 - Access and load balancing are typically limited to a pair of NFS server heads
What is the Solution?

Market Adoption Cycles

- Direct-Attached Storage
- Networked Storage
- Scale-Out Storage

NFSv4.1 Parallel NFS

2000
2010
2020
NFSv4.1 – Parallel Data Storage

- NFSv4.1 – Three Storage Types
 - Files – NFSv4.1
 - Blocks – SCSI
 - Objects – OSD T10

- Results in Improvements
 - Global Name Space
 - Head and Storage scaling
 - Non disruptive upgrades while maintaining performance
pNFS protocol

- Standardized: NFSv4.1

Storage-access protocol

- Files (NFSv4.1)
- Block (iSCSI, FCP)
- Object (OSD2)

Control protocol

- Not covered by spec; no generally agreed upon characteristic
pNFS Operations

- **LAYOUTGET**
 - Obtains the data server map from the meta-data server

- **LAYOUTCOMMIT**
 - Servers commit the layout and update the meta-data maps

- **LAYOUTRETURN**
 - Returns the layout; Or the new layout, if the data is modified

- **GETDEVICEINFO**
 - Client gets updated information on a data server in the storage cluster

- **GETDEVICELIST**
 - Clients requests the list of all data servers participating in the storage cluster

- **CB_LAYOUT**
 - Server recalls the data layout from a client; if conflicts are detected
Client and Server
- Support files (NFSv4.1)
- Support in progress blocks (SCSI), objects (OSD T10)
- Client consists of generic pNFS client and “plug ins” for “layout drivers”

Predicted timeline:
- Basic NFSv4.1 features 1H2009
- NFSv4.1 pNFS and layout drivers by 2H2009
- Linux distributions shipping supported pNFS in 2010
NFSv4.1 – OpenSource Status

- Two OpenSource Implementations
 - OpenSolaris and Linux

- OpenSolaris Client and Server
 - Support only file-based layout
 - Support for multi-device striping already present (NFSv4.1 + pNFS)
 - “Simple Policy Engine” for policy-driven layouts also in the gate

- Linux Client and Server
 - Support files (NFSv4.1)
 - Support in progress blocks (SCSI), objects (OSD T10)
 - Client consists of generic pNFS client and “plug ins” for “layout drivers”

- Predicted timeline for Linux:
 - Basic NFSv4.1 features 1H2009
 - NFSv4.1 pNFS and layout drivers by 2H2009
 - Linux distributions shipping supported pNFS in 2010
- Client mounts and opens a file on the server
- Servers grants the open and a file stripe map (layout) to the client
- The client can read/write in parallel directly to the NFSv4.1 data servers

Diagram:
- NFSv4.1 Client(s)
- Mount, Open & Get layout
- File Handle
- R/W Request issued in parallel
- Control protocol
- Metadata Server
- Data Servers
pNFS Blocks Access Model

- Client mounts and opens a file on the server.
- Servers grants the open and a block map (layout) to the client.
- Based on the layout obtained (read or write); the client can read/write in parallel directly to the SCSI target's.
pNFS Objects Access Model

- Client mounts and opens Object
- Servers grants the open and an object stripe map and object capabilities (layout) to the client
- Based on the layout obtained (read or write); the client can read/write in parallel directly to the OSD targets
Traditional HPC Use Cases

- Seismic Data Processing / Geosciences' Applications
- Broadcast & Video Production
- High Performance Streaming Video
- Finite Element Analysis for Modeling & Simulation
- HPC for Simulation & Modeling
- Data Intensive Searching for Computational Infrastructures
Original pNFS use case
- 100’s of hosts to storage
- 16+ Cores in future
- Single NFS Datastore
- Multiple-heads across multiple disks
- Trunking
- Directory/File Delegations

Caveat
- Limit on VMs per LUNs
NFSv4.1 – Virtualized Data Center

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
Single NFSv4.1 namespace

Name Space

/

VM
HV1 HV2

DB
Srv1 Srv2 Srv3

HyperVisor Cluster Nodes

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
Single NFSv4.1 datastore

Name Space

/
VM DB
HV1 HV2 Srv1 Srv2 Srv3

HyperVisor Cluster Nodes

HV1 Srv1 Srv2
HV2 Srv3
VM Cluster Datastore

Name Space

Cluster Datastore
Mount Server: /

HyperVisor Cluster Nodes

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
VMs accessing volume w/layout

VMs accessing volume w/layout

Name Space

/VM/DB

HV1 HV2 Srv1 Srv2 Srv3

HyperVisor Cluster Nodes

HV1 Srv1 Srv2

HV2 Srv3

Cluster Datastore
Mount Server:/

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
1. A single connection limits data throughput based on protocol.
2. Trunking expands throughput and can reduce latency by opening multiple sessions to the same file handle/server resource.
 - Host application consumes 10GigE bandwidth.
VM Access using single mount

Name Space

Cluster Datastore
Mount Server:/

HyperVisor Cluster Nodes

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
VM access using pNFS + Trunking

Name Space

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
Delegations available in NFSv4
- Reduce renewals for locks
- Improve R/W performance
- Remove getattr storms

Set NFS Swap File to SSD/Flash I/O Card, single write read/write delegations allow applications to write through changes but keep most data “delegated” on Flash Swap.
NFSv4.1 – Database enhancements

- Use Ethernet and pNFS infrastructure for VM
- Multiple-heads across multiple disks
- Trunking & Delegations

Diagram:
- Name Space
 - / (Root)
 - VM
 - HV1
 - HV2
 - DB
 - Srv1
 - Srv2
 - Srv3
- HyperVisor Cluster Nodes
 - HV1
 - HV2
 - Srv1
 - Srv2
 - Srv3
- Cluster Datastore
- Mount Server: /

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
DB access using pNFS + Trunking

- Multiple-heads across multiple disks
- Trunking enables highest IOPS and lowest latency
Non-disruptive data moves using storage control protocols

Name Space

HyperVisor Cluster Nodes

DB (Replica)

DB
NFSv4.1 – Virtualized Data Center

Name Space

/
 /VM /DB
 /HV1 /HV2 /Srv1 /Srv2 /Srv3

HyperVisor Cluster Nodes

HV1 HV2
 / Srv1 Srv2 Srv3

Cluster Datastore
Mount Server:/

VM

DB

pNFS, parallel storage for grid, virtualization and database computing
© 2009 Storage Networking Industry Association. All Rights Reserved.
Deduplication specification for NFSv4.1

http://tools.ietf.org/id/draft-eisler-nfsv4-pnfs-dedupe-00.txt
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: tracknetworking@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

<table>
<thead>
<tr>
<th>Mike Eisler,</th>
<th>J. Bruce Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian “Beepy” Pawloski</td>
<td>Joe White</td>
</tr>
<tr>
<td>Howard Goldstein</td>
<td>Brent Welch</td>
</tr>
<tr>
<td>David Black</td>
<td>Ken Gibson</td>
</tr>
<tr>
<td>Omer Asad</td>
<td>Sachin Chheda</td>
</tr>
<tr>
<td>Jason Blosil</td>
<td>Piyush Shivam</td>
</tr>
<tr>
<td>Mark Carlson</td>
<td>Sorin Faibash</td>
</tr>
<tr>
<td>Rob Peglar</td>
<td>Andy Adamson</td>
</tr>
<tr>
<td>Dave Hitz</td>
<td>Pranooop Ersani</td>
</tr>
<tr>
<td>Ricardo Labiaga</td>
<td>Dave Noveck</td>
</tr>
</tbody>
</table>
NFSv4.1 – Status and Overview

- 2004 – CMU, NetApp and Panasas draft pNFS problem and requirement statements
- 2005 – CITI, EMC, NetApp and Panasas draft pNFS extensions to NFS
- 2005 – NetApp and Sun demonstrate pNFS at Connectathon
- 2005 – pNFS added to NFSv4.1 draft
- 2006 – 2008 – specification baked
 - Bake/Connect a thons; 29 iterations of NFSv4.1/pNFS spec
- 2008 – NFSv4.1/pNFS reaches IETF Approval (December)
pNFS Standards Status

- NFSv4.1/pNFS were standardized at IETF
 - NFSv4 working group (WG)
- All done except for RFCs:
 - WG last call (DONE)
 - Area Director review (DONE)
 - IETF last call (DONE)
 - IESG approval for publication (DONE)
 - IANA review (TBD)
 - RFC publication (Expected 2009)
- Will consist of several documents:
 - NFSv4.1/pNFS/file layout
 - NFSv4.1 protocol description for IDL (rpcgen) compiler
 - blocks layout
 - objects layout
 - netid specification for transport protocol independence (IPv4, IPv6, RDMA)