pNFS Panel - Parallel Storage for Grid and Enterprise Computing

Joshua Konkle, Technical Evangelist, NetApp
SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

pNFS Panel - Parallel Storage for Grid and Enterprise Computing

This is a complimentary panel to the presentation on pNFS. In this panel you'll have an opportunity to ask detailed questions about pNFS technology, specifications and panel participant plans. Panel will consist of authors, co-authors, editors and co-editors of the NFSv4.1/Parallel NFS IETF Specification approved by IESG in December of 2008.
Panelists

Moderator: Joshua Konkle
- pNFS Files Parallel Layout
- pNFS – Blocks Parallel Layout
 - David Black
 - Ken Gibson
- pNFS – Object Parallel Layout
 - Brent Welch
- pNFS – Files Parallel Layout
 - Mark Carlson
What is the Solution?

Market Adoption Cycles

2000
Direct-Attached Storage

2010
Networked Storage

2020
Scale-Out Storage

NFSv4.1 Parallel NFS
NFSv4.1 – Parallel Data Storage

- **NFSv4.1 – Three Storage Types**
 - Files – NFSv4.1
 - Blocks – SCSI
 - Objects – OSD T10

- **Results in Improvements**
 - Global Name Space
 - Head and Storage scaling
 - Non disruptive upgrades while maintaining performance
pNFS Protocol
- Standardized: NFSv4.1

Storage-access protocol
- Files (NFSv4.1)
- Blocks (FC, iSCSI, FCoE)
- Objects (OSD2)

Control protocol
- Not covered by spec; no generally agreed upon characteristic
Questions – Client Technology

- When will a valid pNFS client be available?
- How does the parallel NFS block layout work?
- What’s an object layout, how do objects compare to blocks/files?
- How do current cluster file systems work with pNFS client and server?
- Are there any working clients and servers available today? If not, then when?
- How is client access to data servers coordinated and controlled?
- Attendee Questions Encouraged…
Questions – Files, Blocks and Objects

- How many layout types can there be?
- How does pNFS make managing a lot of systems easier?
- Can my application control how its data is striped?
- When can we expect to see real pNFS performance, not vendor claims based on older technology?
- How can I use pNFS in an enterprise environment; would it support non-disruptive (NDU) upgrades?

Attendee Questions Encouraged…
Questions – Data Management

- Can I retain data management practices I use today based on Snapshots and Volume replication?
- Can File, Object and Block layouts co-exist in the same storage network?
- Can a client use volumes accessed via each layout concurrently?
- I’m deploying a Unified Ethernet Fabric; how do I secure data access – files, blocks & objects?
- Attendee questions encouraged…
Please send any questions or comments on this presentation to SNIA: trackfilemgmt@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

- SNIA Education Committee

Mike Eisler
Brian “Beepy” Pawloski
Howard Goldstein
David Black
Omer Asad
Jason Blosil
Mark Carlson
Rob Peglar
Dave Hitz
Ricardo Labiaga
Joshua Konkle

J. Bruce Fields
Joe White
Brent Welch
Ken Gibson
Sachin Chheda
Piyush Shivam
Sorin Faibash
Andy Adamson
Pranoop Ersani
Dave Noveck