r_ ——

— LRU 9 == FIFO 9

X

No more LRU, Simple Scalable
Caching with only FIFO Queues

Juncheng Yang
Harvard University

[

W/
3%l (V|E
\;@ VElS

\

%
o
D

.\

Digital society

Software cache

« Cache: A fast but small storage storing a portion of the dataset to speed up data access

« Software cache: all decisions made in software

=
- J~ What should be
f: stored in the cache?

D @ &

Software cache is deployed everywhere

%

Ubiquitous deployment

« speed up data access

- reduce data movement é redis traffiC:server”” ¢

» reduce repeated computation

O

N h, T
g
a———

. "$
(o~ 51

/AN

ALLUXIO

VARNISH

CACHE

‘ m m PyTorch TensorFlow

— - O

S —’

_———— e

o
N—

- :
S e==

_———— e

o
N—

_———— e

o
N—

€« > C m (B4 twitter.com|) D ®

About Store

o O

Gmail

Images é

e ¢
. I - _‘ “) .
Y 0 Sl é

Google Search I'm Feeling Lucky

‘ Welcome to the Gemini era: Unlocking new ways to help you build and scale with Al

< [D Elements Console Sources Network Performance Memory Application >> ¢)]
® Q| Y Q Preserve log Disable cache Nothrotting ¥ < 1T 4
Filter Invert Hide data URLs Hide extension URLs

All Doc JS Fetch/XHR CSS Font Img Media Manifest WS Wasm Other Blocked response cookies

Blocked requests 3rd-party requests

Recording network activity...
Perform a request or hit 38 R to record the reload.

Learn more

How many
requests are

served by caches!?

A typical web application

distributed
key-value
caches

A typical web application

—
——
\bj
—
h —
-
—_—
=—
\bj

P —
Pr—
-—
—

cloud data centers

edge

Software cache consumes a huge amount of resources

- Google CligueMap: PBs of DRAMU
« Twitter: 100s clusters, 100s TB of DRAM, 100,000s coresl?] S gy] oy SR g TR
»+ Meta, Pinterest... Q000400004 0000y, 0000

How to make caching more sustainable?

« Less DRAM: caching more useful objects

QOO0 0OO Q00O .. .
0003 {0000} {00003 fon (0003000 efficient caching
o CPU cores: faster and concurrent cache hits

[g o o e]
CPU CPU CPU CPU 1P <; CaChlng

[1] CliqueMap: Productionizing an RMA-Based Distributed Caching System, SIGCOMM’2|
[2] A large scale analysis of hundreds of in-memory cache clusters at Twitter, OSDI'20

The core of a cache

The need for simple and scalable cache eviction algorithm

« 60+ years of research on designing eviction algorithms: most are LRU-based

e Not scalable
. increasingly complex
UBM MQ TinyLFU HALP

CLOCK SLRU 2Q LRFU ARC LeCaR LRB
LRU LRU-K EELRU ACME LIRS LHD CACHEUS
—>
1960 -+ 1980 2000 2020

"Predicting which pages will be accessed in the near future is tricky, and the kernel
has evolved a number of mechanisms to improve its chances of guessing right. But
the kernel not only often gets it wrong, it also spend a lot of CPU time to
make the incorrect decision.”

— kernel developer/

10

A simple algorithm: FIFO eviction algorithm

 First-in-first-out (FIFO) @
» simpler than LRU

« fewer metadata

The only drawback:
FIFO has a high miss ratio

e NO computation
« more scalable

» flash-friendly

QuicK DEMOTION

Existing eviction algorithms focus on promotion

e] passive demotion traditionally

preference for eviction =—p

12

Demotion should be the first-class citizen

e] passive demotion traditionally

'\

Lazy promotion: only promote during eviction

O: not accessed, 1: has accessed

FIFO-Reinsertion

_JoJ{o)1 o)R

evict the next object , .
Benefits of lazy promotion

n . n u n O - less computation

e better decision

Insert a new object
« more efficient (lower miss ratio)

ojoll Jojlo]i1 foJfe

14

Lazy promotion: only promote during eviction

\\o 1|63U Bl FIFO-Reinsertion Why is FIFO-Reinsertion more efficient?
n = - ; . .
v 0 evict new objects faster!
O v 3
H .= Requests:B N A X
50 N o
= = A 1 \ = =
£ 0 \ N\ N\ N BB D C B A
— NI N , DN T, U
© - N D N %) >
DESANEE REN | ENASNIN - v
SV Yy sSuzZ0gTWn @ L T . .
Nt CaEZmal S not visited Evmted
n O GC) < = : _—
TTS U = Objects push N towards eviction
S= 0 S ©
= c WY IS LRU A X
@, ..CB S
V) FIFO-Reinsertion [A X B

Quick demotion: quickly evict new objects

« One-hit wonders: objects appeared once in the sequence
» Cache workloads: shorter request sequences have larger one-hit-wonder ratios

time 1 10 11 12 13 14 15 16 17
request | ﬁﬁ'_'_'_'_'_'f. C] C] % D ______________________ AR B AlB D

sequence length

. # one-hit wonder | one-hit wonder ratio
(# objects)

start time end time

1 17 5 1 (E) 20%
1 7 4 2 (C, D) 50%

16

Quick demotion: quickly evict new objects

« One-hit wonders: objects appeared once in the sequence

» Cache workloads: shorter request sequences have larger one-hit-wonder ratios

-

.

One-hit-wonder ratio of week-long traces at 10% length:
/2% (mean on 6594 traces)

N

Implication: most objects are not used before evicted

/

17

Observation

Most objects are not reused before evicted

-
=)
<

O
~
ok

O
Ul
©

—
N
ok

req
req |2
-req

0.001 0.0l 0.1 0.5
Cache size (fraction of objects in the trace)

O
o
o

Fraction of evicted objects

LRU cache running MSR workload

-
o
i

-
~
ok

O
U
Q

-
N
ok

-req |2
-req iz
-req

0.001 0.01 0.1
Cache size (fraction of objects in the trace)

Fraction of evicted objects

O
=)
o

LRU cache running Twitter workload

18

Quick demotion: quickly evict new objects

ARC: A SELF-TUNING, LOW OVERHEAD REPLACEMENT CACHE

Nlmrod Meglddo and Dharmendra S. Modha

four LRU queues

+ adaptive algorithm

dynamically, adaptively, 21k
recency and frequency components in an online and self-
tuning fashion. The policy ARC uses a learning rule to
adaptively and continually revise its assumptions about the
workload.

The policy ARC is empirically universal, that is, it empir-

substantial
the entire

ory levels:
: aetie is assumed
to be 51gmﬁcant1y faster than the auxiliary memory,
but is also significantly more expensive. Hence, the
size of the cache memory is usually only a fraction
of the size of the auxiliary memory. Both memories are

TinyLFU: A Highly Efficient Cache Admission Policy

LIRS: An Efficient Low Inter-reference Recency Set
Replacement Policy to Improve Buffer Cache Performance -

three LRU queues
+ a2 hew metric

Although LR v

in the buffer cache management, it is well known for its
inability to cope with access patterns with weak locality.
Previous work, such as LRU-K and 2Q, attempts to en-
hance LRU capacity by making use of additional history
information of previous block references other than only the
recency information used in LRU. These algorithms greatly

eplacement Policy

The effectiveness of cache block replacement algorithms is

critical to the performance stability of I/O systems. The

LRU (Least Recently Used) replacement is widely used to

manage buffer cache due to its simplicity, but many anoma-

lous behav1ors have been found with some typlcal workloads,
ere the o on o o

LHD: Improving Cache Hit Rate by Maximizing Hit Density

Nathan Reckmann

Haoxian Chen

Acaf Cidon

Cliffhanger: Scaling Performance Cliffs in Web
Memory Caches

Asaf Cidon!, Assaf Eisenman!, Mohammad Alizadeh?, and Sachin Katti!

ments in these systems can result in large end-to-end
gains. For example, a marginal increase in hit rate of
1% can reduce the application layer latency by over 35%.
However, existing web cache resource allocation policies

K104 OD

hit rate by just 1% would reduce the read latency by over
35% (from 376us at 98.2% hit rate to 278us at 99.2%
hit rate). The end-to-end speedup is even greater for user
queries, which often wait on hundreds of reads [26].
Web caching systems are generally simple: they have

HALP: Heuristic Aided Learned Preference Eviction Policy for
YouTube Content Delivery Network

The secret sauce of state-of-the-art algorithmes:

evicting new objects very aggressively

S3-FIFO Design

Simple, Scalable caching with three Static FIFO queues

%S

https://s3fifo.com @ Xy

20

https://s3fifo.com

$3-FIFO design

QuicK DEMOTION

e on cache'miss

1f not in ghost, else

struct object { l l

uintd8 t cnt:2;

} smal -
reilnsert
cnt—-

: on eviction

0 on cache hit 1f cnt <= 1, lelse

cnt++ ¢

21

S3-FIFO features

- Simple and robust: static queues

- Fast: no metadata update for most requests
- Scalable: no lock
e Tiny metadata: 2 bits

 Flash-friendly: sequential writes

22

Evaluation setup

« Data

« 14 datasets, 6594 traces from Twitter, Meta, Microsoft, Wikimedia, Tencent, Alibaba, major CDNs...
- 848 billion requests, 60 billion objects
« collected between 2007 and 2023

» block, key-value, object caches Data and software are open-sourced

« Platform ,(TE =
- libCacheSim, cachelib '?v_lih(‘arhpcim
« PDL cluster and CloudLab with 1 million core-hours

« Metric

e Miss ratio reduction from FIFO

 throughput in Mops/sec

23

S3-FIFO is efficient across datasets

A ARC < TinyLFU-01 V CACHEUS X 2Q O LIRS + LHD @ S3-FIFO
' v o okt &0

Wikimedia CDN
Meta CDN = MA@

TencentPhoto CDN + % A .
CDN 2 § % ?
CDN 1 o vIA @
Twitter KV

O
Meta KV

Social Network KV
Alibaba (block)
Tencent (block)
Systor (block)
CloudPhysics (block)
MSR (block)

fiu (block)

0 0.05 0.1 0.15 0.2 0.25
Mean miss ratio reduction from FIFO

Throughput scales with number of threads

V¥V LRU Optimized LRU ® S3-FIFO
32
)
O
o
Q 24
C
O
£ 16
5
Q
e
O g |fastest
0
e
— .v 'oo-o.........v v

Number of threads

6x

25

Recap tﬁ“

https://s3fifo.com

« S3-FIFO: simple, scalable caching with three static FIFO queues
 prevalence of one-hit wonders

- small FIFO queue: quickly evict one-hit wonders, reinsertion: keep popular objects

« The first work showing that

» S3-FIFO recognition and impact

« Covered by many blogs, newsletters, meetups in English, Chinese, Korean, Japanese...
. at Google, VMware, Redpanda...

« More than ten implemented S3-FIFO in Rust, C, C++, JavaScript, Python...

KO~

= FIFO =

— LRU =)

26

https://s3fifo.com

SIEVE

An eviction algorithm simpler than LRU

000000 o0 000 L]
e o0 L I J 00 o0
L 1] L] o o 4
e 0o e o0 [$-3-0-4
e
[)OOS 00 L]
e o 0 0 []
e & 000 L]
L] ® 0000 000 L] [L L ®
o o [3-4 [] 00 o0 e o 0 o0
® L] 0000006 006 o0 e 0000 e o
°0e o 000 00 0000 O L] *e ®
000 060 ¢ o o0 (1] LL N J (1 1]
e 6 &6 oo L 1] e o
0 00 000 o & 00
® L] []
(1 1] L] (1 1]

2 https://sieve-cache.com @

https://sieve-cache.com

The secret to designing efficient eviction algorithms

@ Retain popular objects with minimal effort

Remove unpopular objects fast, such as one-hit-wonders

28

SIEVE: combining lazy promotion and quick demotion
A small change turn FIFO-Reinsertion to SIEVE

FIFO-Reinsertion SIEVE

_Jlojlof o RN 1 (LloJlo)l 1){o Bk l

evict the next object evict the next object

ol Jlojlo) 1 o) NEN |LloJlo)l1 foJf

Insert a new object Insert a new object

LD ekl ek

O: not accessed, 1: has accessed

SIEVE features

« Extremely simple
« /ZERO parameter
 Fast and scalable

- Small per-object metadata

« TTL-friendly

30

Why does SIEVE work?

o Retain popular objects effectively

e Evict new objects quickly

» Separate new and old objects

insert evict insert

G

T
&

newly-inserted objects retained objects

offofloffoffr i1 fo

31

SIEVE achie

®

S i c 0.3
O 0.4- O
O O
> { -
g2 03 L] 590.2
oL 2y Th
OE021 M = A4 A 4 O &
58 TE Y M s 201l M ¥ |y |v
h o v v
= 0.0 J_ J_ J_ J_ J_ 1 , J_ il Il = 0.01 = - 2 T T T
R\% Q\C L ‘3‘0 Qf? Q\\B Q\\B CF N
(9\<<’ otV WV Q),\/ C\’O Q}\Q%\ef(/
‘?\\XQ 92

SIEVE reduces FIFO's miss
ratio by more than 42% on

10% of the traces (top
whisker) with a mean of 21%

=+
e
®
=
<

SIEVE also achieves the lowest miss ratio
on the well-studied Zipfian workloads

SIEVE achieves the lowest byte miss ratio

c 0.4 0.3 - .

S CDN1 + CDN2 % Wikimedia X LRU

3 0.3 = § s ARC

x O (©

s ¢ 0.21 X m X /., LRB

5'e 02 ” X X

TS v . . < X X SIEYE

.“Zﬂ 0.1- v v vV v v JRE ><; ></

" | g Y] Xl Xl >

SO N — HES N 5 5 M A B4 N /

2 = ><:::::/ ><:::::/ N é:::: Y4 3 4 /
0.0 L X XA Yo De A DA G

l ' ”.‘1/
1 2 5 10 20 40
Cache Size (X% Working Set, 8627 GB

Better than all state-of-the-art algorithms Small cache: better than ARC, close to LRB
Large cache: better than LRB

SIEVE throughput scales with the number of threads

— 60 1 — L rRU (optimized)
© % =
E 40 - SIEVE
=
o
L
5 20-
O
¥ -
12 4 8 16

Number of Threads

compared to optimized LRU:
16% with a single thread, 2x with 16 threads

34

SIEVE is simple to implement

Cache library | Language | Eviction algorithm | Lines of change
groupcache Golang LRU 21
mnemonist Javascript LRU 12

Iru-rs Rust LRU 16
Iru-dict Python + C LRU 21

Large systems: @

//;—» R
DNSCRYPY
4

Cache libraries: g?;

35

SIEVE can be used as a cache primitive

LeCaR: LRU + LFU + ML % 0.4-
29
TwoQ: LRU + FIFO AT
8 g 02‘ 4 v v v
ARC: LRU + LRU + 2 ghost queues o =
9 0.0LT T T T
2 SIEVE LeCaR TwoQ ARC

SIEVE can be used as a cache primitive

Original replace LRU with SIEVE

LeCaR: [LRU & LFU + ML % 0.4-
20
TwoQ: |LRU+ FIFO g
_‘% g 0.21 l v v v v v | V|
ARC: |LRU|+ LRU + 2 ghost queues o =
_ng O_O__l_ _LIJ_ ",J_ ——
SIEVE LeCaR TwoQ ARC

Replace LRU with SIEVE

SIEVE has been widely used

- SIEVE is available in 20+ cache libraries with 12 programming languages
» Production systems integrated SIEVE: Pelican, SkiftOS, DragonFly...

% Richard Artoul &2
ZIG < ¥ @richardartoul
Turns out Ristretto cache is *async*.. | switched WarpStream's footer

. cache from Ristretto to golang-fifo (Sieve algo) and got a 33x reduction
s & Do o o S a0 2

in cache misses and 16% CPU savings...

Cache Loads

| » i Richard Artoul = Updated 4 minutes ago
‘—,
l I y \‘ . '{ i1 Zasiy I 0 0 W
sum:warpstream outcome{service:w.. O Vv

|
»
(o]
o
Q.
Q.
_—
(e}
|
(9]
Q
(9]
= &
®
|
¥
(@]
(o)
2
(]
|
i
]

@ python C:) :
J%E% TypeScript

9:35 PM - Jan 20, 2024 - 17.3K Views

Summary

« Two techniques

« Lazy promotion
« Quick demotion S3-FIFO

Simplicity SIEVE
» S3-FIFO: simple, scalable caching with three /

static FIFO queues *
e Efficiency, Scalability
- small queue for filtering

« main queue with reinsertion

» SIEVE: the simplest algorithm combining lazy
promotion and quick demotion

https://s3fifo.com https://sieve-cache.com

39

https://sievecache.com/
https://s3fifo.com

How we can build better storage systems together

hardware
access

workload
sharing

Collaborations

Juncheng Yang
https://junchengyang.com

