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ABSTRACT: This white paper discusses approaches for securing 
persistent memory (PM); particularly considering unique characteristics of 
PM.  This work includes a threat model and potential responses to threats. 
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USAGE 
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations 
and other business entities to use this document for internal use only (including internal copying, distribution, and 
display) provided that: 
 

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and,  

 
2. Any document, printed or electronic, in which material from this document (or any portion hereof) is 

reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting 
permission for its reuse. 

 
Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this 
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly 
reserved to SNIA. 
Permission to use this document for purposes other than those enumerated above may be requested by e-mailing 
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of 
the purpose, nature, and scope of the requested use. 
 
All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the 
following license: 
 

BSD 3-Clause Software License 
 
Copyright (c) 2018, The Storage Networking Industry Association. 
 
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 
following conditions are met: 
 
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following 
disclaimer. 
 
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution. 
 
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may be 
used to endorse or promote products derived from this software without specific prior written permission. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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DISCLAIMER 

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of 
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability 
and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance, or use of this specification. 

Suggestions for revisions should be directed to http://www.snia.org/feedback/. 

Copyright © 2018 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their 
respective owners. 
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1 Scope and relationship to NVM Programming Model 
 
This white paper discusses approaches for securing persistent memory (PM); 
particularly considering unique characteristics of PM.  This work includes a threat 
model, potential responses to threats and recommended security requirements for PM. 
 
Modern IT is generally segregated into private and public cloud infrastructure.  For 
simplicity in this document we will treat traditional private infrastructure and private 
cloud together.  PM can appear in both public and private cloud deployments.  Hybrid 
cloud is not treated separately here as it includes both public and private use cases 
depending on the infrastructure in use by particular applications.  While most threats to 
PM security are common across public and private cloud, there are a few notable 
distinctions. 
 
Public cloud infrastructure is maintained and administered by cloud providers and 
shared by many independent customers.  Security measures that may not be necessary 
in private cloud environments may be essential to protect each customer’s data from all 
other customers, and from the operators of the cloud data center itself.  Customers 
depend on cloud datacenter security measures to make it easier for them to trust the 
cloud.  Unfortunately this dependency is difficult for a customer to validate and may not 
always be fulfilled.  Security concerns may drive customers towards private cloud 
infrastructure even in cases where public cloud is more cost effective. 
 
Private cloud infrastructure deployments generally support fewer consumers than public 
clouds.  This can enable private clouds to secure infrastructure in ways that are not as 
feasible in larger scale public cloud use cases.  Additional security can be valuable even 
through private cloud consumers are generally different parts of the same corporation. 

2 Multi-Tenancy models 
The threat model and requirements developed within this document extend into the 
context of a multi-tenant public cloud data center.  In this section, public and private 
cloud multi-tenancy are explored separately, although solutions to security requirements 
may cross over between the two. 

2.1 Public Cloud Datacenter Multi-Tenancy 
 
There is always more than one party involved in cloud computing or storage.  Multiple 
customers are sharing infrastructure, which is itself managed by cloud providers. 
Threats originate from all parties, including the provider and physical infrastructure itself.  
Figure 1 shows one of many customers using a cloud datacenter. 
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Figure 1 – Cloud datacenter model 

The security principal here is the cloud datacenter customer whose data is being stored 
and manipulated within the cloud datacenter.  A given customer can at best trust a 
subset of the infrastructure (hardware and software) involved in this model.  Trusted 
environments are illustrated in green while untrusted environments are red.  The 
security infrastructure that enables the customer to trust part of the cloud datacenter is 
illustrated in yellow.  Customers always have some infrastructure of their own in order to 
access the resources of the cloud.  Customers must institute security practices such as 
physical security as well as user and administrator authentication (e.g. passwords) and 
authorization (e.g. permissions) within their own environment.  Most importantly to this 
model, customers operate or have access to a trusted secure key repository and 
distribution infrastructure.  Customer trusted key management is the basis for 
maintaining trust outside of the customer’s own infrastructure. 
 
In general, cloud datacenter infrastructure is not trusted by customers.  To compensate, 
cloud datacenters must provide isolated containers or virtual machines (VMs) that 
enable customers to become tenants (temporary residents) of the cloud datacenter.  To 
the extent that customer data outlives the isolated container or VM, the cloud datacenter 
must also provide durable storage capacity.  The contents of both the isolated container 
and the storage should only be accessed using keys that originate from the customer’s 
secure key management facility.    
 
Customers become tenants of a cloud datacenter through creation of a contract and 
establishment of identity. Customers authenticate to the cloud datacenter, which 
provides for their use of keys to access datacenter resources.  The tenant identity 
allows the cloud datacenter to manage additional permissions granted to the customer.  
Keys are never communicated in the clear outside of a trusted environment.  They are 
themselves encrypted using key encryption keys.  The basis for key based 
authentication in servers and storage devices is generally secured using embedded 
components such as Trusted Platform Modules.  Secure key communication and 
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storage using Key Encryption Keys and Trusted Compute Modules are standard 
practice. 
 
Interaction between customers and cloud datacenters should be encrypted using keys 
that, once again, originate in customer key management infrastructure. 
 
The cloud datacenter operator is responsible for ensuring isolation of the execution 
contexts and stored data within the cloud datacenter, secured by customer provided 
keys, including scenarios where storage capacity is reused by a series of tenants.  In 
addition the cloud datacenter operator must insure that no data can be accessed after 
hardware leaves the datacenter for reuse, recycling or repair. 
 
In many cases the customer shown in Figure 1 is an intermediary running software 
services in turn for their own customers.  The customer to the left might, for example, 
consume software services from the customer in the middle which are in turn hosted on 
cloud datacenter infrastructure.  The customer of the service remains responsible for 
managing keys for its own security which propagate through a chain of trust through the 
service provider to the cloud infrastructure.  Although this pattern may be common it is 
layered atop fundamental storage protection principle so it is not considered any further 
in this paper. 

2.2 Scaling Multi-Tenancy in Storage 
 
Public Cloud datacenters have many tenants that may consume storage capacity.  The 
number of tenants may range from hundreds to millions.  This is magnified by the 
multiple storage containers (volume, file or object sets) which each customer requires, 
keyed to these individual customers.  At this scale, software infrastructure is required to 
create, delete and secure the containers.  Storage solutions have provisions for multi-
tenancy they do not come close to the scaling to the number of tenants required by 
public cloud data centers.  For this reason, the multi-tenancy features of storage 
hardware are more applicable to smaller scale deployments such as private cloud.  
Figure 2 depicts high level implementation examples of two multi-tenant storage 
approaches reflecting this dichotomy of scale.  
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Figure 2 – Scalable Multi-Tenancy 

Both of the approaches shown here assume that storage and/or PM devices have a 
multi-tenant protection capability, for example secure access and secure erase that can 
handle a limited number of tenants.  Cloud datacenters use the upper approach in 
which large groups of tenants (shown in the per-tenant data column) get secure access 
to storage using software such as a file system that manages permissions that are 
keyed to individual customers.  These tenants obtain storage space dynamically 
through the normal operation of the file system (or similar) which causes each partition 
of storage to contain data from many tenants (the brown boxes in the Storage Partitions 
column).  Storage or PM multi-tenancy features can still be used but they applies to 
many tenants at once, subject to the layout imposed by the file system (or similar). 
 
The lower part of Figure 2 is more applicable to smaller scale deployments such as 
private clouds that may still need to protect data consumers from each other.  In this 
approach, constraints must be applied to the mapping of tenant data to partitions in 
order to assure that no partition contains more than one tenant’s data.  The number of 
tenants that can be accommodated by a group of disk or PM devices may be limited by 
either capacity, or by the number of tenants supported by each device. 
 
If statistics for a private cloud datacenter include tenant data size and physical device 
capacity then the maximum number of tenants that will fit on a device can be 
determined.  The actual number of tenants the device might encounter must also 
account for the layout of tenants across devices.  As a generalization, many layouts 
spread a tenant’s data across some number of devices.  Whenever that occurs there 
must, at a minimum, be a separate key for the part of a tenant’s data that exists on a 
given device.  That way if that tenant is removed, all of its data can be removed from all 
devices without affecting any other tenant. 
 
To derive a rule of thumb, let DataDevicesPerGroup be the maximum number of 
devices that can store any part of a given tenant’s data given the layout of the data 
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across devices.  Based on that layout characteristic, if the intent is to always have 
capacity, and not supported device tenant count, be the limiting factor, then the 
following must be true. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝑎𝑎 > 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ �
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷

𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷
� 

 
This rule of thumb does not account for redundancy, which is layout specific.  For many 
common layouts the additional devices added to provide capacity for redundancy must 
accommodate the same number of tenants as would have been the case for the 
devices in a similar non-redundant layout.  Therefore DataDevicesPerGroup can often 
be calculated as the number of devices needed to provide the usable capacity of a 
group rather than total physical capacity of the group. 
 
If the average tenant capacity is too large to fit across DataDevicesPerGroup, i.e. 
 

𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷 > 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷 
 
then the DeviceTenants calculation above can still serve as an upper bound on the 
number of device tenants required.  Tighter upper bounds may exist depending again 
on the layout.  Also under this condition, additional tenants per device above the upper 
bound may reduce capacity lost to fragmentation. 

In some cases only a subset of the keys are active at a given time, so they can be 
cached so as to avoid consuming premium hardware resources all the time. 

 

3 Use Cases 
 
Since the purpose of this document is to highlight gaps in security implementations 
related to PM, it is important to start with the tried and true practices that will continue to 
be needed.  All of these are still required in some form.  Many do not need to be 
modified for use with PM. 

3.1 Storage Protection 
 
In general, security enforcement involves authentication and authorization of a principal 
(data consumer such as a cloud data center customer) to access data.   There are two 
common practices for these. 

• Establish identity through an authentication challenge, then succeed with a permission check 
that indicates whether an access request (e.g. read, write) for specific data or groups of data is 
allowed.  The authentication challenge may involve a password and/or additional functionality 
such as smart key hardware or secure conveyance of credentials from a prior authentication.  
Permissions are managed by administrators and users who have security management rights for 
specific data. 
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• Establish identity through an authentication challenge in order to obtain a key or keys that 
enable encryption, decryption or other actions on specific data or groups of data.  If encryption 
and decryption keys do not match then any data accessed is unintelligible.  Keys may also be 
used provide a basis for validation of permissions.  For public cloud storage API’s it is common to 
use a certificate (i.e. X.509) for web based authentication and authorization 

Authorization may be role based, meaning that principals may be associated with roles 
they are allowed to take on such as data owner, administrator, etc.  Roles imply sets of 
actions that the principal is enabled to perform.  As a result permissions may be granted 
based in part on role as a way of simplifying security management.  See section 4  for 
an enumeration of the roles that are considered in this document. 
 
In many cases an authentication challenge establishes a root of trust (identity and/or 
key possession) that confers permissions over a protracted period of interaction such as 
a login session.  In such cases additional measures are taken to insure that the root of 
trust is still valid after any event that may cause uncertainty as to whether the principal 
may have changed.  Typically events such as resets or session timeouts terminate roots 
of trust and trigger re-authentication. 
 
If customer controlled physical security is assured and software is trusted to correctly 
enforce permissions at all times, encryption is not necessary.  Under these conditions, 
correct enforcement of permissions is sufficient.  Unfortunately these conditions are 
never upheld in public cloud environments. In public cloud and other less controlled 
environments, data travels through domains where physical security is not assured, or if 
software is not trusted to correctly enforce permissions.  In such environments, 
encryption is the preferred way to maintain data security. 
 
Depending on availability of processing power and time, encryption can be broken 
through guesswork and/or reverse engineering of keys.  This motivates key rotation 
based on time intervals that place acceptable bounds on the time available to break 
encryption and on the duration of security violations that may result.  Key rotation is a 
very common IT practice. 
 
Key rotation for encrypted data storage would be very expensive as all data would need 
to be re-written with every key rotation.  Self-encrypting HDD’s and SSD’s avoid this by 
encrypting data using one or more device keys that never leave the storage device.  
The device controller maintains a second key (or set of keys) that is used to ascertain a 
given principal’s right to access part or all of the data in the device.  Once a root of trust 
is established the controller allows access to the associated data using the secret 
key(s).  The second set of keys can then be rotated without changing the secret keys.  
This method is used in the Trusted Computing Group Self Encrypting Drive (TCG SED) 
standard which is generally viewed as sufficient for protecting storage devices when 
physical security is not assured. 
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These storage security practices are essentially the same whether encryption occurs 
within a self-encrypting device or in hardware or software on the way to the device.  
Several caveats should be noted. 

• Secure key management techniques must be applied including the use of Key Encryption Keys as 
described in 3.2. 

• Any retention of unencrypted data that is in the process of being encrypted or scheduled for 
same must guaranteed to be unrecoverable after any event that could compromise security 
such as power loss, reset or component removal. 

Several additional software practices interact with storage security although they are not 
strictly part of it. 

• Applications may encrypt data before it enters storage hardware or software.  Depending on key 
ownership and strength, additional storage encryption may or may not be warranted.  Although 
it is not in the scope of this document it should be noted that early encryption may interfere 
with value added storage functions such as compression and deduplication. 

• Copy on write functionality may be used to create storage or memory images based on a single 
original.  These must be secured in the same manner as complete images based on the identity 
of the principal consuming the (partial) copy.  Such images may also be rendered immutable to 
provide further protection against tampering. 

 

Some processor architectures now have encryption features built in (e.g. AMD SEV 
extensions and Intel SGX).  This enables memory encryption without self-encrypting 
NVDIMMs.  These processor specific features apply to PM in the same way that they 
apply to DRAM.Key management – key storage and distribution 
 
Industrial strength security is generally based on a secure key store accessed using 
protocols such as KMIP.  The secure key store must be trusted by the customer of a 
cloud data center as described in section 2.1.  The secure key store is generally 
managed by the customer’s security officer to minimize opportunity for insider attacks 
from other administrators.  Any transmission of keys must be encrypted using a key 
encryption key which is known only to software or hardware that is also trusted by the 
customer.  All of these practices are already common. 

3.2 Security audits of implementations 
 
Certain pieces of software must be designed and implemented using well-known 
techniques to insure that security is enforced.  These include the secure key manager, 
storage device software that manages encryption, software involved in the use and 
management of key encryption keys, and software tasked with the isolation of tenants.  
Generally such software is inspected during and after development by experts in secure 
software practices using checklists of pitfalls and exposures that must be addressed.  
For the most critical components, certification such as FIPS may be required. 
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3.3 Origin and Delivery Protection 
 
For software to be trusted, some assurance that it has not been tampered with is 
required. This is typically achieved using digital cryptographic signing which provides for 
authenticated integrity.  The same applies to broadly published data.  In addition, as 
software and data elements are packaged together for distribution and installation, there 
must be some guarantee that the package contains only the digital cryptographically 
signed components that were intended by a trusted originator.   
 
A related common practice, the use of a Message Authentication Code (MAC), is often 
applied to any code or data that is broadly shared among readers but can only be 
updated with special permission.  The MAC can be validated by software in the reader’s 
path without special permission, however a writer must use a secret to generate a new 
valid MAC.  This provides additional protection against unauthorized writing with 
minimal burden on readers. 
 
These common practices also apply to PM security. 
 

3.4 Memory Protection 
 
Current memory protection practices apply to PM.  In particular, Memory Management 
Units (MMU’s) enforce memory protection using both virtual address space mapping 
and physical memory access protection.  Details of both of these levels are MMU 
Implementation specific, and are applied on OS specific ways. 

4 Role Definitions 
 
The threat model in this document acknowledges several roles of actors who might 
pose threats. 

• Customer – The data owner whose security and privacy are being protected. 
• Tenant – An inhabitant of shared infrastructure.  Customers become tenants by establishing 

accounts with cloud data centers, thus establishing an identity and access to certain 
resources/services within the cloud. 

• Administrator – A person tasked to maintain software and hardware infrastructure.  Cloud data 
centers have administrators who are trusted to keep the data center provisioned, operating and 
accessible to tenants.  Customers may have administrators who are trusted to configure and 
maintain applications and data running in a cloud datacenter.  Neither of these administrators 
trust each other, and neither is generally allowed access to any data.  

• Security Officer – A person trusted by a customer to configure and maintain users, roles and 
permissions related to data access. 

• Developer – A creator or maintainer of hardware or software. 
• Deliverer/Repairer – A person who handles components moving into or out of a data-center. 
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5 Threat Model  
 
The following table enumerates threats to privacy or confidentality and threats to 
integrity or availability.  
 
Attack Type Means of 

Attack 
Attacker Applicable 

existing 
approach 

New issues 
with PM 

Privacy/ 
Confidentiality 

Physical 
manipulation 

Administrator, 
Repair 

Encryption at 
rest. 

New NVDIMM 
Authentication 
behavior 
(JEDEC) 

Software 
access across 
tenant 
boundary 

Tenant, 
Administrator 

Traditional 
authorization, 
authentication.  
Separation of 
roles. 
Memory 
protection. 
 

NVDIMM does 
not know 
principal 
identity during 
Ld/St/Mov 

Access to 
deleted data 

Tenant, 
Administrator 

Secure erasure 
(physical or 
cryptographic) 
during deletion. 

More rapid free 
space 
recycling in 
memory than 
disk. 

Access by 
admin/support 

Administrator Role 
separation, 
Authentication/ 
Authorization 

 

Local HW 
attacks (e.g. 
DMA) 

Tenant, 
Administrator, 
Developer 

Memory 
Protection  

 

Remote 
access threats 
(e.g. RDMA) 

Tenant, 
Administrator, 
Developer 

RDMA security, 
memory region 
access 
protection 
enforcement 

 

Malware Developer, 
Delivery, 
Repair, 
Administrator 

Digital signing, 
Virus protection 
to exclude or 
expunge 
malware 

 

Data integrity 
or accessibility 
to owner 

Data modified/ 
Destroyed 
through privacy 
exposure 

All of the above privacy attacks have variations 
that involve modification, destruction and/or 
removal of data. 
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Software 
Defects 

Developer, 
Tenant, 
Administrator 

Traditional 
authorization, 
authentication.  
Separation of 
roles. 
Memory 
protection. 

Increased 
scope of 
damage due to 
mismanaged 
pointers, 
memory 
resources. 

Availability – 
denial of 
service  

Tenant, 
Developer 

Per-tenant QoS 
  
 

Potential for 
rapid disruption 
with limited 
detection 
window?  

Table 1 – Threat Model 

The following sections contain analysis of each of the threats in Table 1. 
 
 

6 Threats to privacy or confidentiality 
6.1 Physical Manipulation 

This is the top priority threat to address for PM given the pre-existing security measures 
that are already in place for other PM related threats.  One solution is a self-encrypting 
NVDIMM, which is precisely analogous to self-encrypting disks.  There is one notable 
difference that stems from the fact that today’s NVDIMMs are attached to DDR4.  
During reads or writes to memory NVDIMMs have no way of identifying the principal 
initiating the request.  Disk drives, on the other hand, receive notification of an initiator 
with every read or write.  Therefore NVDIMMs cannot check per-tenant access 
permissions during read or write.  Self-encrypting NVDIMMs can still be used to ensure 
that data is unreadable after physical removal, and for cryptographic erasure of all of a 
tenant’s data. 

As of the release of this document JEDEC is working on the control path to establish a 
root of trust prior to making data contained within a self-encrypting NVDIMM component 
accessible to applications. Self-encrypting NVDIMMs are required to provide some 
means of securely establishing a root of trust.  Existing techniques such as this 
described in section 3.1 should apply.  Since this is a strong analog to disk encryption 
use case, existing TCG or NIST standards could be applied. 

In addition, an NVDIMM communication channel that is logically isolated from data 
access may be needed.  Examples include additional IO control actions through an 
existing NVDIMM control plane, or an un-encrypted volatile memory region used only 
for root of trust establishment.  Additional system specific firmware and software 
requirements are also likely in order to enable access to NVDIMM contents early 
enough in system bootstrap to fulfill all purposes of RAM. 
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There are various situations wherein the root of trust must be re-established in order to 
avoid man in the middle or principal substitution attacks.  Example situations include 
power on, reset, hot plug and loss of heartbeat events. Systems containing self-
encrypting NVDIMMs are required to ensure that data access is withdrawn and re-
authentication required whenever such an event has occurred. In some cases this may 
be the responsibility of the NVDIMM itself. 

Self-encrypting NVDIMMs are required to ensure that no unencrypted data is accessible 
under any circumstances unless a valid authorization is in place.  This includes 
scenarios where unencrypted data is retained in volatile memory and the NVDIMM is 
removed from its socket even if the NVDIMM remains operational under auxiliary power. 

While encryption of data at rest is a priority, self-encrypting NVDIMMs are not 
necessarily a requirement if only encrypted data (encrypted by something outside the 
DIMM) is stored.  Encryption deployment use cases generally fall into three groups. 

• Self-encrypting NVDIMMs – This is the deployment use case described above.  
Encryption of data at rest requirements can be met using single or multiple keys 
within NVDIMMs provided that all data is encrypted.  A single key is sufficient to 
address threats that involve physical removal. 

• Encryption in the storage stack or CPU data path – This deployment use case 
has similar characteristics to self-encrypting NVDIMMs with the additional 
requirement that data cannot bypass the encrypting component on the way to 
NVDIMM. 

• Encryption by a tenant or application – In this deployment use case, data is 
encrypted before it reaches any PM specific component (storage stack software, 
memory controller or NVDIMM).  To the extent that all data on the NVDIMM is 
encrypted by upper level software, encryption of data at rest requirements can be 
met. 

6.2 Software access across tenant boundaries 

This section addresses scenarios where different tenants or customers represent 
threats to each other. 

6.2.1 Real time access protection of active data 

 
The DDR4 interface and its predecessors do not enable NVDIMMs to sufficiently protect 
against cross-tenant access because no form of principal (tenant) identity is 
communicated to the NVDIMM.  Memory address ranges can be encrypted with 
different keys within NVDIMMs, however once a tenant has established a root of trust 
with the NVDIMM there is nothing within the NVDIMM to keep other tenants from 
accessing the protected memory address range. 
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Therefore all protection against prohibited real time access to PM is based on CPU data 
paths or software.  The type of protection in the CPU data path available today 
comprises authorization enforcement based on virtual memory systems, not encryption. 
Virtual memory is already in use pervasively with DRAM and is naturally extended to 
PM.  Virtual memory implementations ensure that a tenant executing outside of the 
kernel (e.g. in a thread, process, container or virtual machine) can only access memory 
regions that have been authorized by the kernel.  Authorization comprises the creation 
of page table entries that map tenant accessible virtual memory addresses to physical 
memory accesses.  Only memory regions thus authorized by the kernel can be 
accessed by a given tenant. 
 
Properly administered, this protection is sufficient to inhibit real time cross-tenant 
access to active PM, however code running in kernel space must be trusted.  There is 
no protection against rogue kernel code using any physical address to violate privacy. 
 
6.2.2 Access protection of inactive data 

 
Since virtual memory is the primary means of protecting active data, removal of the 
virtual address space of a tenant can be viewed as the point where data transitions from 
active to inactive.  It is crucial that this transition occur when a tenant program 
completes or otherwise terminates.  While this existing requirement is already met by 
secure operating systems, it is important that other software such as PM file systems 
also meet this requirement. 
 
Permission enforcement or encryption of data in storage stacks can also protect against 
prohibited access to inactive data.  For example, storage stack components such as file 
systems can recognize large numbers of tenants as described in section 2.2, and use 
authorization or cryptographic methods of enforcement that do not depend on virtual 
memory. 
 
As with active data, the kernel must be trusted. 
 

6.3 Threats against deleted data 
 
In most systems deletion of data is part of a process that occurs in several stages.  In 
general the process achieves the following results: 

• Remove the owner’s logical path to the data 
• Render the data inaccessible to all software 
• Make the storage space occupied by the data available for reuse 

 
6.3.1 Meaning of deletion 

Deletion is the removal of a data owner’s logical path to the data.  This is generally 
accomplished by removing the data from a namespace such as a file system, at which 
point the data does not exist by that name any more.  Any other paths to the data must 
be secured before and after deletion.  Deletion does not, in itself, imply that the data no 
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longer exists somewhere in a storage device, nor does it imply that the space previously 
occupied by the data is immediately free. 
 
6.3.2 Multiple Keys for secure erasure 

In order to prevent all threats the data must be erased before the space becomes free.  
This ensures that deleted data from one principal’s point of view is never inadvertently 
or improperly made visible to another.  One approach to this is to over-write the data.  
The time taken to over-write that data increases with the amount of data and the 
number of copies.  It further assumes that all of the copies can be located. 
 
Another approach is secure erasure through invalidation or destruction of the keys to 
encrypted data.  This is quicker and more secure than over-writing.  Still, all copies of 
the key must be invalidated however this is arguably easier than over-writing all copies 
of data.  Key invalidation is a well understood problem in the secure key management 
field. While it is not without issues (e.g. copies of keys) customers who require high 
security must have policies in place to address them to a satisfactory level.  Secure 
erasure of storage can leverage these policies directly. 

One approach to secure erasure is the use of multiple keys to isolate tenants from each 
other.  There may be limitations on the number of keys supported in self-encrypting 
NVDIMMs that lead to special considerations described in section 2.2.  In some cases 
only a subset of the keys are active at a given time, so they can be cached in the 
hardware and do not need to be there all the time. 

When multiple keys are involved, trusted key management is a likely requirement such 
as that shown in Figure 1.  Such solutions also require secure communication of keys 
using Key Encryption Keys. 

 

6.3.3 Use of the Sanitize command in NVMe, SCSI and SATA 

Most disk command sets now have a Sanitize command the removes data from a range 
of blocks in the drive.  Sanitize can also be used as an indication that the consumer of 
the range has freed the space in the upper layer which allows storage devices or 
systems capable of thin provisioning to deallocate space.  For storage stacks and upper 
level access methods (i.e. file systems) that can use media aligned sanitization, these 
functions correspond to the last two steps described above.  Additional information on 
sanitization is available here. 
 
6.3.4 Privacy threats due to loss of re-initialization during reboot or reset 

Another privacy threat can arise of volatile data is allowed to survive a reboot or restart 
and appear within un-initialized data structures thereafter.  This can happen with DRAM 
if power is not removed from the system, or if volatile data is being stored in PM.  In 
either case elimination of this threat requires explicit re-initialization of all memory 
holding data that is intended to be volatile.  This must occur between the event that 

http://www.snia.org/sites/default/files/technical_work/SecurityTWG/SNIA-Sanitization-TechWhitepaper.R2.pdf


Persistent Memory Hardware Threat Model v1 SNIA Technical White Paper 18 
July 26, 2018 

 

triggered the reboot or reset and the first opportunity for any unauthorized software to 
access the memory.  It is the responsibility of system firmware and kernel software to 
avoid this threat by insuring that volatile data is not accessible after reboot or restart. 

6.4 Administrative threats 
Referring back to the administrator role definition in section 4, administrators maintain 
software and hardware infrastructure.  Administrative threats through physical 
manipulation are covered in section 6.1.  Cloud data centers have administrators who 
are trusted to keep the data center provisioned, operating and accessible to tenants.  
Customers may have administrators who are trusted to configure and maintain 
applications and data running in a cloud datacenter.  Neither of these administrators 
trust each other, and neither is generally allowed access to any data. 
 
The main requirement related to administration is not new or specific to PM, namely that 
cloud datacenter and customer administrators must be segregated.  They must 
authenticate separately and have different authorization specific to their roles.  
Administrative roles may be further refined to separate application management from 
security management but this practice is once again not specific to PM. 
 
In addition, methods of protecting PM access such as those described in section 6.2 
must be securely tied into the administrative chain of trust that establishes access 
permissions.  While there are many ways to model this, the memory mapped file 
paradigm provides a straightforward model in which access permissions are built into 
the file system and applied to PM when files are memory mapped.  This requires that 
the granularity of memory protection supports the granularity of permissions. 
 

6.5 Threats exposed through runtime H/W e.g. DMA 
In today’s systems private user data is virtually always stored in RAM for processing.  
Runtime hardware such as DMA and other data transformation engines such as 
encryption or compression already manipulate private user data as it moves in and out 
of storage or between memory regions.  In today’s systems physical addresses are 
often used in DMA control blocks so the protection from the virtual memory address 
space described in section 6.2 is missing.  As a result the avoidance of these threats 
relies on a trusted kernel being the only code that can generate DMA or other 
accelerator control blocks.  The trusted kernel must ensure that permissions at source 
and destination are aligned, specifically with respect to the authorized principal. 
 
An alternative to strictly physical access is emerging in interconnects such as open 
CAPI which enables PCIe attached peripherals (GPU’s and possibly HBA’s or NICs) to 
use virtual addresses.  This allows virtual address enabled security to be applied 
provided that the control path that communicated those virtual addresses to the 
peripheral is also secure.  Once again, security of the control path must be established 
by a trusted kernel even if memory access is self-policing.  Still, PM itself does not drive 
any new privacy related requirements into runtime hardware other than those described 
in section 6.2. 
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6.6 Remote access threats (e.g. RDMA) 
This is the first use case where PM meets networking.  For that reason we need to 
separate the following concerns. 

• Security of data traversing networks 
• Security within the endpoints 

 
Both of these are addressed by current practices that are applicable to PM. Encryption 
is the only effective approach to security of data traversing networks if trust and physical 
security is not assured throughout the physical network.  Since private user data already 
traverses networks including those with RDMA the need for encryption is not new or 
specific to PM. 
 
Security within endpoints is addressed in full featured RDMA implementations because 
virtual address space windows in each endpoint are mapped to a corresponding RDMA 
address space and securely associated through the use of RDMA Steering Tag 
properties.  Assuming, as always, that the source and communication of RDMA 
connection information is trusted this allows the virtual memory protection techniques of 
section 6.2 to be applied to RDMA access.  The result is more robust than local DMA 
using physical addressing. 

6.7 Malware threats 
 
Up to this point we have been dealing with eliminating threats as they occur in real time.  
With malware threats we are trying to detect nascent threats before they become real 
time threats. This is generally done by scanning files or memory for signatures known to 
indicate malware.  Let’s explore PM impact on Malware detection case by case. 
 
2 virus scanner modes: scanning in background or intercepting in the storage stack. 
 
 
Use Case Current Approach Issues if scanner 

uses file open, read 
with PM 

Issues if scanner 
uses mmapped PM 

Background scan of 
closed files 

Open and read files None None 

Background scan of 
open files 

Skip or Open file 
and read shared.  
Must tolerate 
modification 

Compatibility with 
active mmapped 
files 
Consistency of 
scanner view during 
modification 

Consistency of 
scanner view during 
modification 

Scan files during 
“Open” 

Scan data on disk 
or in memory before 
open completes. 

None None 

Scan files during 
ingest/download 

Open file and read 
from disk after 

None assuming 
download involves 

None assuming 
download involves 
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download but before 
file can be re-
opened 

file api activity 
(close, re-open, 
unmap) after ingest 

file api activity 
(close, re-open, 
unmap) after ingest 
– issue is with 
ingest access 
method and scan 
trigger not scan 
access method 

Scan memory Scan physical RAM 
specifically including 
non-running 
applications 

Memory not 
accessible via file 
protocol 

NA – current 
memory scan must 
already gain direct 
access to memory 

Quarantine non-
mmapped file 

Remove from visible 
namespace, refuse 
to open, mmap 

NA NA 

Quarantine 
mmapped file 

Stop process if 
needed, unmap in 
addition to above, 
use memory scan 
quarantine 
approach 

NA NA 

Table 2 – Virus Protection 

Now let’s look for potential new requirements that surfaced above. 
 
6.7.1 File open vs. mmap 

The distinction between open and closed files is thought to be important to virus 
scanning because closed files are not changing and can be scanned using normal file 
system access.  With PM there is an additional question as to whether data regions to 
be scanned are mmapped by an application.  As described in section 6.2 there are 
several situations where regions of closed files may be mmapped. 

• Applications and storage stacks sometimes close files after mmapping regions in 
them.  The memory mapped regions survive until unmap is called or the process 
termination. 

• Some file system implementations keep large regions of PM memory mapped as 
long as the file system is mounted.  This practice, and others that allow mmap to 
survive process termination, are not recommended for security reasons and will 
not be considered further herein. 

 
The first new requirement that arises from the above is that virus scanners must be able 
to determine which files contain mmapped regions and treat them as open for the 
purpose of scan processing.  If this requirement is met then closed and non-mmapped 
files can be scanned use either read/write or ld/st access. 
 
For opened files the question arises as to whether the file is mmapped by an application 
or not.  This leads to the requirements described in sections 6.7.2 and 6.7.3. 
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6.7.2 Signature detection in changing files 

Reliable detection of malware signatures without escapes and misdetections requires 
some degree of data consistency.  For files that are closed or guaranteed not to change 
this is trivial, but for changing files additional measures may be required.  Virus scans of 
open files may use point in time copies for consistency.  The granularity and means of 
establishing the point in time of the copy depends on virus scan software 
implementation.   
 
With today’s storage technologies the minimum granularity is a storage device block.  If 
virus scanner implementation can be aligned with single storage blocks then the built in 
atomicity of the storage device may provide the necessary stability.  If larger 
granularities are required by the virus scanner then a heavier weight point in time copy 
such as a snapshot may be required.  Although today’s in memory virus scans may 
have different consistency requirements from storage scans, in memory point in time 
copies such as those that generally take place during a Linux process fork may be 
useful.  In memory scans of code may benefit from the need for stability during code 
execution, unless the code is self-modifying which may be more common in viruses.   
 
The above leads to a requirement that files in PM meet the consistency requirements of 
virus scan implementations.  The status quo is sufficient for files that are not memory 
mapped provided that file system reads and writes to PM use atomic block access 
through a driver such as BTT.  For files that have been memory mapped by 
applications, in-memory snapshots may be required in order to maintain a consistent 
view of files being scanned. 
 
Existing memory scans should not be impacted by memory mapping in applications.  
Some techniques currently used for memory scans may be applicable to mmapped file 
scans. 
 
6.7.3 Single scanner view of both disk and PM based files 

Virus scan providers are not likely to want to provide implementations for PM file 
systems that are significantly different from those backed of SSD’s or HDD’s.  Barriers 
to adoption could be most quickly minimalized if file reads and writes can be performed 
on files that are memory mapped at the time.  At least this way the file system API acts 
as an intercept point on the virus scanner path even if there is no equivalent on the 
application path. 
 
It remains to be seen whether memory mapping on the virus scan access path is 
beneficial.  It may turn out that the main benefit is copy avoidance or mitigation. 
 
6.7.4 Ingest 

Ingest is any scenario wherein data or code moves into trusted storage or memory 
content from a potentially untrusted or unknown origin.  One subtlety occurs if data or 
code is generated (rather than ingested from outside) by other supposedly trusted code.  

http://pmem.io/2014/09/23/btt.html
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In this case the virus generating code is itself malware which should have been 
detected earlier.   
 
While memory mapping may remove some ability to intercept viruses generated by this 
type of malware, that is only true if the viruses are stored today using file system (or 
block or object storage) writes.  Existing virus generating malware in today’s system 
may operate as self modifying code meaning that PM did not actually introduce any 
attack paths that are less detectable than existing threats.  
 
The recommended approach to resisting this type of attack is to carefully govern and 
monitor the point where the contents of RAM or PM become executable.  If that point is 
explicit such as a permission change or exec call, then there is an opportunity for virus 
checking of malware generated code.  Self modifying code may not have such a 
transition making it perennially suspect as a virus vehicle with or without PM. 
 
The fundamental ingest requirement is not changed by PM.  Ingested data or code must 
be scanned for viruses before it is used.  If the ingesting application is using file access 
then existing techniques apply including file close after ingest and open before use.  
Virus scanning can occur during open or close.  Explicit virus scanning triggered by 
ingesting applications such as a download manager are also applicable.  Digital 
signature checking of code is recommended before it becomes executable.  These 
techniques work with block, file or object access to PM regardless of whether files are 
memory mapped by applications after the virus scan. 
 
If the ingesting application is using memory mapped storage then the recommendation 
is that the ingested regions be unmapped and containing files closed before use.  An 
explicit virus scan trigger and digital signature check of stable mmapped data is also 
applicable.  An application that ingests data or code and allows it to be used without a 
virus scan is inherently insecure.  Allowing groups of applications to do this by 
prematurely exposing ingested code or data through shared memory is just as bad.  
These types of error create vulnerabilities that should be eliminated from the ingesting 
application implementation regardless of whether the medium is today’s RAM or 
tomorrow’s PM. 
 
6.7.5 Scan triggers during writes 

In today’s systems it is possible to check for viruses or trigger virus scans as a result of 
writes to SSD’s or HDD’s.  This is more difficult to do when applications are writing 
directly to memory mapped files since there is no software intervention in that path other 
than the application itself.  If the purpose of these writes is data ingest then the 
requirements from section 6.7.4 apply.  For ingest it is less critical to have a virus 
intercept in the write access path as long as the application forces a virus scan after 
ingest and before use as is the norm for applications such as download managers. 
 
The return on investment for triggering virus scanning during memory mapped writes is 
hampered by a number of factors. 
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• Applications that create viruses by writing to memory can be viewed as malware 
themselves, and should ultimately be detected as such. 

• Writes to memory at cache line resolution are so fragmented that it may be 
impossible to detect a virus signature in any one write. 

• Intervention during writes, if required, would almost certainly involve page faults.  
Even if hardware is added to detect viruses, it would be expensive to complete 
detection during a memory access. 

• If the purpose of intervention during writes is to trigger a subsequent virus scan 
then there is always a window of vulnerability between the write and the scan, 
during which additional writes may repeatedly create the same trigger.  This 
creates a tradeoff between scan frequency and exposure to nascent viruses.  
The likely resolution of this tradeoff is to set a minimum time between virus scans 
of modified files or mmapped regions. 

 
Because of these factors, very few if any customers are likely to demand virus checking 
during memory mapped writes.  More likely, dirty pages should be tracked so that a 
periodic check can quickly detect pages and files to be scanned at an acceptable rate.  
This can still be problematic if dirty page bits can be turned off by the processor without 
notifying software when the processor decides on its own to flush a page to memory. 
 
In a sense this sends us back to square one with the exception that dirty page tracking 
hardware for PM (as opposed to processor cache) is much less expensive than virus 
checking during memory access.  In fact many processors have support for dirty page 
tracking in RAM to support caching between RAM and SSD’s or HDD’s (e.g. the Linux 
page cache).  Even though PM allows pages to be viewed as persistent without writing 
them to SSD or HDD, processor page cache infrastructure for dirty page tracking in 
RAM, if available, could remain enabled in PM for the purpose of tracking pages that 
need virus checking. 
 

7 Threats to availability or data integrity 
This section elaborates on the lower part of Table 1. 

7.1 Leverage of privacy threat into data integrity threat 
Any of the privacy threats in the first part of Table 1 could also result in threats to data 
availability or integrity.  In most cases the defenses described in section 6 also protect 
against unauthorized writing of data which could lead to data integrity or availability 
issues. 

• Physical manipulation – This attack is resisted using authentication and/or 
encryption that cannot be completed if the drive is not connected to a system that 
has the necessary permission.  This protection extends to writes because 
inability to authenticate disables writes.  An unauthorized host that is unable to 
authenticate but cannot correctly decrypt data could still compromise data 
integrity by writing invalid (unencrypted) data on the drive.  For this reason, a 
challenge protocol to establish access authorization is required to avoid integrity 
issues involving physical manipulation. 
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• Software access – the methods described in section 6.2 must be applied to both 
read and write permission. 

• Deleted Data – writing deleted data does not cause any integrity issues once the 
first step of the deletion process described in section 6.3 is completed.  Up to that 
point the data has not yet been deleted so it must be protected from all other 
threats.  

• Administrative threats – the methods described in section 6.4 must be applied to 
both read and write permission. 

• DMA, RDMA – Access rights must be enforced on both the source and the 
destination of the data. 

 
Data integrity threats due to malware deserve special attention.  In the case of malware, 
a principal that appears to have access authorization contains malicious code.  If the 
code has not been detected as malware (see section 6.7), the only possible protection 
is to constrain authorization to the smallest possible granularity.  For example if certain 
structures within larger storage or memory regions should never be written, then writes 
to those structures should be inhibited regardless of write authorization for the larger 
region.  This requires detailed application specific authorization assertions which may 
not match the granularity of enforcement supported by the system.  Even with such 
assertions in place, data that is normally writable by the application is at risk due to 
undetected malware. 

7.2 Software defects 
Concern has been expressed over the possibility that software defects such as rogue 
pointers could cause more disruption by writing PM than with volatile RAM.  In the end 
the credible new threats posed by software defects have several categorical root 
causes. 

• Data integrity threats due to the loss of separation between application data 
structures and permanent storage. 

• Denial of service threats due to the loss of complete RAM state re-initialization 
during reset that can lead to perpetual reboot. 

 
7.2.1 Loss of separation 

A software defect may cause an errant write to any PM that is memory mapped to the 
process performing the write.  This has always been the case for volatile RAM.  To the 
extent that data historically written to disk is derived from variables and stored volatile 
RAM buffers before writing, this is not a new exposure.  The difference is that 
historically the errant write is not made permanent until a disk IO completes.  If the error 
is detected before the write is made permanent, the previously written data is still 
available for recovery. 
 
With PM the time window of separation between the errant write to memory and the 
commit to permanent media is much smaller, if not non-existent.  One notable activity 
that frequently occurs in the window of separation is the calculation of a CRC or other 
digest to protect data integrity.  The loss of separation implies that the data and CRC 
may be inconsistent between the time when the data reaches the PM and the time 
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when the CRC reaches the PM.  Since processors only provide failure atomicity of 
fundamental data types a transaction like construct is required to manage data and 
CRC together. 
 
Consider the following timeline as a model of data integrity threats when CRC is in use. 

T0 – Data and CRC are consistent.  CRC check will succeed. 
T1 – Data modified in memory mapped data structure or buffer 
T2 – CRC modified in memory mapped data structure or buffer 
T3 (HDD/SSD only) – Disk write IO complete 
T3 (PM) – data and CRC flush complete to PM (possibly out of order) 

 
Time window specific exposure consequences of corruption. (applies to both disk and 
PM) 

• T0-T1 – new data over-writes corruption unless corruption is in a part of a buffer 
or data structure that will not be modified at T1.  Corruption of data in bytes that 
were unintentionally modified will propagate to the media with good CRC.  With 
PM there is a chance that the write size more closely matches the new data size 
so exposure may be smaller. 

• T1-T2 – CRC may or may not detect corruption depending on the instantaneous 
relative position of corruption relative to CRC calculation progress. 

• T2-T3 – CRC will detect corruption even with indeterminate PM flush order. 
 
Resisting PM integrity loss due to software defects may involve the following steps 
listed in increasing order of cost and complexity. 

• Implement protection from integrity threats described in section 7.1.  This will 
catch many grossly errant accesses. 

• Use CRC to protect data end to end. 
• Use transactional constructs and CRC to enable recovery if corruption is 

detected. 
• Constrain authorization to the smallest possible granularity with respect to 

memory regions within a file or process.  This was also mentioned in section 7.1 
as a means of early malware detection. 

• Constrain authorization to the smallest possible time granularity.  This requires 
dynamic enablement and disablement of writes to memory surrounding the 
execution of application code that expects to modify PM.  This will inhibit writes 
during time periods when none should occur. 

 
 
7.2.2 Loss of re-initialization 

The concern with this type of threat is that a reset or reboot that, were it not for PM 
would enable recovery from an error, does not because the error is permanently in PM. 
This can be factored into several scenarios. 

• A software defect has corrupted a file in a way that inhibits reboot.  This avenue 
is covered in section 7.2.1 based on the assumption that the file was intended to 
be persistent all along.  Once integrity has been compromised in either PM or 
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(historically) storage there is no recourse other than rolling back to earlier 
versions of files.   

• A software defect has corrupted contents of memory that would, without PM, 
have been discarded during reboot.  The way to avoid this threat is to discard the 
contents of memory that is intended to be volatile even if it is stored in PM. 

 
The root cause of the first exposure above is actually the loss of separation between 
memory and storage. The fact that such an exposure could compromise reboot 
increases the importance of the defenses described in section 7.2.1. 
 
The root cause of the second exposure is failure to re-initialize memory containing 
volatile data during reboot, hence the section title.  Dependency on blanket re-
initialization during reboot or reset can be viewed as a software defect in and of itself in 
addition to software defects that may have created the problematic volatile memory 
state.  Loss of re-initialization also causes a privacy threat described in section 6.3.4. 

7.3 Denial of service threats 
 
There is some concern that PM might enable new types of attacks in which lower PM 
latency compared to storage might enable new types of denial of service like attacks.  
There are two types of scenarios to consider. 

• Software is constantly accessing PM and not allowing other software to run.  This 
scenario can already occur in today’s systems with DRAM which is lower latency 
than PM.  This may be aggravated by the use of flush and fence instructions to 
force data to PM.  These instructions may take a long time (e.g. up to Seconds) 
and may affect multiple cores, creating new processor scheduling challenges. 

• IO intensive software can now use lower latency PM, eliminating periods of 
waiting for storage.  This scenario is not new either because compute bound 
software already avoids waiting for IO in today’s systems.  All that could happen 
is an IO bound workload could be converted into a compute bound workload. 

 
Both of these scenarios are dealt with today in OS schedulers which are designed to 
ensure that no process gets more than its intended share of processor or memory 
resources.  Although PM may shift the number of workloads that require scheduler 
driven pre-emption it does not create any entirely new denial of service threats. 
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