
1 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

QEMU NVMe Emulation
What’s New
Presented by

Klaus Jensen Samsung Electronics (SSDR, Denmark)
Padmakar Kalghatgi Samsung Electronics (SSIR, India)
Naveen Nagar Samsung Electronics (SSIR, India)

2 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Disclaimer

This presentation and/or accompanying oral statements by Samsung representatives collectively, the
“Presentation” is intended to provide information concerning the SSD and memory industry and Samsung
Electronics Co., Ltd. and certain affiliates (collectively, “Samsung”).While Samsung strives to provide information
that is accurate and up-to-date, this Presentation may nonetheless contain inaccuracies or omissions. As a
consequence, Samsung does not in any way guarantee the accuracy or completeness of the information provided
in this Presentation.

This Presentation may include forward-looking statements, including, but not limited to, statements about any
matter that is not a historical fact; statements regarding Samsung’s intentions, beliefs or current expectations
concerning, among other things, market prospects, technological developments, growth, strategies, and the
industry in which Samsung operates; and statements regarding products or features that are still in development.
By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and
depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking
statements are not guarantees of future performance and that the actual developments of Samsung, the market, or
industry in which Samsung operates may differ materially from those made or suggested by the forward-looking
statements in this Presentation. In addition, even if such forward-looking statements are shown to be accurate,
those developments may not be indicative of developments in future periods.

3 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Outline

Emulated NVMe Introduction
New Features, including
 CMB/PMR enhancements
 Namespace Management and Endurance Group support
 End-to-End Data Protection
 Namespace Sharing and Reservations
 NVMe-MI support

Rounding up

4 | ©2021 Storage Developer Conference © Samsung Electronics. All Rights Reserved.

Emulated NVMe Introduction

5 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Emulated NVMe

There are several emulated and virtual NVMe
controllers available
 QEMU Emulated PCIe-based NVMe controller (the topic of this talk)
 SPDK virtual controller (initially intended for fabrics, but check out the exciting

work on vfio-user by the SPDK team and Nutanix)
 Linux Kernel nvmet (virtual fabrics target)

6 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Emulated NVMe

Feature and compliance wise, the QEMU emulated
NVMe controller is the most complete
 Not intended to provide high performance, compliance, correctness and (to a

lesser degree), feature completeness, are the primary concerns
 As Keith (maintainer and creator of the device) put it…

 “Performance improvements are welcome as long as
we don’t harm protocol correctness or maintainability”

7 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

A note on “Feature Completeness”

To fake or not to fake a feature
 We try not to bloat the device; rely on system support whenever possible
 Some features are useful for compliance testing, but may not be appropriate for

upstream QEMU
 If the feature requires extensive “faking” (i.e. Write Uncorrectable) and is of limited use to

driver and application developers, it will not be merged and maintained upstream
 Notable exceptions

 Zoned Namespace (zones are faked, but the value of the feature is very clear)
 End-to-End Data Protection (compute-heavy, but value is high)

Some features mentioned in this talk are not upstream, but available as
patches on github.com/OpenMPDK/qemu-nvme-compliance

8 | ©2021 Storage Developer Conference © Samsung Electronics. All Rights Reserved.

New Features

9 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

DULBE Support

A logical block that has never been written to, or
which has been deallocated, is called a “deallocated or unwritten logical
block”
 The NVMe Error Recovery feature allows host software to detect such blocks

when reading (enabled with the Set Features command)

 In NVMe, logical blocks may be marked deallocated by
 Write Zeroes (always guarantees that zeroes will be read back)
 Dataset Management with Deallocate (advisory; the device may take no action

what so ever)

10 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

DULBE Support

The QEMU block layer provides block status
information through a set of “block status flags”
 Reported by the bdrv_block_status() function
 Discards (pdiscard) and write zeroes (pwrite_zeroes) may explicitly mark

blocks as zeroed
 Adds the BDRV_BLOCK_ZERO flag

11 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Deallocation through Write Zeroes

 Multiple factors affect when blocks are assigned the BDRV_BLOCK_ZERO flag as the
result of write zeroes (pwrite_zeroes)
 The underlying file system logical block size
 The block device format (raw, qcow2, etc.)

 raw relies on “hole punching”
 qcow2 manages allocation status in metadata

 The block device discard parameter

Size of pwrite_zeroes()
Format Discard 512B 4KiB 64KiB
qcow2 ignore n n y
qcow2 unmap n n y
raw ignore n y y
raw unmap n y y

12 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Deallocation through Write Zeroes

 Multiple factors affect when blocks are assigned the BDRV_BLOCK_ZERO flag as the
result of write zeroes (pwrite_zeroes)
 The underlying file system logical block size
 The block device format (raw, qcow2, etc.)

 raw relies on “hole punching”
 qcow2 manages allocation status in metadata

 The block device discard parameter

Size of pwrite_zeroes()
Format Discard 512B 4KiB 64KiB
qcow2 ignore n n y
qcow2 unmap n n y
raw ignore n y y
raw unmap n y y

Holes can only be “punched”
in granularity of the file

system logical block size

13 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Deallocation through Write Zeroes

 Multiple factors affect when blocks are assigned the BDRV_BLOCK_ZERO flag as the
result of write zeroes (pwrite_zeroes)
 The underlying file system logical block size
 The block device format (raw, qcow2, etc.)

 raw relies on “hole punching”
 qcow2 manages allocation status in metadata

 The block device discard parameter

Size of pwrite_zeroes()
Format Discard 512B 4KiB 64KiB
qcow2 ignore n n y
qcow2 unmap n n y
raw ignore n y y
raw unmap n y y

The qcow2 format manages
allocation in “clusters” of 64 KiB

14 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Deallocation through DSM

The implementation of DSM uses discards (which
are advisory)
The same factors affect when blocks are marked zeroed by discards

(pdiscard)
 However, ‘discard=ignore’ completely disables the operation

Size of pdiscard()
Format Discard 512B 4KiB 64KiB
qcow2 ignore n n n
qcow2 unmap n n y
raw ignore n n n
raw unmap n y y

15 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

DULBE Support

Thus, the preferable setup for utilizing DULBE support is
 an image in raw format, and
 logical_block_size set to the native logical block size of the underlying file

system (or block device)

Depending on the configuration, the device will set appropriate values in
Namespace Preferred Deallocate Granularity (NPDG) and Alignment
(NPDA) fields

16 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Namespace Types and Zones

Merged series to support
 Namespace Types (TP 4056) – (Niklas)

 Namespace type specific identify structures (common, NVM and Zoned specific)
 Zoned Namespaces (TP 4053) – (Dmitry)

 Emulated support for zones
 Zone Append

See talks by Dmitry and Klaus for details (SDC ‘20)

17 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Namespace Sharing

A Shared Namespace refers to a Namespace that may be accessed
concurrently by two or more Controllers within the same NVM
Subsystem
 Quite useful for testing advanced drivers and multi-path I/O

Requires adding the concept of an NVM Subsystem
 Implemented as a “bus-less” and “un-rooted” -device

 Added subsys link parameter on controller device to plumb it to a subsystem

18 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Aside – QEMU Model Relationships

QEMU offers two standard ways of “wiring up”
device models
 Explicitly through a special named “link” property

 Unidirectional “reference-style” relationship
 Implicitly through “device busses” (explicitly through a “bus” parameter)

 Bidirectional relationship – devices know their parent bus and busses know its children
 Strict tree – devices can create one or more busses but a device can be

attached to one, and only one, parent bus
 A lot of additional functionality

 Automatic address assignment
 Automatic clean-up

19 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

QEMU Emulated NVMe Devices Wiring

(device) nvme

-device nvme-ns

-device nvme-ns

(bus) main-system-bus

(device) q35-pci-host (bus) pcie.0

(bus) nvme-bus

no parent

20 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Automatic device “unrealization”

 If a device is removed, all devices on child busses
are recursively unrealized
 This design made a lot of sense when multiple namespace

support was merged (waaaay back in 2019)

 And this should be a good thing…
… but if we add subsystems and shared namespace functionality to the mix…
… not so much

21 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) nvme-bus

(bus) main-system-bus

Adding an NVM Subsystem

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

subsystem references
obtained through link on

bus parent

22 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) nvme-bus

(bus) main-system-bus

Adding another NVMe Controller

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

subsystem references
obtained through link on

bus parent

(device) nvme (bus) nvme-bus

The nvme-ns devices registers with
the subsystem and if shared=on,
they become “attached”(in NVMe

terms) to both controllers

23 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) nvme-bus

(bus) main-system-bus

Adding another NVMe Controller

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

subsystem references
obtained through link on

bus parent

(device) nvme (bus) nvme-bus

The nvme-ns devices can
only be attached (in QDev

terms) to 1 nvme-bus

24 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) nvme-bus

(bus) main-system-bus

Removing an NVMe Controller

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

subsystem references
obtained through link on

bus parent

(device) nvme (bus) nvme-bus

What happens if we remove
(device_del, aka hot-plug)

the first controller?

25 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) nvme-bus

(bus) main-system-bus

Removing an NVMe Controller

(device) nvme

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

subsystem references
obtained through link on

bus parent

(device) nvme (bus) nvme-bus

The nvme-ns devices are
automatically unrealized

26 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

(device) nvme-subsys

busless

(bus) main-system-bus

Fixing the mess

-device nvme-ns

-device nvme-ns

(device) q35-pci-host

no parent

(bus) pcie.0

explicit device link

re-parent the nvme-ns devices in
the presence of a subsystem

(device) nvme (bus) nvme-bus

Add another instance of
nvme-bus to the subsystem

device and re-parent the
nvme-ns devices if a

subsystem is configured

(bus) nvme-bus

(device) nvme (bus) nvme-bus

27 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Rethinking the model

What if… Subsystems and Namespaces were not modeled as devices
 Neither subsystems or namespaces expose virtual hardware (e.g. memory,

IRQs,…) to the guest
 Fundamentally, they are just concepts in a device model that happen to benefit

design-wise from being independent devices

User creatable objects (-object) might be more appropriate

28 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

The hw/nvme “devpocalypse”

RFC patch series posted mid September
 13 files changed, 2612 insertions(+), 1164 deletions(-)
 Ouch…

Major refactoring of the hw/nvme subsystem
 Introduces NVM Subsystems and Namespaces as user creatable objects

Goodbye implicit bus’ing – Hello explicit topology!

29 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

The hw/nvme “devpocalypse”

 Series goals
 Introduces a new experimental controller device (x-nvme-ctrl)
 Introduces new experimental user creatable objects

 x-nvme-ns-{nvm,zoned}

 x-nvme-subsystem

 Exploits QEMU Object Model inheritance
 The x-nvme-ns abstract object provides the base implementation of NVMe namespace types
 The x-nvme-ns-zoned derives from the x-nvme-ns-nvm object

 Retains backwards compatibility by keeping the existing devices around
 Uses the new object code internally, no code duplication
 Deprecate the subsystem and namespace devices as the experimental objects stabilizes

30 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

The hw/nvme “devpocalypse”

Perks of introducing brand new models
 Easy clean-up of some confusing device parameters

 Controller
 msix_qsize → max-irq-vectors
 aer_max_queued → max-aer-retention

 Remove num_queues, use-intel-id
 Namespace

 Fix Simple Copy related parameters that should have been defined in bytes and not LBAs
 Remove the eui64-default compatibility parameter
 detached, shared → attach-to

 Subsystem
 nqn → subnqn

31 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

The hw/nvme “devpocalypse”

 Set up a subsystem
-object x-nvme-subsystem,id=subsys-1

 Adding controllers
-device x-nvme-ctrl,id=ctrl-1,subsys=subsys-1
-device x-nvme-ctrl,id=ctrl-2,subsys=subsys-1
-device x-nvme-ctrl,id=ctrl-3,subsys=subsys-1

 Adding namespaces and attach to specific controllers
-object x-nvme-ns-nvm,id=ns-nvm-1,subsys=subsys1, \

attached-to=ctrl-1, \
attached-to=ctrl-3

-object x-nvme-ns-zoned,id=ns-zoned-1,subsys=subsys1, \
attached-to=all

32 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

CMB/PMR
Enhancements

33 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

CMB/PMR Enhancements

NVMe 1.4 introduces major enhancements with
regards to CMB/PMR.
Host driver needs to explicitly configure the CMB/PMR BAR Addresses

in CMBMSC/PMRMSC fields.
This helps in avoiding DMA misrouting from the Guest OS.
QEMU has implemented the above enhancements meant for NVMe 1.4.
QEMU emulates the CMB/PMR region by allocating a memory region

on the Host OS.

34 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

CMB/PMR Enhancements

QEMU has handled invalid use of CMB in case of
certain commands when host tries to write data into CMB.

The Persistent Memory Region (PMR) is an optional region of general
purpose PCI Express read/write persistent memory.

Users can specify as part of launch command for QEMU the required
size of CMB buffer and memory backend file for PMR.

35 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

C
M
B

Hypervisor

VM

1. Initiate a transaction with memory mapped
CMB address

3. Initiate a transaction with CMB address which is
Memory mapped on VM.

DMA misrouting explained

C
o
n
t
R
O
L
L
E
r

2. Address is translated
to CMB properly

4. Address cannot be
Translated to CMB, since

Device doesn’t know this
address.

36 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

To configure the CMB\PMR address, the Guest must first configure the
CRE field (Capabilities Register Enable). After which the QEMU will
configure CMBSZ and CMBLOC parameters.

Once the CRE is configured, the Guest can configure the CBA (Controller
Base Address) and CMSE (Controller Memory Space Enable).

If the CBA field is valid i.e the address falls within the range specified and
CMB’s CBA doesn’t overlap with the PMR and vice versa then then CBAI
(Controller Base Address Invalid) field will be set to ‘0’ otherwise it will be
set to ‘1’.

37 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Namespace
Management

38 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Understanding NVMe Namespaces

 In NVMe subsystem, a namespace is a quantity of
non-volatile memory storage that may be formatted into logical blocks.
A namespace ID (NSID) is an identifier used by a controller to provide

access to a namespace.
Namespace Management provides an interface for the host to manage

the multiple namespaces .
Supports Namespace creation and deletion.
Supports Namespace sharing across controllers in Subsystem.

39 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

NSID Types

 Fig: NSID Types (Ref: https://nvmexpress.org/)

40 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Namespace Creation

At run time, namespace can be formatted with the specified attributes
 FLBAS (LBA data size and Metadata size combinations)

 Namespace Size (NSZE)

 End-to-end Data Protection Type Settings (Type 1, or, 2 or 3)

 Namespace Sharing Capabilities (NMIC)

41 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Design Implementation in QEMU

Add N number of nvme-ns devices and only allocated
namespaces i.e size of the underlying drive is non zero will show up in
guest vm.
A new parameter tnvmcap is introduced to ensure that combined

capacity of all the created namespace should not exceed tnvmcap
Size of underlying drive for unallocated namespaces is 0.
Namespace creation will grab an unallocated namespace and initialize

it with a certain size that host specifies. We use block truncate to
change the block device size from 0 to NSZE provided by host.

42 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Example QEMU invocation

qemu-system-x86_64 \
… \
-device nvme-subsys,id=subsys0,tnvmcap=8
-device nvme,id=nvme0,serial=ctrl1,subsys=subsys0 \
-device nvme,id=nvme1,serial=ctrl2,subsys=subsys0 \
-drive id=ns1,file=ns1.img \
-device nvme-ns,nsid=1,bus=nvme0,drive=ns1 \
-drive id=ns2,file=ns2.img \
-device nvme-ns,nsid=2,bus=nvme0,drive=ns2\

43 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

EEDP

44 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

End-to-End Data Protection (EEDP)

NVMe provides support for metadata for the logical blocks. These
metadata can be used for data protection of the logical block.

The metadata can be of varying length from 8 to 128 bytes whereas the
Protection Information , as per NVMe 1.4 specification, in the metadata
can be of only 8 bytes.

Nvme specification provides two main types of metadata i.e DIF (Data
Integrity Field) and Data Integrity Extension (DIX). In the former (DIF),
the metadata is contiguous to the logical block whereas in the latter
(DIX) it is separate from the logical block.

45 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

.. continued

LBA 0
Data

LBA 0
Metadata

LBA 1
Data

LBA 1
Metadata

LBA 2
Data

LBA 2
Metadata

LBA n
Data

LBA n
Metadata

LBA 0
Data

LBA 1
Data

LBA 2
Data

LBA n
Data

LBA 0
MetaData

LBA 1
MetaData

LBA 2
MetaData

LBA n
MetaData

DIF

DIX

46 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

.. continued

As mentioned, Protection Information consists of 8 bytes of data of which 2
bytes is the Guard tag, 2 bytes is the Application tag and the rest 4 bytes is
the Reference tag. It is as shown below.

Guard tag -> CRC calculation over
the LBA data

Reference Tag -> Contains the
logical block number which the
metadata represents to prevent
out-of-order data.

47 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

.. continued

To support DIF/DIX format and to store data, QEMU provides block
image files.

Since DIF stores the block data and metadata in contiguous manner
one nvme image is sufficient but as DIX supports separate metadata ,
qemu creates a different block image for the metadata.

QEMU provides EEDP support for Write, Read, Compare, Write Zeros, Copy
and Verify Commands

48 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Endurance Groups

49 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Endurance Group

ENDURANCE GROUP

NS
1

NS
2

NS
3

NS
4

NS
n

NS
n+1

NS
n+2

NS
n+3

NVM set 1 NVM set 2

50 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

 Endurance group contains grouping of one ore more
NVM sets, which in turn contains the grouping of one or more Namespaces.
 Endurance group enables separation of the media units. If better managed,

this feature provides in improving the life of the SSD.
 This feature provides the user in better management of the storage for eg: by

having NAND type tied to a particular Endurance group.
 QEMU has provided the support for Endurance group log page, Endurance

group aggregate log page and AER generation in case of critical warning.
 As it is an emulator, QEMU has provided an “HMP” command to trigger

critical warning AER for the Endurance Group.

51 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

HMP
terminal

nvme-cli

QEMU
NVMe

1. Issue HMP set critical warning
for Endurance group

2. Raise AER for the given
Endurance group

Guest VM QEMU host

52 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Reservations Overview

53 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Introduction

Reservations provide capabilities that may be utilized by two or more
hosts to provide coordinated access to a shared namespace
Reservations are on a namespace and restrict host access to that

namespace

54 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Dual Port Logical View

 Fig: NVM Subsystem with Two Controllers and Two Ports (Ref: https://nvmexpress.org/)

55 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Types Of Reservation Commands

56 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Reservation Register

The Reservation Register command is used to register, unregister, or
replace a reservation key. It uses Command Dword 10 and a
Reservation Register data structure in memory

 nvme resv-register <device> [-n <nsid>] [-c <crkey>][-k <nrkey>][-r
<rrega>][-p <cptpl>][-I]

57 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Reservation Acquire

The Reservation Acquire command is used to acquire a reservation on
a namespace, preempt a reservation held on a namespace, and abort a
reservation held on a namespace. It uses Command Dword 10 and a
Reservation Acquire data structure in memory.

 nvme resv-acquire <device> [-n <nsid>][-c <crkey>][-p <prkey>][-t
<rtype>][-a <racqa>][-I]

58 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Reservation Release

The Reservation Release command is used to release or clear a
reservation held on a namespace. It uses Command Dword 10 and a
Reservation Release data structure in memory

 nvme resv-release <device> [-n <nsid>][-c <crkey>][-t <rtype>][-a
<rrela>][-I]

59 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Reservation Report

 It returns information about current reservations that describes the
registration and reservation status of a namespace.
 nvme resv-report <device> [-n <nsid>][-d <num-dwords>][-c <cdw11>][-

b][-o <fmt>]

60 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Command Behavior In Presence of a Reservation

Fig: Command Behavior in presence of Reservation (Ref:
https://nvmexpress.org/)

61 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Practical Example

 Let 3 Hosts are available in subsystem with host identifiers as HostID_A, HostID_B and HostID_C
 Host A - Register (NSID, Key_A) -> ok
 Host B - Register (NSID, Key_B) -> ok
 Host A - Acquire (NSID, ExclusiveAccessRegistrantsOnly, Key_A) -> ok
 Host C - Acquire (NSID, ExclusiveAccessRegistrantsOnly, Key_C) -> error
 Host A - Write (NSID) ->ok
 Host B - Read or Write (NSID) ->ok
 Host C - Read or Write (NSID) -> error
 Host A - Release (NSID, Key_A) ->ok
 Host C - Write (NSID) ->ok

62 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Implementation in Qemu Device

Map Data Structure is used inside subsystem
typedef struct NvmeReservations {
int nsid;
int rtype;
bool rstatus;
int curr_key;

} NvmeReservations;

 NvmeReservations *reservations[max_controllers][max_namespaces];

63 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

NVMe-MI in QEMU

64 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

QEMU-MI

We have proposed and implemented a new feature to be
enabled in QEMU i.e. NVMe-MI.

 At present , QEMU supports NVMe over PCIe transport. However, our
implementation is submitted as an RFC for enabling NVMe-MI over i2c in
QEMU.

 To enable testing of QEMU-MI interface, we have also implemented the
sideband interface in nvme-cli as a plugin.

 This will enable early validation of various modules (TestSuite/Platform)
pertaining to MI before the arrival of actual device.

65 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

 Following commands are implemented in QEMU-MI module
 Read nvme-mi data structure
 Get config
 Set config
 Vpd read/write
 Identify
 Get logpage
 Get features

 Work is in progress to implement rest of the features and commands.

66 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

..continued

QEMU-MI

Guest VM QEMU host

nvme-cli
smbus/i2c interface

67 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Administrative
Controller

68 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Administrative Controller

• NVMe 1.4 specification defines different controller
type viz. IO Controller, Admin controller and Discovery controllers.

• IO controller mainly focuses on commands that access logical block
data, whereas Administrative controller focusses on commands that
provide management capabilities.

• Below figure depicts the different Controller types supported in NVMe.

Fig: Controller Types (Ref: https://nvmexpress.org)

https://nvmexpress.org/

69 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

.. continued

 QEMU implements Administrative Controller feature
by providing the support for Controller Type (CNTRLTYPE) field in Identify
Controller to inform the host what kind of Controller it is.

 Also, QEMU prohibits the command like Create I/O SQ/CQ and Delete I/O
SQ/CQ which are not meant for Administrative Controller.

 In the launch command, “cntrl_type” parameter can be set to “3” if one wants
the controller to be Administrative Controller.

-device nvme,serial=<serial>,id=<bus_name>, cntrl_type=3

70 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Namespace Write Protect

71 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Namespace Write Protection Config

NVMe 1.4 specification provides Namespace Write Protection
Config feature using which host can control the write protection state
of the Namespace.

There are 4 states viz, No Write Protect, Write Protect,
Write Protect until power cycle, Permanent Write Protect.

Fig: Namespace Write Protection State model (Ref: https://nvmexpress.org/ NVMe1.4b)

https://nvmexpress.org/

72 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

.. continued

As qemu emulation doesn’t support Power cycle, we have added a QMP
command to emulate a power cycle from host and change the
Namespace Write Protect state.

Also, since the state/s in qemu cannot be persistent, we have provided
an option in launch command to emulate the “Permanent Write
protection state” configuration.

-device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>, subsys=<subsys_id>, perm_wr_protect=<true|false>[optional]

73 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Rounding up

Several new features introduced this year
 Helps developers test drivers and applications

The QEMU Emulated NVMe device continues to be an active
subsystem of QEMU, with increasing number of contributors
 Like any open source project, we are always looking for new contributors,

reviewers and people willing to test!

74 | ©2021 Storage Developer Conference © Samsung Electronics. All Rights Reserved.

Thank You!

75 | ©2021 Storage Networking Industry Association © Samsung Electronics. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	QEMU NVMe Emulation�What’s New
	Disclaimer
	Outline
	Emulated NVMe Introduction
	Emulated NVMe
	Emulated NVMe
	A note on “Feature Completeness”
	New Features
	DULBE Support
	DULBE Support
	Deallocation through Write Zeroes
	Deallocation through Write Zeroes
	Deallocation through Write Zeroes
	Deallocation through DSM
	DULBE Support
	Namespace Types and Zones
	Namespace Sharing
	Aside – QEMU Model Relationships
	QEMU Emulated NVMe Devices Wiring
	Automatic device “unrealization”
	Adding an NVM Subsystem
	Adding another NVMe Controller
	Adding another NVMe Controller
	Removing an NVMe Controller
	Removing an NVMe Controller
	Fixing the mess
	Rethinking the model
	The hw/nvme “devpocalypse”
	The hw/nvme “devpocalypse”
	The hw/nvme “devpocalypse”
	The hw/nvme “devpocalypse”
	CMB/PMR Enhancements
	CMB/PMR Enhancements
	CMB/PMR Enhancements
	..continued
	..continued
	Namespace Management
	Understanding NVMe Namespaces
	NSID Types
	Namespace Creation
	Design Implementation in QEMU
	Example QEMU invocation�
	EEDP
	End-to-End Data Protection (EEDP)
	.. continued
	.. continued
	.. continued
	Endurance Groups
	Endurance Group
	..continued
	..continued
	Reservations Overview�
	Introduction
	Dual Port Logical View
	Types Of Reservation Commands
	Reservation Register
	Reservation Acquire
	Reservation Release
	Reservation Report
	�Command Behavior In Presence of a Reservation
	Practical Example
	Implementation in Qemu Device
	NVMe-MI in QEMU
	QEMU-MI
	..continued
	..continued
	Administrative Controller
	Administrative Controller
	.. continued
	Namespace Write Protect
	Namespace Write Protection Config
	.. continued
	Rounding up
	Thank You!
	Please take a moment to rate this session.

