

Regional SDC Denver April 30, 2025

UEC Overview

Craig W. Carlson

Introducing: The Promise of Ultra Ethernet

https://ultraethernet.org/

2025 Organization

- Full Standards Development Organization
- (One of the?) Fastest growing projects in Linux Foundation
- 120+ Companies
- 1500+ individual active contributor volunteers
- 8 Workgroups
 - Physical
 - Link Layer
 - Transport
 - Software
 - Storage
 - Management
 - Compliance & Test
 - Performance & Debug

UEC Technical Goals

Open specifications, APIs, source code for optimal performance of AI and HPC workloads at scale.

UEC background

snapshot as of 2024-10

Mission: Advance an Ethernet-Based Open, Interoperable, High-Performance Full-Stack architecture to meet the Growing Demands of AI and HPC at Scale

> >100 member companies >1300 active participants

Which Network?

General Purpose vs. Scale-Up versus Scale-Out (UEC) Networks

Modern Transport and RDMA Services for AI and HPC

Requirement	UEC Transport	Legacy RDMA	UEC Advantage
Multi-Pathing	Packet spraying	Flow-level multi-pathing	Higher network utilization
Flexible Ordering	Out-of-order packet delivery with in-order message delivery	N/A	Matches application requirements, lower tail latency
AI and HPC Congestion Control	Workload-optimized, configuration free, lower latency, programmable	DCQCN: configuration required, brittle, signaling requires additional round trip	Incast reduction, faster response, future-proofing
In Network Collective	Built-In	NONE	Faster Collective operation, lower latency
Simplified RDMA	Streamlined API, native workload interaction, minimal endpoint state	Based on IBTA Verbs	App-level performance, lower cost implementation
Security	Scalable, 1 st class citizen	Not addressed, external to spec	High scale, modern security
Large Scale with Stability and Reliability	Targeting 1M endpoints	Typically, a few thousand simultaneous end points	Current and future-proof scale

AI/HPC Common Requirements

• Transport primitives for

- Large Scale
- Multi pathing
- Relaxed ordering
- Modernized Congestion Control
- Optimized RDMA
- Performance bandwidth, latency, tail latency, Packets/S
- High network utilization
- Stability and Reliability

Key goals: high utilization <u>&</u> low tail latency!

UEC Stack Overview (partial feature list)

- Software API
 - Libfabrics 2.0 with extensions
- New Transport Layer
 - Multi-pathing
 - Packet spraying
 - Ordered (ROD) and unordered (RUD)
 - Lossy (no PFC) or Lossless
 - Congestion Control:
 Enhanced Tx and new Rx
 - Trimming
 - In Network Collective
- Network Layer
 - IP v4/v6
 - ECN

- •Data Link Layer
 - Negotiation LLDP
 - Link Level Retry LLR
 - Header Efficiency
 Improvements
- •Physical Layer
 - •IEEE Compliant 100G Signaling

•AI and HPC Profiles

Applications			
Software APIs (*CCL, M	MPI, OpenSHMEM)		
Libfabric	UEC extensions		
Transport			
Message Semantics			
Packet Delivery			
Congestion Management	Reliability Modes		
Security			
ID I :	avar		
17 L	1901		
Ethernet Link Layer			
LLDP Negotiation	Packet Rate Improvement		
Logical Link Control or other MAC Client			
Link Level Retry			
MAC C M	Control AC		
Ethernet PHY Layer			
FEC Statistics	UEC LL Support		
UEC 100 Gb/s/lane	UEC 200 Gb/s/lane		
PMA			
Ź	packets		
	V		
Ethe	ernet		

10 | ©2025 SNIA. All Rights Reserved.

UEC and Storage

- Storage Workgroup formed summer '24
- 3 tiers of storage being considered
 - Object
 - File
 - Block
- First project has been started for block storage
 - NVMe over Ultra Ethernet

Enter NVMe over UE

- Why NVMe over UE?
- For AI datacenters, Ultra Ethernet is designed to serve as the Scale-Out network connecting PODs of GPUs
- Part of the AI training process requires regular checkpointing of the data to storage nodes on the Scale-Out network
- NVMe-oF could fill this use case very well (there are other storage options as well, but NVMe-oF is being looked at as one of the big ones)
- NVMe over UE could also have a use in HPC networks (for which Ultra Ethernet is to be used as well)

General Purpose vs. Scale-Up versus Scale-Out (UEC) Networks

NVMe over Ultra Ethernet (NVMe/UE)

- First storage project started within UEC Storage WG
 - MOU has been completed between UEC and NVMe
- Should be similar to NVMe/RDMA
 - Semantics should be similar even if some of the details (such as connection management may be UE specific)
 - Goal is to work in concert with NVMe on specifcation

UALink Creates the Scale-up Pod

- High performance
 - 800Gbps per accelerator, up to 1,024 accelerators
- Low latency
 - Optimized protocol, transaction, link & physical
- Low power
 - The simplified UALink stack leads to lower power solutions
- Low die area
 - Optimized data layer and transaction layer saves significant die area

UALink 200G 1.0 Specification Overview

- The UALink interconnect is for Accelerator-to-Accelerator communication
 - The initial focus is sharing memory among accelerators
- Direct load, store, and atomic operations between accelerators (i.e. GPUs)
 - Low latency, high bandwidth fabric for 100's of accelerators in a pod (up to 1K)
 - Simple load/store/atomics semantics with software coherency
- The initial UALink specification taps into the experience of the Promoters developing and deploying a broad range of accelerators and seeded with the proven Infinity Fabric protocol

