GREEN STORAGE PRODUCTS: Efficiency with ENERGY STAR & Beyond

Patrick Stanko
Oracle Tape Development, Oracle

Carlos Pratt
IBM Technical Support Marketing and Sales
The material contained in this tutorial is copyrighted by the SNIA.

Member companies and individuals may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced without modification
- The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the Author nor the Presenter is an attorney and nothing in this presentation is intended to be nor should be construed as legal advice or opinion. If you need legal advice or legal opinion please contact an attorney.

The information presented herein represents the Author's personal opinion and current understanding of the issues involved. The Author, the Presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

GREEN STORAGE PRODUCTS: Efficiency with ENERGY STAR & Beyond

This tutorial will cover storage-specific topics related to energy-efficiency and outline the current state of the industry. We will discuss a range of technologies that are currently considered “green storage” and the components of modern storage systems that impact energy consumption. We will discuss potential metrics for measuring, managing and designing for power in storage systems. We will also outline ongoing efforts by the EPA ENERGY STAR® program and in the SNIA Green Storage Technical Work Group (TWG) to standardize metrics for measuring storage systems.
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
- Storage SNIA Taxonomy update
- Current status of
 - SNIA Green TWG
 - EPA
 - SNIA
 - Green Efforts
 - Emerald Program (Quick introduction)
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
Background and Green Storage

Background
- Revisit the basics of storage systems

Green Storage
- What Impacts the power consumption?
 - Opportunities to make storage green(er)
- What factors should be considered?
- What do these results mean?
- What in the industry that may help your green storage effort
 - Emerald
 - SPC
 - The Green Grid
Background
Basic Anatomy of a Disk Storage System and its use

Switches
(sometimes optional)

Disks
(Spin or Solid State)
Diverse technologies
(SAS, FC, SATA)

Power supplies,
Batteries & fans
(may or may not be redundant)

Controller’s
(may or may not be redundant)

Disks
(Spin or Solid State)
Diverse technologies
(SAS, FC, SATA)

Users and Apps

Other:
Software (firmware & microcode)

Hardware Design

Environment
What impacts power consumption

- **Storage capacity / usage efficiency**
 - increasing data → larger capacity → more disks
 - redundant copies → magnify capacity needs
 - variability in usage and utilization → inefficient allocation of space
 - What is valuable data? What is the retention policy?

- **Data transfer rate / access speed**
 - high I/O bandwidth → higher rotational speed; striping across many drives
 - low access times → faster actuators; higher rotational speeds; caches
 - How fast and immediate must data be available? (time-to-data)

- **Data integrity**
 - 25% of “digital universe” is unique, but 75% are replicas / duplicates
 - partly to ensure data integrity and survivability; partly wasteful

- **Data availability / system reliability**
 - RAID uses extra drives, plus redundant power supplies, fans, controllers,
 - How valuable is data? How likely are failures? How fast must data be available?
Opportunities to make storage green(er)

- **Environment**
 - Higher system tolerance to high/lower temperatures and humidity
 - In line with cold and hot aisles designs on new data centers

- **Improve usage efficiency**
 - De-duplication and compression
 - Thin provisioning

- **Minimize energy consumption**
 - Improved component designs – high-efficiency power supplies, advanced & flexible storage devices
 - Variants of MAID – idle and spin-down

- **New technologies**
 - Solid state storage
 - Alternative + hybrid system designs (opportunity to rethink)
SNIA recommended metrics

- **Capacity metric (ready-idle)**
 - Relates the power of the system to its total storage raw capacity. It is reported as GB/watt (or TB/watt)
 - Power required to store and protect the data

- **Workload metric (Active)**
 - Relates the power of the system to the maximum possible IOPS generated by a specific random stress load. It is reported as IOPS/watt
 - Power required to randomly supply data to and from a host

- **Bandwidth metric (Active)**
 - Relates the power drawn by the system to the maximum possible MBPS generated by a specific sequential stress load. It is reported as MBPS/watt
 - Power required to stream data to and from a host
What to measure and evaluate – Power example

- Ideally, systems consume minimum power in all modes
 - Example system consumes **significant power in idle (80% of max)**
- % of time in Idle versus Active depends on storage type, application and workloads; available optimizations will vary
 - Power itself is only one part of the story it must be reflected as a metric as indicated on the previous charts.
- Power consumed is not linearly proportional to workload (indicates potential room for improvement)
What to measure and evaluate – What to consider

- **Recommended Analysis tools**
 - Power meters recommended on the Emerald Specification
 - Temperature recording tools recommended on the Emerald Specification
 - SNIA will also recognize the SPEC recommended measurement devices as indicated on their web site: www.spec.org/power/docs/SPECpower-Device_List.html

- If the storage system reports power and temperature consider logging it to compare with the analyzers for accuracy comparison.

- Both total and sub-system power consumed are valuable info.
Depending on the systems and their usage their energy usage may be evaluated according to:

- Is the system idle time at least 12 hours or more a day?
 - You should be interested in the power required to store the data
 - **capacity metric (GB/Watt)** may be your best indicator on how energy efficient your system is
 - The larger this number is the less watts are used to energize the total storage of your system
What to measure and evaluate – What it means? (2/2)

- Depending on the systems and their usage their energy usage may be evaluated according to:
 - For systems running more than 12 hours a day
 - You should be interested in the Power to move the data onto and off the storage system
 - Is your load predominantly sequential?
 - Bandwidth metric (MBS/Watt) will help you to determine how effective is your power use. The larger this number is, the more data the system is pushing per watt
 - Is your load predominantly random?
 - Workload metric (IOPS/Watt) will help you determine how effective is your power use. The larger this number is the system is provides more operations per watt.
 - Independently on how long the system is idle it is always good to know what is your capacity per watt ratio
Many industry wide efforts can help you become more green

 Emerald

- A complete set of tests intended to measure power use ratios based on all previously mentioned metrics.

 SPC

- Storage Performance Council mainly oriented to disk subsystems was the first industry association to add power to their benchmark

 The Green Grid

- Working on a usage metric.
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
- Storage SNIA Taxonomy update
Need a taxonomy (product classification) to enable fair comparisons among similar storage products
- e.g. for motor vehicles – motorcycles, cars, trucks

Similar green metrics may apply to all product categories, but different values establish best-in-class

Unique considerations apply to special categories
- e.g. amphibious cars, skid steer loaders, tanks

Clear taxonomy will simplify comparisons and aid regulatory efforts
Taxonomy – Categories

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Online</td>
</tr>
<tr>
<td>Access Pattern</td>
<td>Random/Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>t < 80 ms</td>
</tr>
<tr>
<td>User Accessible Data</td>
<td>Required</td>
</tr>
</tbody>
</table>

Six categories, covering most storage industry products
Taxonomy – Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Online</th>
<th>Near Online</th>
<th>Removable Library</th>
<th>Virtual Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer/Component</td>
<td>Online 1</td>
<td>Near Online 1</td>
<td>Removable 1</td>
<td>Virtual 1</td>
</tr>
<tr>
<td>Low-end</td>
<td>Online 2</td>
<td>Near Online 2</td>
<td>Removable 2</td>
<td>Virtual 2</td>
</tr>
<tr>
<td>Mid-range</td>
<td>Online 3</td>
<td>Near Online 3</td>
<td>Removable 3</td>
<td>Virtual 3</td>
</tr>
<tr>
<td></td>
<td>Online 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-end</td>
<td>Online 5</td>
<td>Near Online 5</td>
<td>Removable 5</td>
<td>Virtual 5</td>
</tr>
<tr>
<td>Mainframe</td>
<td>Online 6</td>
<td>Near Online 6</td>
<td>Removable 6</td>
<td>Virtual 6</td>
</tr>
</tbody>
</table>

- 23 total “buckets” covering the breadth of the industry
Most common storage systems

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Online 1</th>
<th>Online 2</th>
<th>Online 3</th>
<th>Online 4</th>
<th>Online 5</th>
<th>Online 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Pattern</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>t < 80 ms</td>
</tr>
<tr>
<td>User-Accessible Data</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Consumer/Component</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Not specified</td>
<td>Connected to single or multiple hosts</td>
<td>Network-connected</td>
<td>Network-connected</td>
<td>Network-connected</td>
<td>Network-connected</td>
</tr>
<tr>
<td>Maximum Configuration</td>
<td>≥1</td>
<td>≥ 4</td>
<td>≥ 12</td>
<td>> 100</td>
<td>>400</td>
<td>>400</td>
</tr>
<tr>
<td>Integrated Storage Controller</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Storage Protection</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>No SPOF</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Non-Disruptive Serviceability</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>FBA/CKD Support</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
</tr>
</tbody>
</table>
Taxonomy – Near Online

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Near Online 1</th>
<th>Near Online 2</th>
<th>Near Online 3</th>
<th>Near Online 4</th>
<th>Near Online 5</th>
<th>Near Online 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Pattern</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
<td>Random/Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>t < 80 ms</td>
</tr>
<tr>
<td>User-Accessible Data</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Consumer/Component</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Not specified</td>
<td>Connected to single or multiple hosts</td>
<td>Network-connected</td>
<td>Network-connected</td>
<td>Network-connected</td>
<td>Network-connected</td>
</tr>
<tr>
<td>Maximum Configuration</td>
<td>≥1</td>
<td>≥ 4</td>
<td>≥ 12</td>
<td>> 100</td>
<td>>400</td>
<td>>400</td>
</tr>
<tr>
<td>Integrated Storage Controller</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Storage Protection</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>No SPOF</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Non-Disruptive Serviceability</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>FBA/CKD Support</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
</tr>
</tbody>
</table>
Taxonomy – Removable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Removable 1</th>
<th>Removable 2</th>
<th>Removable 3</th>
<th>Removable 4</th>
<th>Removable 5</th>
<th>Removable 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Pattern</td>
<td>Sequential</td>
<td>Sequential</td>
<td>Sequential</td>
<td>Sequential</td>
<td>Sequential</td>
<td>Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>80ms < t < 5m</td>
</tr>
<tr>
<td>User-Accessible Data</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Maximum Drive Count</td>
<td>Not specified</td>
<td>4</td>
<td>≥ 5</td>
<td>≥ 25</td>
<td>≥ 25</td>
<td>≥ 25</td>
</tr>
<tr>
<td>Robotics</td>
<td>Prohibited</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>No SPOF</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
</tr>
<tr>
<td>Non-disruptive Serviceability</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
</tr>
</tbody>
</table>
Taxonomy – Virtual

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual1</td>
</tr>
<tr>
<td>Access Pattern</td>
<td>Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>t < 80 ms</td>
</tr>
<tr>
<td>User-accessible Data</td>
<td>Required</td>
</tr>
<tr>
<td>Maximum Configuration</td>
<td>12</td>
</tr>
<tr>
<td>Storage Protection</td>
<td>Optional</td>
</tr>
<tr>
<td>No SPOF</td>
<td>Optional</td>
</tr>
<tr>
<td>Non-Disruptive Serviceability</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Taxonomy – (Adjunct) & Interconnect

- **Adjunct and Interconnect left to be defined**

<table>
<thead>
<tr>
<th>Adjunct Product</th>
<th>Interconnect Element</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
- Storage SNIA Taxonomy update
- Current status of
 - SNIA GreenTWG
SNIA Green TWG Status

▶ Release of new measurement specification
 - SNIA Emerald Power Efficiency Measurement Specification
 - Updated to idle measurement specification
 - Added the active measurements listed before in this tutorial

▶ Support of the Emerald program
 - White papers
 - Tutorials
 - Training
Storage Power – Idle

Average Power

\[PA_i(T) = \frac{\sum W_s}{n} \]

Where:
- \(PA_i(T) \) is the AVERAGE POWER during test or test phase \(i \), taken over a time interval of \(T \) seconds;
- \(W_s \) is power in watts measured at each sampling interval \(s \) taken during the time interval \(T \);
- \(n \) is the number of samples gathered by the power meter during the time interval \(T \);
- \(T = n \times S \).

Idle Metric

Power Efficiency, Ready Idle

\[EP_{RI} = \frac{C_R}{PA_{RI}(7200)} \]

Where:
- \(EP_{RI} \) is the POWER EFFICIENCY metric for the READY IDLE TEST;
- \(C_R \) is the RAW CAPACITY of the SUT (see 4.2.20);
- \(PA_{RI}(7200) \) is the AVERAGE POWER over the 2-hour MEASUREMENT INTERVAL for the READY IDLE TEST.
Many variations in workloads
Many variations in system configuration
Takes us into the realm of benchmarking
Desired Metric – “Productivity”

Many possible definitions – must balance simplicity against applicability

- “typical workload”, with levels

- “four corners”, maximum performance, maximum power

- The Green Grid Productivity Proxy Proposals
 example – Proxy #4 – bits/kilowatt-hour

Green Storage Products: Efficiency with ENERGY STAR, SNIA Emerald Program
© 2011 Storage Networking Industry Association. All Rights Reserved.
Active Metric

T=1800

<table>
<thead>
<tr>
<th>IO Profile</th>
<th>IO Size (KiB)</th>
<th>Read/Write Percentage</th>
<th>IO Intensity</th>
<th>Transfer Alignment (KiB)</th>
<th>Access Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Workload 1 (i=MW1)</td>
<td>8</td>
<td>70/30</td>
<td>100</td>
<td>8</td>
<td>Random</td>
</tr>
<tr>
<td>Mixed Workload 2 (i=MW2)</td>
<td>8</td>
<td>70/30</td>
<td>25</td>
<td>8</td>
<td>Random</td>
</tr>
<tr>
<td>Random Write (i=RW)</td>
<td>8</td>
<td>0/100</td>
<td>100</td>
<td>8</td>
<td>Random</td>
</tr>
<tr>
<td>Random Read (i=RR)</td>
<td>8</td>
<td>100/0</td>
<td>100</td>
<td>8</td>
<td>Random</td>
</tr>
<tr>
<td>Sequential Write (i=SW)</td>
<td>256</td>
<td>0/100</td>
<td>100</td>
<td>256</td>
<td>Sequential</td>
</tr>
<tr>
<td>Sequential Read (i=SR)</td>
<td>256</td>
<td>100/0</td>
<td>100</td>
<td>256</td>
<td>Sequential</td>
</tr>
</tbody>
</table>

Periodic Power Efficiency

Where:

\[
EPP_i(T) = \frac{O_i(T)}{PA_i(T)}
\]

- \(EPP_i(T)\) is the PERIODIC POWER EFFICIENCY during test or test phase \(i\), taken over a time interval of \(T\) seconds;
- \(O_i(T)\) is the OPERATIONS RATE during test or test phase \(i\), taken over the same time interval of \(T\) seconds;
- \(PA_i(T)\) is the AVERAGE POWER during test or test phase \(i\), taken over the same time interval of \(T\) seconds.
Complications

- Max power ≠ Max performance

Single disk drive power profile

Storage Modeling for Power Estimation

"Storage Modeling for Power Estimation", Miriam Allalouf, Yury Arbitman, Michael Factor, Ronen I. Kat, Kalman Meth, and Dalit Naor; IBM Haifa Research Labs; manuscript; March 2009

The Next Frontier for Power/Performance Benchmarking: Energy Efficiency of Storage Subsystems

Klaus-Dieter Lange

Hewlett-Packard Company, 11445 Compaq Center Dr. W, Houston, TX-77070, USA
E-Mail: Lange@hp.com

Abstract. The increasing concern of energy usage in datacenters has drastically changed how the IT industry evaluates servers. The energy conscious selection of storage subsystems is the next logical step. This paper first quantifies the possible energy savings of utilizing modern storage subsystems by identifying inherent energy characteristics of next generation disk I/O subsystems. Additionally, the power consumptions of a variety of workload patterns is demonstrated.

Keywords: SPEC, Benchmark, Power, Energy, Performance, Server, Storage, Datacenter.

1 Introduction

Today's challenge for datacenters is their high energy consumption [1]. The demand for efficient real estate in datacenters has moved to more power efficient datacenters. This increasing concern of energy usage in datacenters has drastically changed how the IT industry evaluates servers. In response, the Standard Performance Evaluation

IBM Haifa Research Labs

ABSTRACT

Power consumption is a major issue in today's datacenters. Storage typically comprises a significant percentage of datacenter power. Thus, understanding, managing, and reducing storage power consumption is an essential aspect of any efforts that address the total power consumption of datacenters.
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
- Storage SNIA Taxonomy update
- Current status of
 - SNIA Green TWG
 - EPA
<table>
<thead>
<tr>
<th>Date</th>
<th>Document</th>
<th>Effective Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2009</td>
<td>Stakeholder Letter</td>
<td>TBD</td>
<td>2</td>
</tr>
<tr>
<td>June 2009</td>
<td>Framework Document</td>
<td>March 2010</td>
<td>12</td>
</tr>
<tr>
<td>20 July 2009</td>
<td>1st Stakeholder Meeting</td>
<td>March 2010</td>
<td>--</td>
</tr>
<tr>
<td>15 October 2009</td>
<td>Test Procedure Meeting</td>
<td>TBD</td>
<td>--</td>
</tr>
<tr>
<td>2 February 2010</td>
<td>2nd Stakeholder Meeting</td>
<td>TBD</td>
<td>--</td>
</tr>
<tr>
<td>Jan/Feb/March 2010</td>
<td>1st Round Data Collection</td>
<td>TBD</td>
<td>--</td>
</tr>
<tr>
<td>9 April 2010</td>
<td>Draft 1</td>
<td>TBD</td>
<td>18</td>
</tr>
<tr>
<td>20 July 2010</td>
<td>3rd Stakeholder Meeting</td>
<td>TBD</td>
<td>--</td>
</tr>
<tr>
<td>April 2011</td>
<td>Supplemental Data Collection</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>July 2011</td>
<td>Stakeholder Meeting</td>
<td>July 18</td>
<td></td>
</tr>
<tr>
<td>October 2011</td>
<td>Stakeholder Meeting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“This is one of the most complex areas we have tackled to date” – Andrew Fanara, Team Leader, EPA ENERGY STAR Product Specifications, July 2009 in San Jose
Observations at Stakeholder Meetings

🎨 EPA ENERGY STAR

- Open and willing to listen
- Learning the technical and business details
- Collaboration with industry is a key goal (while meeting the EPA needs and mission)

💡 Audience

- Wide cross-industry participation – vendors & suppliers
- SPC, The Green Grid, Wikibon, PG&E, Climate Savers
- Some end-user participation both via phone and in person
Goals for Data Center Storage

• Encourage widespread adoption of energy efficient hardware and software strategies,
• Provide purchasers with the means to identify the most energy efficient enterprise storage solutions for their specific end-use application, and
• Provide tools and information to designers and managers looking to improve the efficiency of data center operations.
Litmus Test

• There are numerous product features, functions, and data management strategies that enable energy savings in data center storage.

• There is only one end result that matters: The ability to do more useful work, while consuming fewer resources, in a verifiable and quantifiable manner.
Agenda

- Background and Green Storage
 - Revisit what is a basic storage unit
 - What influences green storage
- Storage SNIA Taxonomy update
- Current status of
 - SNIA Green TWG
 - EPA
 - SNIA
 - Green Efforts
 - Emerald Program (Quick introduction)
SNIA Green Efforts

♦ SNIA Green Storage Initiative (GSI) and SNIA Green Storage Technical Work Group (TWG)
 - on-going efforts to develop data-driven green standards & metrics
 - power measurements at multi-vendor “unplugged” fests
 - alliances with other active green organizations
 - (The Green Grid, 80PLUS, Climate Savers, DMTF, SPEC, SPC)
 - collaboration with EPA on the ENERGY STAR program

♦ Whitepapers / workshops
 - three tutorials at SNW; online tutorials available (www.snia.org/education/tutorials)
 - white papers from GSI
The SNIA Emerald™ Program provides a public accessible repository of storage system power usage and efficiency measurement data. The measurement data is generated through the use of well-defined and proven testing procedures prescribed in the SNIA Emerald™ Energy Measurement Specification. The Emerald Program repository includes downloadable test data reports for each vendor opting to participate in the SNIA Emerald™ Program. The report includes information related to system power including system configuration details such as storage device types, RAS features and their configuration, and power supply types.

The program is open to the industry at large, including non-members of SNIA.

The measurement data quantifies a storage system power usage for several types of workloads.

The measurement data can help IT professionals make storage platform selections as part of an overall Green IT and Sustainability objective.

The SNIA Emerald™ Program is can be accessed at www.sniaemerald.com

- Access the repository of vendor submitted test measurement results
- Submit test measurement results
- Obtain a copy of the SNIA Emerald™ Energy Measurement specification

Visit the SNIA Booth at SNW to learn more.
Summary

▷ “Green is good” – for multiple reasons
 ◆ a great engineering problem – doing more with less
 ◆ saves money – great investment payback
 ◆ helps save the planet – significant leverage

▷ Get involved with SNIA Green efforts
 ◆ weekly discussions, regular face-to-face & data sharing (TWG)
 › Get a power meter and try the measurement spec on your own systems (!)
 ◆ education and promotion (GSI / SNIA Emerald)
 ◆ promote these industry-wide efforts within your company

▷ Learn about wider green technology and opportunities
 ◆ online resources; workshops by SNIA, EPA, The Green Grid

▷ Share your experience / knowledge
References

- SNIA Green Storage Initiative – www.snia.org
- SNIA Emerald - www.sniaemerald.com
- The Green Grid – www.greengrid.org
- EPA ENERGY STAR™ (Data Center Storage – www.energystar.gov/index.cfm?c=manuf.ecs.enterprise_storage
- Power calculators at various vendor sites
Thank you for your attention!

Please send any questions or comments on this presentation to SNIA: tracktutorials@snia.org

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Erik Ridel
Carlos Pratt
Patrick Stanko
Patrick Chu
Matthew Brisse
David Reinsel
Edgar St.Pierre
Alan Yoder
Wayne Adams
SW Worth
Herb Tanzer

SNIA Green Storage Initiative members
SNIA Green Storage TWG members