WAN Optimization and Thin Client: Complementary or Competitive Application Delivery Methods?

Josh Tseng, Riverbed
WAN Optimization and Thin Client: Complementary or Competitive Application Delivery Methods?

© 2009 Storage Networking Industry Association. All Rights Reserved.

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Agenda Topics

- What is Thin Client computing?
- What is WAN Optimization?
- How WAN optimization complements thin client computing
- Competitive or complementary?
Larry Ellison, March 8, 1996

“The era of the PC is almost over, and the era of the [thin client] is about to begin. The time has come to build a modern pencil.”

Gartner in 2008:

~4 million thin clients in 2008 (out of 108 million PC’s)
~20 million by 2012, 45% CAGR
What is Thin Client?

- Consolidated computing architecture that relies on the central server for all processing activities
 - Focus on conveying input and output between thin client and server
 - Remote user only views screen images
 - Central server performs all processing
 - Also known as “virtual desktop” computing

- Main Thin Client Objectives
 - Cost reduction through server consolidation
 - Reduce consumption of network bandwidth
 - Improved Security
Thin Client over WAN

Only screen pixels and user input sent over the WAN, leading to reduced bandwidth utilization
Successes of Thin Client

- **Server consolidation**
 - All administration takes place at the server

- **Security**
 - All data resides centrally; reduces exposure at remote sites

- **Reduces network bandwidth utilization**
 - Cost savings from using lower-speed WAN links
 - General guideline: 20kbps per end-user
 - Additional 150kbps per user if printing is needed
Thin Client Weaknesses/Disappointments

▷ Poor performance in high-latency WAN environments
 ◦ Mouse-movements and keyboard clicks sensitive to latency
 ◦ Application/end-user keyboard interactions are difficult to predict

▷ Not effective for video applications
 ◦ Real-time compression by thin client system is less effective than original streaming compression
 ◦ No ability to share split/share video streams

▷ Complexity
 ◦ Many applications difficult to integrate

▷ Slow document printing
 ◦ Reduced bandwidth affects ability to obtain hard document copies

▷ Expensive licensing costs
 ◦ Original cost savings objective not realized
What is WAN Optimization?

Solution that facilitates distributed computing by addressing WAN performance problems

- Uses appliance or software agent at each communicating site
- Employs data deduplication and protocol optimization techniques
- Based on client-server computing--processing is distributed to client machines

Addresses both bandwidth and latency issues that affect WAN performance

- Deliver LAN-like performance over the WAN
Addressing Bandwidth Limitations

Disk-based deduplication technology

- Identify redundant data at the byte level, not application (e.g., file) level
- Use disks to store vast dictionaries of byte sequences for long periods of time
- Use symbols to transfer repetitive sequences of byte-level raw data
- Only deduplicated data stored on disk

Check out SNIA Tutorial:
Understanding Data Deduplication
Disk-based Data Reduction

60 to 90 percent data reduction

WAN Optimization and Thin Client: Complementary or Competitive Application Delivery Methods?
© 2009 Storage Networking Industry Association. All Rights Reserved.
Addressing Latency Issues

- Application-specific chattiness mitigation modules
 - CIFS, MAPI, MAPI2003, NFS, SQL, etc…
- Aggressive read-ahead to pre-fetch data
 - Pipeline delivery of all application data
 - Eliminate chattiness over the WAN
Address Application-Level Chattiness

WAN Optimization and Thin Client: Complementary or Competitive Application Delivery Methods?

© 2009 Storage Networking Industry Association. All Rights Reserved.
WAN Optimization objectives

- **LAN-like performance over the WAN**
 - WAN can be used just like a LAN
 - Store and access files directly over the WAN

- **Reduce bandwidth utilization**
 - Eliminate 65% to 95% of network traffic over the WAN

- **Consolidate and centralize all servers into DC**
 - Reduce hardware in branch offices
 - Virtualize servers in the data center
 - Local backup and recovery for all servers in DC
WAN Optimization LAN-like performance

Atlanta to India E1 (2 Mbps) WAN connection (~150ms RT latency)

Bandwidth Utilization Report
for Class /Outbound/FTP

Class Utilization with Peaks

Partition: /Outbound uncommitted-none

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Name</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.120.20.51</td>
<td>10.120.20.51</td>
<td>(none)</td>
</tr>
</tbody>
</table>
Traffic Summary

<table>
<thead>
<tr>
<th>Port</th>
<th>Reduction</th>
<th>LAN</th>
<th>WAN</th>
<th>Traffic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Traffic</td>
<td>--</td>
<td>78.9 GB</td>
<td>12.7 GB</td>
<td>--</td>
</tr>
<tr>
<td>HTTP (80)</td>
<td>(95.07%)</td>
<td>34.3 GB</td>
<td>1.6 GB</td>
<td>43.50%</td>
</tr>
<tr>
<td>JDE (8011)</td>
<td>(89.33%)</td>
<td>13.7 GB</td>
<td>1.4 GB</td>
<td>17.99%</td>
</tr>
<tr>
<td>email (1352)</td>
<td>(57.57%)</td>
<td>9.6 GB</td>
<td>4 GB</td>
<td>12.16%</td>
</tr>
<tr>
<td>DB (1521)</td>
<td>(60.84%)</td>
<td>7.3 GB</td>
<td>2.8 GB</td>
<td>9.34%</td>
</tr>
<tr>
<td>JDE (8003)</td>
<td>(89.47%)</td>
<td>4.7 GB</td>
<td>511.6 MB</td>
<td>6.01%</td>
</tr>
<tr>
<td>JDE (85)</td>
<td>(89.38%)</td>
<td>2.5 GB</td>
<td>279.8 MB</td>
<td>3.26%</td>
</tr>
</tbody>
</table>

% Data reduction on WAN:
- HTTP (80): (95.07%)
- JDE (8011): (89.33%)
- email (1352): (57.57%)
- DB (1521): (60.84%)
- JDE (8003): (89.47%)
- JDE (85): (89.38%)

Before-optimization data volume:
- HTTP (80): 34.3 GB
- JDE (8011): 13.7 GB
- email (1352): 9.6 GB
- DB (1521): 7.3 GB
- JDE (8003): 4.7 GB
- JDE (85): 2.5 GB

After-optimization data volume:
- HTTP (80): 1.6 GB
- JDE (8011): 1.4 GB
- email (1352): 4 GB
- DB (1521): 2.8 GB
- JDE (8003): 511.6 MB
- JDE (85): 279.8 MB

% of overall traffic before optimization:
- HTTP (80): 43.50%
- JDE (8011): 17.99%
- email (1352): 12.16%
- DB (1521): 9.34%
- JDE (8003): 6.01%
- JDE (85): 3.26%

Bandwidth Reduction

- 79GB of data was reduced to 13GB (83% reduced)
- 66GB of data was removed from the International links at Malaysia

© 2009 Storage Networking Industry Association. All Rights Reserved.
WAN Optimization Weaknesses

- **Security**
 - Application data is resident on desktop PC’s
 - Disk drives can be stolen

- **Maintenance of remote PC’s**
 - Desktop operating system patches and updates handled remotely

- **Lack of optimizations for older or rare applications/protocols**
 - NCP, Appletalk, etc…
Benefit Comparison: Thin Client vs. WAN Optimization

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Thin Client</th>
<th>WAN Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidate servers</td>
<td>✔ ✔ ✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Reduce bandwidth usage</td>
<td>✔ ✔ ✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Address WAN Latency</td>
<td>✔ ❌</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Video Applications</td>
<td>✔ ❌</td>
<td>✔ ✔ ✔</td>
</tr>
<tr>
<td>Security</td>
<td>✔ ✔ ✔ ✔</td>
<td>✔ ❌</td>
</tr>
<tr>
<td>Improved end-user experience</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Positive ROI</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
</tbody>
</table>
Where to use WAN Opt vs. Thin Client

- Thin client addresses special security/data handling requirements
 - No data retained in remote locations
 - All data centrally-stored

- WAN Optimization addresses WAN latency
 - Superior LAN-like performance for applications
 - Better “touch” responsiveness for many apps (e.g., CAD)
 - Thin client is unusable for some environments

- Other intangibles
 - Application integration issues
 - Legacy end-user preferences
 - Licensing costs can be expensive for thin client
 - Video applications
WAN Optimization for Thin Client Traffic

- Disable embedded encryption & compression
 - Allows WAN Opt device to apply deduplication to original raw thin client data
 - Data deduplication across multiple thin-client sessions can be effective
- Use memory-only-based data deduplication algorithms
 - Memory-only processing of thin-client data
 - Minimizes processing latency
- Use Enhanced Transports (optional)
 - Minimizes TCP impact of packet loss for thin-client traffic
- Use QoS enforcement
 - Both bandwidth reservation and priority queuing of thin-client traffic
Compression/deduplication of thin-client traffic

Thin Client Data Sent over WAN

- **Baseline**: No Compression of ICA Data
- **Default Compression**
- **WAN Opt**: 1st Transfer (Cold Xfer)
- **WAN Opt**: 2nd Transfer (Warm Xfer)

WAN Opt: 1st Xfer: 21% Better Data Reduction

WAN Opt: 2nd Xfer: 45% Better Data Reduction
Time Response Improvement for RDP Traffic

Assumes congested network environment with bandwidth constraints
Both thin client and WAN optimization are important and provide value

- Some environments need thin client for security/data handling requirements
- WAN optimization provides superior alternative in others

Today, WAN optimization provides an alternative that did not exist 5+ years ago

- Many enterprises removing thin client and using WAN optimization instead
- Others continue to use thin clients for many applications
Complementary:
- Most enterprises have needs for both thin client and WAN optimization
- WAN optimization can improve thin client performance

Competitive:
- WAN optimization is displacing some application environments that formerly used thin client
- WAN optimization should also be considered for any new application environments

Bottom Line: They are both competitive and complementary
Please send any questions or comments on this presentation to SNIA:

trackvirtualizationapplication@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Mark Day
Rob Peglar