
No more LRU, Simple Scalable
Caching with only FIFO Queues

Juncheng Yang
Harvard University

2

Digital society

Data

Software cache
• Cache: A fast but small storage storing a portion of the dataset to speed up data access

• Software cache: all decisions made in software

3

What should be
stored in the cache?

Software cache is deployed everywhere

Ubiquitous deployment
• speed up data access
• reduce data movement
• reduce repeated computation

4

5

How many
requests are

served by caches?

1000s

A typical web application

Service

Service

Service

Service

distributed
key-value
caches

API
gate
way

CDN

cache

6

A typical web application

Service

Service

Service

Service

API
gate
way

cache

7

distributed
key-value
caches

cloud data centers

CDN

edge

Software cache consumes a huge amount of resources
• Google CliqueMap: PBs of DRAM[1]
• Twitter: 100s clusters, 100s TB of DRAM, 100,000s cores[2]
• Meta, Pinterest…

How to make caching more sustainable?
• Less DRAM: caching more useful objects

• Fewer CPU cores: faster and concurrent cache hits

8

[1] CliqueMap: Productionizing an RMA-Based Distributed Caching System, SIGCOMM’21
[2] A large scale analysis of hundreds of in-memory cache clusters at Twitter, OSDI’20

efficient caching

fast and scalable caching

eviction algorithm

The core of a cache

9

The need for simple and scalable cache eviction algorithm

• 60+ years of research on designing eviction algorithms: most are LRU-based

10

"Predicting which pages will be accessed in the near future is tricky, and the kernel
has evolved a number of mechanisms to improve its chances of guessing right. But
the kernel not only often gets it wrong, it also spend a lot of CPU time to
make the incorrect decision.”

— kernel developer

1980

LRU
CLOCK

LRU-K
LRFU2Q ARCSLRU

EELRU

UBM MQ

ACME LIRS

2000 2020

TinyLFU

LHD
LRBLeCaR

CACHEUS

HALP

1960 ...

• not scalable
• increasingly complex

A simple algorithm: FIFO eviction algorithm

• First-in-first-out (FIFO)
• simpler than LRU
• fewer metadata
• no computation
• more scalable
• flash-friendly

11

The only drawback:
FIFO has a high miss ratio

QUICK DEMOTIONLAZY PROMOTION

Existing eviction algorithms focus on promotion

12

eager promotion

passive demotion

preference for eviction

traditionally

Demotion should be the first-class citizen

13

quick demotion
lazy promotion

proposal

eager promotion

passive demotion

preference for eviction

traditionally

Lazy promotion: only promote during eviction

14

Benefits of lazy promotion
• less computation
• better decision
• more efficient (lower miss ratio)

FIFO-Reinsertion

1 0 0 1 0 0 10

1 0 0 1 0 00 0

1 0 0 1 0 000

insert a new object

evict the next object

0: not accessed, 1: has accessed

�
�

�

 *

�
#&

*
�

�
�

,
(
 �

(

�
�

!&
'
��

�
�

)
�

%
�
�

%
)
��

�
&

)
&

�
 "

�
�

%
�
�

%
)
��

�

	

�

�
�

�

�
+

)
)
�

'

�
&

�
 �

#�
�

�
)
+

&
'
"

���

���

���

'
�

�
)
 &

%
�&

��
)
'
�

�
�

(
�

+
)

�
�#

&
+

�
'
�$

 (
(
�'

�
)
 &

(���
�
���� %(�') &%

Lazy promotion: only promote during eviction

15

N F E D C B A

BA not visited visited

in
se

rt
io

n

ev
ic

tio
n

Why is FIFO-Reinsertion more efficient?
evict new objects faster!

Requests: B N A X

Objects push N towards eviction

LRU A X

FIFO-Reinsertion A X B

Quick demotion: quickly evict new objects

• One-hit wonders: objects appeared once in the sequence
• Cache workloads: shorter request sequences have larger one-hit-wonder ratios

16

A B A C B A D A B C B A E C B DA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

request
time

start time end time sequence length
(# objects) # one-hit wonder one-hit wonder ratio

1 17 5 1 (E) 20%
1 7 4 2 (C, D) 50%

Quick demotion: quickly evict new objects

��
"� ��

"	
��

"�

���� ������� � �������� �

���

���

��

���

��

���

�
�
�
��

�
�!

�
�
�
�
�
��
�

��

��������

�������

������

��������

��
!	

��
!�

��
!� ��

�

��������������������������������

����

���

��
�

���

����

�
�
�
��
��
�
�
�
�
�
�
��
�
�
�� � �����
��

17

• One-hit wonders: objects appeared once in the sequence
• Cache workloads: shorter request sequences have larger one-hit-wonder ratios

synthetic workloads production workloads (week-long)

One-hit-wonder ratio of week-long traces at 10% length:
72% (mean on 6594 traces)

Implication: most objects are not used before evicted

Observation

18

����	 ���	 ��	 ���

��

����

��
�

����

����

	���

��
��

���
��
��
��
��
��
��

��
��
��

��

�����
�
�����

�����	

LRU cache running Twitter workload

����	 ���	 ��	 ���

��

����

��
�

����

����

	���

��
��

���
��
��
��
��
��
��

��
��
��

��

�����
�
�����

�����	

LRU cache running MSR workload

Most objects are not reused before evicted

Quick demotion: quickly evict new objects

19

four LRU queues
+ adaptive algorithm

three LRU queues
+ a new metric

window-LRU + sketch
+ four LRU queues

random
+ probability modeling

LRU + partitioning

LRU + machine learning
The secret sauce of state-of-the-art algorithms:

evicting new objects very aggressively

Simple, Scalable caching with three Static FIFO queues

S3-FIFO Design

20

https://s3fifo.com

https://s3fifo.com

S3-FIFO design

21

main FIFO (90% space)small

ghost

struct object {
…
uint8_t cnt:2;

}

if cnt == 0
 evict
else
 reinsert
 cnt--

3 on eviction
 if not in ghost, else

2 on cache miss

if cnt <= 1, else
3 on eviction

cnt++

1 on cache hit

QUICK DEMOTION

LAZY PROMOTION

S3-FIFO features

• Simple and robust: static queues

• Fast: no metadata update for most requests

• Scalable: no lock

• Tiny metadata: 2 bits

• Flash-friendly: sequential writes

22

Can be implemented using one, two or three FIFO queues

Evaluation setup
• Data

• 14 datasets, 6594 traces from Twitter, Meta, Microsoft, Wikimedia, Tencent, Alibaba, major CDNs…

• 848 billion requests, 60 billion objects
• collected between 2007 and 2023
• block, key-value, object caches

• Platform
• libCacheSim, cachelib
• PDL cluster and CloudLab with 1 million core·hours

• Metric
• miss ratio reduction from FIFO
• throughput in Mops/sec

23

Data and software are open-sourced

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

ARC TinyLFU-0.1 CACHEUS 2Q LIRS LHD S3-FIFO

S3-FIFO is efficient across datasets

better

24

Wikimedia CDN

TencentPhoto CDN
Meta CDN

CDN 2
CDN 1

Twitter KV
Meta KV

Social Network KV
Alibaba (block)

Tencent (block)
Systor (block)

CloudPhysics (block)
MSR (block)
fiu (block)

Mean miss ratio reduction from FIFO

Evaluated on 6594 traces with 848 billion requests from 12 sources, collected between 2007 and 2023
This evaluation is million times larger than previous works

Throughput scales with number of threads
be

tte
r

25Implemented in Meta CacheLib, synthetic Zipf 1.0 workload, benchmarked on Cloudlab r6420 node

Th
ro

ug
hp

ut
 (m

ill
io

n
op

/s
ec

)

0

8

16

24

32

4 8 12 16

LRU Optimized LRU S3-FIFO

1 2 4 8 16
Number of threads

fastest

6x

Recap

• S3-FIFO: simple, scalable caching with three static FIFO queues
• prevalence of one-hit wonders
• small FIFO queue: quickly evict one-hit wonders, reinsertion: keep popular objects

• The first work showing that FIFO queue is sufficient to design efficient algorithms

• S3-FIFO recognition and impact
• Covered by many blogs, newsletters, meetups in English, Chinese, Korean, Japanese…
• Deployed at Google, VMware, Redpanda…
• More than ten open-source libraries implemented S3-FIFO in Rust, C, C++, JavaScript, Python…

26

main FIFO (90% space)small

ghost

https://s3fifo.com

https://s3fifo.com

An eviction algorithm simpler than LRU

SIEVE

27 https://sieve-cache.com

https://sieve-cache.com

28

Retain popular objects with minimal effort

Remove unpopular objects fast, such as one-hit-wonders

The secret to designing efficient eviction algorithms

QUICK DEMOTION

LAZY PROMOTION

SIEVE: combining lazy promotion and quick demotion

29

FIFO-Reinsertion

1 0 0 1 0 0 10

1 0 0 1 0 00 0

SIEVE

1 0 0 1 0 0 10

1 0 0 1 0 0 00

1 0 0 1 0 000

insert a new object

1 0 0 1 0 0 00

insert a new object

evict the next object evict the next object

0: not accessed, 1: has accessed

A small change turn FIFO-Reinsertion to SIEVE

SIEVE features

• Extremely simple

• ZERO parameter

• Fast and scalable

• Small per-object metadata

• TTL-friendly

30

Why does SIEVE work?

31

1 0 0 1 0 0 00
• Evict new objects quickly

• Separate new and old objects
1 1 00 0 0 0 1

newly-inserted objects retained objects

FIFO-Reinsertion

insert evict

reinsert

SIEVE
insert

evict

• Retain popular objects effectively

CDN2, 219 traces
3,728 million requests

SIEVE achieves state-of-the-art-efficiency

32

CDN1, 1273 traces
37,460 million requestsSIEVE also achieves the lowest miss ratio
on the well-studied Zipfian workloads

SIEVE reduces FIFO’s miss
ratio by more than 42% on
10% of the traces (top
whisker) with a mean of 21%

33

Better than all state-of-the-art algorithms

CDN1 + CDN2 Wikimedia

Small cache: better than ARC, close to LRB
Large cache: better than LRB

SIEVE achieves the lowest byte miss ratio

SIEVE throughput scales with the number of threads

34

compared to optimized LRU:
16% faster with a single thread, 2x faster with 16 threads

SIEVE is simple to implement

35

Cache library Language Eviction algorithm Lines of change

groupcache Golang LRU 21

mnemonist Javascript LRU 12

lru-rs Rust LRU 16

lru-dict Python + C LRU 21

Adoption

SIEVE can be used as a cache primitive

36

TwoQ: LRU + FIFO

ARC: LRU + LRU + 2 ghost queues

LeCaR: LRU + LFU + ML

SIEVE can be used as a cache primitive

37

TwoQ: LRU + FIFO

ARC: LRU + LRU + 2 ghost queues

LeCaR: LRU + LFU + ML

Replace LRU with SIEVE

SIEVE has been widely used
• SIEVE is available in 20+ cache libraries with 12 programming languages
• Production systems integrated SIEVE: Pelican, SkiftOS, DragonFly…

38

Summary
• Two techniques

• Lazy promotion
• Quick demotion

• S3-FIFO: simple, scalable caching with three
static FIFO queues
• small queue for filtering
• main queue with reinsertion

• SIEVE: the simplest algorithm combining lazy
promotion and quick demotion

39

Simplicity

ScalabilityEfficiency

S3-FIFO
SIEVE

https://sieve-cache.comhttps://s3fifo.com

https://sievecache.com/
https://s3fifo.com

How we can build better storage systems together

40

Collaborations

Juncheng Yang
https://junchengyang.com

workload
sharing

hardware
access

