Apples to Apples, Pears to Pears in SSS performance Benchmarking

Esther Spanjer, SMART Modular
SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

SSS Performance Benchmarking Learning Objectives

- Get a good understanding of the various parameters that influence the performance characteristics of SSDs
- Get a full understanding of the proposed SNIA Performance Measurement Specification
- Provide step-by-step guidance on how to set up a test benchmark that enables comparison among the various SSS devices
Definition of SSS

SSS = Solid State Storage

Traditional hard disk drive

Solid state hard drive
The Performance Landscape

- Bandwidth Performance Specifications
 - Sustained Sequential Reads: Up to 250 MB/s
 - Sustained Sequential Write: Up to 70 MB/s
- Read and Write IOPS specifications (Iometer Queue Depth 32)
 - Random 4 KB Reads: Up to 35 K IOPS
 - Random 4 KB Writes: Up to 3 K IOPS

Like other high-performance, enterprise-class flash drives, the drive is being positioned as an alternative to traditional 15,000-rpm serial-attached SCSI (SAS) hard disk drives. The drive is said to process IOPS (input/output per second) more than 10 times faster than the fastest SAS hard drive, with a sequential read rate of 230 MB/sec. and a sequential write rate of 180 MB/sec.

Table 3: Sustained and Random Read/Write Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Read</td>
<td>150 MBytes/sec</td>
</tr>
<tr>
<td>Burst Write</td>
<td>150 MBytes/sec</td>
</tr>
<tr>
<td>Sustained Read</td>
<td>Up to 15 MBytes/sec</td>
</tr>
<tr>
<td>Sustained Write</td>
<td>Up to 15 MBytes/sec</td>
</tr>
<tr>
<td>Random Read</td>
<td>6100 Input/Output Operations Per Second (IOPS)</td>
</tr>
<tr>
<td>Random Write</td>
<td>400 IOPS</td>
</tr>
<tr>
<td>Random 57% Read, 33% Write</td>
<td>1120 IOPS</td>
</tr>
</tbody>
</table>

4 One megabyte, or MByte, equals 1,048,576 bytes.
5 Random performance values are based on 4 KByte transfers.
Variables influencing Performance

Platform
- Test Hardware (CPU, interface, chipset, etc)
- Software (OS, drivers)

SSS Device Architecture
- Flash geometry, cache, flash management algorithm, etc

Workload
- Write history (Terabytes written, % spares)
- Random, sequential, read/write mix, etc
- Preconditioning (Random, sequential, transfer size, etc)
- Data content
- TRIM command
The 3 dimensions of SSS performance

SSS performance depends on
- Read/Write Mix
- Transfer Size
- Queue Depth (not shown)
Performance States

Performance States for Various SSDs

- N1 (MLC)
- N6 (SLC)
- JS (SLC)
- PSM (MLC)
- PS (PLC)

Normalized IOPS (IOPS/Max IOPS))

FOB
Transition
Steady State (desirable test range)

Time (Minutes)

Normalized IOPS (IOPS/Max IOPS))

0 0.2 0.4 0.6 0.8 1 1.2
0 50 100 150 200 250 300
Workload Dependency - 1

Step 1: HD Tune Pro Sequential Write Test

Step 2: IOMeter Random Write Test

Step 3: HD Tune Pro Sequential Write Test

SSD Mfg A
Workload dependency - 2

Step 1: HD Tune Pro Sequential Write Test

Step 2: IOMeter Random Write Test

Step 3: HD Tune Pro Sequential Write Test

SSD Mfg B
Dependency on data content
Dependency on data content
Benchmark Suites

<table>
<thead>
<tr>
<th>Test Suite</th>
<th>Commercial/Client SSD</th>
<th>Enterprise SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMark</td>
<td>HDD Score, OS and application loading timing, user simulation (surfing web, windows media player, etc)</td>
<td>√</td>
</tr>
<tr>
<td>SysMark</td>
<td>System-level test. Measures performance based on average response time, gives score (0-250)</td>
<td></td>
</tr>
<tr>
<td>IOMeter</td>
<td>Sequential/Random performance, workload simulation</td>
<td>√</td>
</tr>
<tr>
<td>HD Tach/H2benchw</td>
<td>Performance stability, Sequential/Burst performance, Access Time</td>
<td>√</td>
</tr>
<tr>
<td>HD Tune</td>
<td>Performance stability, Sequential/Burst performance, Access Time</td>
<td></td>
</tr>
<tr>
<td>Everest</td>
<td>Random Access Time (Read/Write)</td>
<td>√</td>
</tr>
<tr>
<td>VDBench</td>
<td>Workload generator, performance on DAS and NAS</td>
<td>√</td>
</tr>
</tbody>
</table>

Type of preconditioning and order of benchmarks can influence results.
The Need for Industry Standardization!

- SNIA Technical Working Group (TWG) created in early 2009 to define SSS Performance Specifications for a suite of tests and test procedures to enable comparative testing and reporting of Solid State Storage (SSS) performance.

- Specification
- Agnostic – Does not favor any one technology
- Relevant – Meaningful to end users
- Repeatable – Easy comparison between devices
- Practical – Complete with reasonable time and effort
- Accessible – Open specification, 3rd party validation
Scope of SSS Performance Spec

- Setup and Methodology
 - Purge
 - Preconditioning
 - Test Parameters

- Workloads (synthetic)
 - Client – IOPS, Throughput, Latency
 - Enterprise – IOPS, Throughput, Latency

- Reporting
 - Show convergence to steady state
 - Show performance results during steady state

- Performance Test Platform in development by SSSI Tech Dev Group (2H10)
Status of SSS Performance Spec

- V0.x available for public review/comment
 - www.snia.....

- Your Feedback is crucial!
 - Do we test the right things? Do we need others?
 - Are the reports useful?
 - Are the procedures clear?
 - Does this truly give us apples-to-apples performance comparison?

- Performance Test Platform
 - Working in SSSI; please join us
Performance Benchmark Steps

1. Prepare the Device
 - Purge/Secure erase → put SSS back into “original” state

2. Precondition the Device
 - Write data 2x capacity → bring device to known state

3. Steady State Testing
 - Run Test Loop up until steady state is achieved
 - Performance stays within ± 10% margin in last 5 test loops

4. Test Report
 - Show convergence to steady state
 - Show 3D test results
Convergence to Steady State

Steady State reached if performance swing is within 10% margin

SSD A
Steady State

SSD B
Steady State

SSD C
(Steady State???)

SSD D
(Steady State???)

Normalized IOPS (IOPS/Max(IOPS))

0 0.2 0.4 0.6 0.8 1 1.2

0 50 100 150 200 250 300

Time (Minutes)
Indicates steady state performance
- Various Block Size
- Various Read/Write mixes
Other Standardization Initiatives

- **SSSI Group of SNIA**
 - Technical Work Group (TWG) → Performance Benchmark Spec
 - Tech Dev Group → Performance Test Platform

- **JEDEC 64.8**
 - Specification for SSD endurance measurement

- **SSDA**
 - Testing of reliability (power cycling, data retention, endurance, etc) and OS compatibility (Windows 7)
Summary

- SSS Performance is dependent on many variables
- Comparing vendors is not trivial \(\rightarrow \) industry standard required
- SNIA Performance Specs allows apples to apples comparison
 - Spec for review at http://www.snia.org/forums/sssi
 - Send your feedback to ssstwg@snia.org

- GET INVOLVED!!
Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: tracksolidstate@snia.org

Many thanks to the following individuals for their contributions to this tutorial.
- SNIA Education Committee

David Landsman
Easen Ho
Eden Kim
Neal Ekker
Dan Le