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AI for Storage/Networking, or Storage/Networking for AI?

▪ Lots of talk about how AI will change 
networking infrastructure
▪ … but what network infrastructure do you need to 

have, for enough AI to change the networking 
infrastructure?

▪ Is it more than just superfast speeds and feeds?

▪ Updating data/storage infrastructure
▪ Massive data sets, parallel processing 

requirements

▪ Compression/Decompression techniques, 
offloading for migration, replication, and 
synchronization efficiency

▪ Memory buffer data transfers and abstraction 
trade-offs

▪ Where does the data need to be, and when?
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The Needs of AI



5 | ©2024 SNIA. All Rights Reserved. 

The AI Monster

▪ AI workloads need

▪ Ever-increasing Memory Bandwidth

▪ Ever-increasing Memory Capacity

▪ (Near) Instantaneous Data Access (Exabytes)

▪ Intermittent data surges

▪ ”Straggler” data (tail latency) significantly impacts completion time

▪ Extended operation duration (hours, days)

Parameter (Billions) count over the years*

* Gholami, Amir, et al. (2021). AI and Memory Wall. https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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New Architectures

▪ Transformers
▪ Model of text generation applications

▪ Two building blocks:
▪ Encoders

▪ Decoders

▪ Encoders
▪ Parallel processing of all input tokens 

into learned information

▪ A.k.a. Understanding Context

▪ Decoders
▪ Takes input tokens one-by-one to 

generate output (sequential)

▪ A.k.a. Generating tasks (text)
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Digging Deeper

▪ GPT: Generative Pre-Trained Transformers

▪ Popular in cloud-services (particularly text-generation)

▪ Decoder-only
▪ Uses pre-trained matrices

▪ Two Key Stages:
▪ Summarization (SUM)

▪ Processes large input context simultaneously (parallel)

▪ Computation-bound, higher weights reusability

▪ Well-suited to GPUs

▪ Generation (GEN)
▪ Produces single word at a time (iterates)

▪ Memory-bound, lower weight reusability

▪ Performs poorly on GPUs

▪ Sequential computation: maximum contribution to latency

▪ Capacity- and bandwidth-limited

Transformers

Encoder-Decoder
(BART, T5)

Encoder-Only
(BERT, RoBERTo)

Decoder-Only
(GPT-1, 2, 3, 4)
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Impact on Networking and Storage/Data

▪ Compute, Memory, and Bandwidth constraints
▪ What’s the impact on data movement 

(Network/Storage)?

▪ What happens when you hit 1 Million endpoints?

▪ Things that break (or, at least, hurt):
▪ Congestion signaling, notification, spreading and 

mitigation (e.g., reaction time)

▪ Data ordering and sequencing

▪ Timely telemetry

▪ Multipath flow-hashing and load-balancing

▪ Dataset-specific best practices that require manual 
tuning

▪ Recovery methods

▪ Management techniques

▪ I/O Amplification

▪ Security
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AI Problems To Solve

▪ Memory Bandwidth vs. Capacity vs. Latency

▪ Computation-Bound Workloads
▪ E.g., Summarization: processes large input 

context simultaneously (parallel)

▪ Memory-Bound Workloads
▪ E.g., Generation: produces single word at a 

time (iteration)

▪ Recommendation Workloads spend almost 
60% of time in Network I/O*

▪ I/O Tax: 70% of AI model training is spent on 
data movement

▪ I/O Blender: Multiple AI phases occurring at 
the same time

▪ Impact of checkpointing, (de-) Compression, 
Encryption, Replication, etc.

*Meta, OCP 2022 Global Summit
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Impacts on the 
Network
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Remote Access to Memory

▪ Issues
▪ Verbs API limits efficiency by preventing 

OOO packet data from being delivered 
straight through the network to the 
application buffer (final destination)

▪ Go-Back-N recovery methods retransmit N 
packets for any single packet loss

▪ Impact
▪ Ties up network bandwidth for recovery

▪ Causes under-utilization of available links

▪ Increases tail latencies

▪ Ideal Solution
▪ All links are used; order is only enforced 

when the AI workload requires it
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Bandwidth and Latency

▪ Training is highly latency-bound, 
where tail latency negatively impacts 
the frequent computation and 
communications phases

▪ Generation stage is maximum 
contribution to latency; 60-80% of total 

▪ Latency increases with # of output 
tokens

▪ Large models (e.g., from 175B 
parameters in GPT-3 to 1T in GPT-4) 
drive larger messages on the network

▪ Underperforming networks therefore 
underutilize expensive resources

GPU-centric CPU-centric
(computation-bound) (memory-bound)

Image credit: Hong, Seongmin, et al. "DFX: A Low -latency Multi-FPGA Appliance for Accelerating 

Transformer-based Text Generation." 2022 55th IEEE/ACM International Symposium on 

Microarchitecture (MICRO). IEEE, 2022.
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Collective Communications

▪ More than just point-to-point connectivity; inter-accelerator communication in AI is 
part of “collective” communication operations

▪ Proper network architecture enables benefits of packet-spraying in bandwidth-
intensive operations by eliminating the need to reorder packets before delivery

All-Reduce:

• Imagine you have a group of friends, and each friend has 
a number written on a piece of paper.

• You want to find the total sum of all those numbers. 
Here’s how All-Reduce works:

• Each friend shares their number with everyone else.

• Everyone adds up all the numbers they receive.

• The final result is the sum of all the original numbers, and everyone 
gets that same total.

• In parallel computing, All-Reduce is used to combine 
data from different processors or nodes to compute a 
global result (like the total sum in our example).

All-to-All:
• Imagine you’re hosting a potluck dinner, and each guest 

brings a different dish.
• You want everyone to taste every dish. Here’s how All-to-

All works:
• Each guest shares their dish with every other guest.
• Everyone gets a taste of every dish.

• In parallel computing, All-to-All is used to exchange data 
between all processors or nodes. Each processor 
communicates with every other processor, ensuring that 
everyone has the necessary information.
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Impacts on 
Storage
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Storage AI Needs

▪ Scalability and Performance:

▪ Scale-Out Architectures: Direct accelerator access to storage via networking Fabric (e.g., 
NVMe-oF)

▪ High I/O Rates and Low Latency

▪ Power Restrictions

▪ Data Diversity and Edge Computing:

▪ Data Sources (such as DPU Computing; support for offloads, programmability, control + 
data path optimization)

▪ Edge-to-Core Processing

▪ Cloud Integration:

▪ Hybrid Cloud

▪ Flexibility

▪ Multi-modal GenAI jobs – images, text, video

▪ True for both AI Training and Inference

▪ Data + Metadata cannot fit in GPU (memory-hierarchy)

▪ Accelerator (e.g., GPU) and remote network data paths is a bottleneck

▪ AI-Specific Features:

▪ AI-Aware Algorithms

▪ GPU Integration

▪ Integrated and cooperative host/driver software stack with storage devices
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SNIA and AI

▪ Persistent Memory Programming Model

▪ Green Storage (Emerald Program)

▪ Security Standards

▪ Vendor-Neutral Object Storage (CDMI)

▪ Automotive Storage

▪ Near-Data Compute (Computational 
Storage)

▪ Smart Data Accelerator Interface 
(SDXI)
▪ Example to follow!
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Memory Infrastructures

▪ High-Concept Futures
▪ Computational Fabric-Attached Memory

▪ Hierarchical memory pooling

▪ Intra- and Inter-processor network fabric 
end-points

▪ Disaggregated multi-access Ethernet-
based storage/data

▪ Low-Level Efficiency Improvements
▪ Kernel-Bypass for memory access

▪ In-process data mutation

▪ Processing-near-data
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▪ AI processing data is created/prepped in 
host memory
▪ Cannot simply ingest the data from host 

memory – it’s usually in storage

▪ Must bring data from storage to host 
memory

▪ Data must be cleaned and prepped
▪ Data structure/formats are changed

▪ This happens in host memory

▪ Prime use case for Computational 
Storage (CS)
▪ CS contributes to data prep and cleaning

Memory Normalization – Example

Host	Memory Data	StorageCPU/Host



19 | ©2024 SNIA. All Rights Reserved. 

▪ Unicorn formatting
▪ Varying data formats and intermediate data 

representations used in AI/ML data pipelines

▪ E.g., file, Columnar, Binary, Text, Tabular, Nested, Array-
based, Hierarchical

▪ Need to build accelerator operations to be able to 
get to a format that AI models can be used to share 
weights (e.g.)

▪ Example: sharing tensor vectors, lists of memory pointers

▪ Tensors may be in different address spaces like Host 
Memory, GPU Memory, etc.

▪ Need operations to be able to perform:
▪ Format Conversions

▪ In-memory Vector/Tensor transformations like 
quantization, scaling, matrix operations, etc.

▪ Vendor-specific accelerator operations weaken 
TCO

▪ Possible Solution: SDXI 

Memory Normalization – Example (cont.)

Host	Memory Data	StorageCPU/Host

GPU	Memory GPU	MemoryGPU	Memory

SDXI
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▪ SNIA standard for a memory-to-
memory data movement and 
acceleration interface

▪ Low-level raw memory data 
movement

▪ Data restructuring and 
transformation completed in-
memory

▪ Extensible

▪ Forward-compatible

▪ Independent of I/O interconnect 
technology

▪ Data movement between different 
address spaces

▪ Standard extends to in-memory 
Offloads/transformations leveraging 
the architectural interface

SDXI for Memory Normalization

SW context isolation layers

MMIO (Memory 
Mapped I/O)

SCM (Storage Class 
Memory)

CXL/Fabric 
Attached Memory

System Physical Address 
space

Security

Data mover 
Acceleration 
(CPU offloaded)
Security

Application(Context A) Application(Context B)

1. Leverage a standard 
    specification

Direct 
User 
mode

2. Innovate around 
    the spec

3. Add incremental 
    Data acceleration 
    features

Architectural Stability

GPU 

FPGA

SMART IO

CPU Family B 

CPU CPU Family A

DRAM

(Context A)

DRAM

(Context B)
DRAM (Context B)

DRAM (Context A)

SDXI

SDXI

SDXI

SDXI

SDXI

Source: SNIA. SDXI Memory-To-Memory Data Movement. 
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Stacking Technologies – SDXI and Computational Storage

▪ Multiple SDXI producers in 
Computational Storage 
architecture
▪ Enables data movement 

across multiple active 
functional memory regions

▪ Reduce tromboning (round-
tripping) with host 
environment for chained data 
processing
▪ Data cleaning, structure 

alignment, 
encryption/decryption, data 
mutation, etc.

I/OMGMT

Storage 
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational Storage Engine 
(CSE)

CSEE
CSEE

CSF
CSF

Resource Repository

CSF CSEECSEECSF

FDM AFDM

AFDM

SDXI Driver
+CS Extensions

Future CS, 
SDXI API

SD
X

I

SDXI

Host

CS API

SDXI Driver + 
CS Extensions

Storage Driver + 
CS Extensions

Host

Host
Memory

I/OMGMT

Storage 
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational Storage Engine 
(CSE)

CSEE
CSEE

CSF
CSF

Resource Repository

CSF CSEECSEECSF

FDM AFDM

AFDM

Fabric (PCIe, Ethernet, etc)

CS API

SDXI Driver
+CS Extensions

Shared Memory Pool

Memory

Memory

Future CS, 
SDXI API

SD
X

I

SDXI

SD
X

I

SD
X

I
SD

X
I

SDXI

SDXI Driver + 
CS Extensions

Storage Driver + 
CS Extensions

Host
Memory

SDXI

SDXI

SD
X

I

SDXI

SDXI

CSEE, CSF is SDXI Producer

Host is SDXI Producer

SD
X

I

SD
X

I

SD
X

I

SD
X

I

SDXI
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The Road Ahead
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UEC Addresses AI Network Needs

Traditional RDMA-Based Networking

Required In-Order Delivery, Go-Back-N recovery
Out-of-Order packet delivery with In-Order Message 
Completion

Security external to specification Built-in high-scale, modern security

Flow-level multi-pathing Packet Spraying (packet-level multipathing)

DC-QCN, Timely, DCTCP, Swift
Sender- (and/or receiver-) based congestion control 
across multiple paths

Rigid networking architecture for network tuning Semantic-level configuration of workload tuning

Scale to low tens of thousands of simultaneous 
endpoints

Targeting scale of 1M simultaneous endpoints

ultraethernet.org
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SNIA Addresses AI Storage Needs

▪ Standards for AI-Driven Data Storage
▪ Computational Storage Architecture 1.0

▪ Computational Storage API 1.0

▪ SNIA Emerald  Power Efficiency Measurement Specification v4

▪ Native NVMe-oF Drive Specification v1.0.1

▪ Persistent Memory (PM) Performance Test Specification (PTS) v1.0

▪ Best Practices for AI Data Management
▪ Swordfish  Scalable Storage Management API Specification v1.2.6

▪ Flexible Data Placement; Zoned Storage Models v1.0

▪ Collaboration with AI and Data Science Communities and 
Technologies

▪ Current: CXL, DMTF, Open Fabrics Alliance, NVM Express, SODA 
Foundation, The Green Grid, among others

▪ In process; Ultra Ethernet Consortium, Open Compute Project, Linux 
Foundation Projects, among others

▪ R&D Initiatives

▪ I/O Traces, Tools, and Analysis (IOTTA) suite

▪ Advocacy for AI-Friendly Policies
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Conclusion
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Summary and Key Takeaways

▪ AI Workloads are capitalizing on solid foundations in 
networking and data storage, but also requiring new 
ways of thinking

▪ Processing, Memory, Networking and Data are 
intersecting in new and non-traditional ways, and at 
scale much larger than ever before

▪ Boundary limitations (memory, bandwidth, processing, 
latency) are shifting both physically and logically

▪ The problem requires broad, open support for both 
networking and data storage services

▪ UEC and SNIA are working towards standardized, 
open, industry ecosystems to solve these problems
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Please take a moment to rate this session. 

THANK YOU
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