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Al for Storage/Networking, or Storage/Networking for Al?

= Lots of talk about how Al will change
networking infrastructure

= ... but what network infrastructure do you need to
have, for enough Al to change the networking
Infrastructure?

» |s it more than just superfast speeds and feeds?

= Updating data/storage infrastructure
» Massive data sets, parallel processing
requirements

= Compression/Decompression techniques,
offloading for migration, replication, and
synchronization efficiency

= Memory buffer data transfers and abstraction
trade-offs

= \WWhere does the data need to be, and when?

REGIONAL =SDG
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The Needs of Al
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The Al Monster

= Al workloads need

= Ewver-increasing Memory Bandwidth

= Ever-increasing Memory Capacity

= (Near) Instantaneous Data Access (Exabytes)
= |ntermittent data surges

= "Straggler” data (tail latency) significantly impacts completion time
= Extended operation duration (hours, days)

Al and Memory Wall
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New Architectures

= Transformers
= Model of text generation applications

= Two building blocks:
= Encoders
= Decoders

= Encoders

= Parallel processing of all input tokens
Into learned information

= A.k.a. Understanding Context

= Decoders

= Takes input tokens one-by-one to
generate output (sequential)

= A.k.a. Generating tasks (text)
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Digging Deeper

= GPT: Generative Pre-Trained Transformers
= Popular in cloud-services (particularly text-generation)

= Decoder-only
» Uses pre-trained matrices
Encoder-Only = Two Key Stages:
SERT, ROBER = Summarization (SUM)

» Processes large input context simultaneously (parallel)
Decoder-Only = Computation-bound, higher weights reusability
(GPT-1, 2, 3, 4) = Well-suited to GPUs
= Generation (GEN)

* Produces single word at a time (iterates)

= Memory-bound, lower weight reusability

» Performs poorly on GPUs

» Sequential computation: maximum contribution to latency

= Capacity- and bandwidth-limited

Transformers

Encoder-Decoder

(BART, T5)
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Impact on Networking and Storage/Data

= Compute, Memory, and Bandwidth constraints

» What's the impact on data movement
(Network/Storage)?

» What happens when you hit 1 Million endpoints?
= Things that break (or, at least, hurt):

= Congestion signaling, notification, spreading and
mitigation (e.g., reaction time)

= Data ordering and sequencing
» Timely telemetry
= Multipath flow-hashing and load-balancing

» Dataset-specific best practices that require manual
tuning

= Recovery methods

= Management technigues
= |[/O Amplification

= Security
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Al Problems To Solve

= Memory Bandwidth vs. Capacity vs. Latency

= Computation-Bound Workloads

= E.g., Summarization: processes large input
context simultaneously (parallel)

= Memory-Bound Workloads

= E.g., Generation: produces single word at a
time (iteration)

= Recommendation Workloads spend almost
60% of time in Network 1/O*

= /O Tax: 70% of Al model training is spent on
data movement

= /O Blender: Multiple Al phases occurring at
the same time

= Impact of checkpointing, (de-) Compression,
Encryption, Replication, etc.

*Meta, OCP 2022 Global Summit
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lmpacts on the
Network
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Remote Access to Memory

= [ssues

= Verbs API limits efficiency by preventing
OOO packet data from being delivered
straight through the network to the
application buffer (final destination)

= Go-Back-N recovery methods retransmit N
packets for any single packet loss

* [mpact
» Ties up network bandwidth for recovery
_ = = Causes under-utilization of available links
i | ] ‘ * Increasestail latencies
“Jli - Ideal Solution

= All links are used; order is only enforced
when the Al workload requires it
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Summarization Stage ! Generation Stage
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Collective Communications

= More than just point-to-point connectivity; inter-accelerator communication in Al Is
part of “collective®™ communication operations

= Proper network architecture enables benefits of packet-spraying in bandwidth-
Intensive operations by eliminating the need to reorder packets before delivery

All-Reduce: All-to-All:
* Imagine you have a group of friends, and each friend has | « |magine you’re hosting a potluck dinner, and each guest
a number written on a piece of paper. brings a different dish.
° Youwantto find the total sum of all those numbers. * You want everyone to taste every dish. Here’s how All-to-

Here’s how All-Reduce works:

* Each friend shares their number with everyone else.

All works:
. _— :
. Everyone adds up all the numbers they receive. Each guest shares their dish W|th every other guest.
* The final result is the sum of all the original numbers, and everyone ° Everyone gets a taste of every dish.
gets that same total. e |n parallel computing, All-to-Allis used to exchange data
* In parallel computing, All-Reduce is used to combine between all processors or nodes. Each processor

data from different processors or nodes to compute a communicates with every other processor, ensuring that
global result (like the total sum in our example). Y _ P _ G 8
everyone has the necessary information.

REGIONAL =SDG
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Impacts on
Storage
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Storage Al Needs

= Scalability and Performance:

Scale-Out)Architectures: Direct accelerator access to storage via networking Fabric (e.g.,
NVMe-oF

= High /O Rates and Low Latency
= Power Restrictions
Data Diversity and Edge Computing:

= Data Sources (such as DPU Computing; support for offloads, programmability, control +
data path optimization)

= Edge-to-Core Processing
Cloud Integration:
= Hybrid Cloud
= Flexibility
Multi-modal GenAl jobs — images, text, video
= True for both Al Training and Inference
= Data + Metadata cannot fit in GPU (memory-hierarchy)
= Accelerator (e.g., GPU) and remote network data paths is a bottleneck
Al-Specific Features:
= Al-Aware Algorithms
= GPU Integration

)

-
=
-
=
-
=
-
=

* Integrated and cooperative host/driver software stack with storage devices
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SNIA and Al

= Persistent Memory Programming Model
= Green Storage (Emerald Program)

= Security Standards

= Vendor-Neutral Object Storage (CDMI)
= Automotive Storage

= Near-Data Compute (Computational
Storage)

= Smart Data Accelerator Interface
(SDXI)

= Example to follow!

ACCELERATE
DATA

FORMAT
DATA

YTSNIA

TRANSPORT |
"% EXPERTS
. ON DATA

PROTECT
DATA

OPTIMIZE
 J| INFRASTRUCTURE
‘ FOR

DATA
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Memory Infrastructures

= High-Concept Futures
= Computational Fabric-Attached Memory
» Hierarchical memory pooling

* Intra- and Inter-processor network fabric
end-points

» Disaggregated multi-access Ethernet-
based storage/data

= Low-Level Efficiency Improvements
= Kernel-Bypass for memory access
» In-process data mutation
* Processing-near-data
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Memory Normalization — Example

= Al processing data is created/prepped In
host memory

= Cannot simply ingest the data from host
memory — it's usually in storage

= Must bring data from storage to host
memory

= Data must be cleaned and prepped
= Data structure/formats are changed
* This happens in host memory

= Prime use case for Computational
Storage (CS)

= CS contributes to data prep and cleaning

CPU/Host HostiMemory DataBtorage

\/
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Memory Normalization — Example (cont.)

= Unicorn formatting

= Varying data formats and intermediate data
representations used in Al/ML data pipelines

= E.g.,file, Columnar, Binary, Text, Tabular, Nested, Array-
based, Hierarchical

= Need to build accelerator operations to be able to
get to a format that Al models can be used to share

weights (e.g.)
= Example: sharing tensor vectors, lists of memory pointers

» Tensors may be in different address spaces like Host
Memory, GPU Memory, etc.

= Need operations to be able to perform:

= Format Conversions

= In-memory Vector/Tensor transformations like
quantization, scaling, matrix operations, etc.

= Vendor-specific accelerator operations weaken
TCO
= Possible Solution: SDXI
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GPUIZMemory
Y/
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SDXI for Memory Normalization

= SNIA standard for a memory-to-

memory data movement and o il | R
acceleration interface et rerrrees . : - =i oRav (contexe
= Low-level raw memory data E,‘f‘fée "'Smm“ifmmm"' | :{; \
movement e[ cruramin oI | = meemremion =P oram (comence)
= Data restructuring and ) Secaty e i v
%{;\enrg?rrym ation completed in- CPU Family B b everage asanir —
u EXtenSIb|e GPU __snx| &1 z.tl:“:g;:t‘earound
= Forward-compatible 7/ st ot 7
= Independent of I/O interconnect e / "
technology e | ] Attached Mamory

= Data movement between different
address spaces

= Standard extends to in-memory
Offloads/transformations leveraging
the architectural interface Source: SNIA. SDXI Memory-To-Memory Data Movement.
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Stacking Technologies — SDXI and Computational Storage

w1 = Multiple SDXI producers in
Computational Storage
= architecture

. = Enables data movement
across multiple active

A T functional memory regions
= Reduce tromboning (round-
=) - tripping) with host
i environment for chained data
processing

= Data cleaning, structure
alignment,
encryption/decryption, data
mutation, etc.

SDXI
DX

river

><€SDXI

<SDXIPIS
4_
‘-

SDXI

<—sDXi—» CSEE, CSF is SDXI Producer REG | O NAL : S D @

<«—sDXI—» Host is SDXI Producer
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The Road Ahead
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UEC Addresses Al Network Needs

Traditional RDMA-Based Networking Ult@fthernet

consortium

ez [0ty Beliven), ot e Out-of-Order packet delivery with In-Order Message

Completion
@ Security external to specification Built-in high-scale, modern security
°° Flow-level multi-pathing Packet Spraying (packet-level multipathing)

Sender- (and/or receiver-) based congestion control

2a°. DC-QCN, Timely, DCTCP, Swift
*9?@—( “ULN, Timely, » SWI across multiple paths

é\ Rigid networking architecture for network tuning Semantic-level configuration of workload tuning

———
@ Scale to low tens of thousands of simultaneous
endpoints
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SNIA Addresses Al Storage Needs

FORMAT
DATA

ACCELERATE
DATA

PROTECT
DATA

SNIA

EXPERTS
ON DATA

OPTIMIZE
§| INFRASTRUCTURERN
FOR
DATA
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Standards for Al-Driven Data Storage

= Computational Storage Architecture 1.0

= Computational Storage API 1.0

= SNIA Emerald™ Power Efficiency Measurement Specification v4

= Native NVMe-oF Drive Specification v1.0.1

= Persistent Memory (PM) Performance Test Specification (PTS) v1.0
Best Practices for Al Data Management

= Swordfish™ Scalable Storage Management API Specification v1.2.6

= Flexible Data Placement; Zoned Storage Models v1.0

Collaboration with Al and Data Science Communities and
Technologies

= Current: CXL, DMTF, Open Fabrics Alliance, NVM Express, SODA
Foundation, The Green Grid, among others

= In process; Ultra Ethernet Consortium, Open Compute Project, Linux
Foundation Projects, among others

R&D Initiatives
I/O Traces, Tools, and Analysis (IOTTA) suite
Advocacy for Al-Friendly Policies
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Conclusion
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Summary and Key Takeaways

= Al Workloads are capitalizing on solid foundations in
networking and data storage, but also requiring new
ways of thinking

= Processing, Memory, Networking and Data are
Intersecting in new and non-traditional ways, and at
scale much larger than ever before

* Boundary limitations (memory, bandwidth, processing,
latency) are shifting both physically and logically

= The problem requires broad, open support for both
networking and data storage services

= UEC and SNIA are working towards standardized,
open, industry ecosystems to solve these problems
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THANK YOU

Please take a moment to rate this session.
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