STORAGE DEVELOPER CONFERENCE

gs D <2|: Virtual Conference
> September 28-29, 2021

BY Developers FOR Developers

Asynchronous /O passthru
IN NVMe-Native Appllcatlons

Presented by

Kanchan Joshi Simon Lund Javier Gonzdlez
Samsung Semiconductor Samsung Semiconductor Samsung Semiconductor Y
India Research Denmark Research Denmark Research

(SSIR) (SSDR) (SSDR)

Foreword & Acknowledgement

= This has elements that are under discussion in LKML
= And few have not been discussed yet
» Mechanism, Opcode, API etc. may change in future

* The work presented here is a community effort
* Feedback, ideas and code have come from many contributors!
= Jens Axboe, Christoph Hellwig, Keith Busch to name a few

2 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

STORAGE DEVELOPER CONFERENCE
; . 21

i
o

Agenda

1. NVMe Generic Device in the Linux Kernel
» Enable an in-kernel passthru /O Path
= Support all NVMe device features

2. Async IOCTLs in the Linux Kernel

* Provide a performant and scalable /O path for driver passthru
» Generic layer in io_uring. Specific support for NVMe

3. Application enablement through xNVMe
* Provide a storage API with cross I/O Path and cross OS support
» Characterization with real-world numbers

STORAGE DEVELOPER CONFERENCE
i
3| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

Raw Block Iin Linux

= _owest API for block I/O in Linux

= Control over LBA address space
= Control over raw I/O properties (e.g., async/sync, direct/cached, queue depth)
» Block device (namespace) granularity

= A common block abstraction comes with (natural) limitations

= Unsupported data protection schemes (Pl DIF/DIX)
= Constrains on new device types (e.g., NVMe ZNS) File-System || Device _
G File I/O G Block 1/0 J1 J:\:r

" Ri Se Of S P D K In-Kernel I/0 Path

Enable domain-specific I/O paths and block devices
Pave the way for a low-latency storage stack
Support fast innovation in end-to-end deployments

Mounted Block

SPDK

User Space

[]
Kernel-bypass I/O Path

Kernel Space

[_viseps |
Becoming generic comes with redundancy e][s][wwe]|

Device

STORAGE DEVELOPER CONFERENCE
i
4 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

NVMe Generic Device

Q
O
Mounted File- : _ .
§ ounted File Block Device Generic Device SPDK
_ System
w .
5) Fleljo J_b Block1/0 J L priver 10cTLs D;\"I;fr
In-Kernel /0O Path
T
- - _ S
o
S = S
© 4 ; 2]
S n
d ﬁ S
e [e | :
5 3
2 | Blocklayer | S
>~ o
" g

Device

5| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

= Generic Device

Always available

In-kernel passthru

Kernel security (e.g., cgroups)
Char device per namespace

Upstream in NVMe (5.13)
= |[OCTL I/O
= Tool support ongoing

STORAGE DEVELOPER CONFERENCE
. 21

= Enumeration

= Nvme-cli can list [1]
= Nvme-cli can issue |/O (already upstream)

= How application can use

= Send any nvme command via passthru interface
= Current transport - via NVMe Driver IOCTL
= Future transport - via io_uring

ons nvme_ns_chr_fop

= How to enable over fabrics (NVMe-oF)

= Automatic, when block-interface (/dev/nvmeOn1) is up

= When it is not, enable passthru controller
(CONFIG_NVME_TARGET PASSTHRUY

[1] https://github.com/joshkan/nvme-cli/tree/standalone list ng

6 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

1 echo 1 » fsys/kernel/config/nvmet/subsystems/testngn/passthru/enable

Set device nvmeB® as the controller we want to expose over the fabric
echo -n fdev/nvmed > /sys/kernel/config/nvmet/subsystems/testngn/passthru/device_ path

| TR, — S g

STORAGE DEVELOPER CONFEREMCE

=SDc¢C

https://github.com/joshkan/nvme-cli/tree/standalone_list_ng

Async IOCTLs

....the io_uring way

STORAGE DEVELOPER CONFERENCE

-
7| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

9 -
=

What is io_uring (in a nutshell)

= Scalable asynchronous |0 infrastructure

» File 10 as well as Network 10
= Async without needing O_DIRECT (unlike “linux aio”)

= Extensible - rapidly adding async variants of sync syscalls
» mkdir, link, symlink: few recent ones

* User-Kernel communication scheme
= App/Kernel communicate over shared ring-buffers (SQ and CQ)

» Reduce syscalls & copies
= Prepare 10: Get SQE from SQ ring, and fill it up (fill more to make a batch)
= Submit 10: By calling io_uring_enter
= Complete 10: Reap CQE from CQ ring
= Submission can be offloaded (no syscall)
= Completion can be polled (interrupt-free 10)
= Faster |0 through io_uring https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

8 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

APP

(D) submitsqe Reap CQE
| ®
| |
);Q\/—)EEC User
\<_|_>/ \<_|>/ Kernel
@Brocess m b @
SQE l ost CQE

File-provider
(FS, Block-dev etc.)

@ Execution

STORAGE DEVELOPER CONFERENCE

=SDc¢C

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

VIS S SO DO

Asynchronous IOCTL.: user-interface

= ‘uring cmd’: IOCTL-like async facility
= New opcode IORING_OP_URING_CMD

= Anew ‘command’ SQE (CSQE) to be used
= CSQE = Specialized SQE with 40 bytes of free-space
» Useful for avoiding allocation (for IOCTL cmd) cost
= Can be used in other way too (e.g. pointer to larger IOCTL cmd)
= Submit CSQE and reap completion, as usual
<«——— 64Bytes —»

SQE

openl(dev, 0O_RDONLY);

CSQE

40 Bytes

Payload

@ Store inline @ Keep pointer to it
ioctl (fd, CMD_OPCODE, arg)

i
9 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

STORAGE DEVELOPER CONFEREMCE

| e Sl sl el L e TR IS N SO DO e N

Asynchronous IOCTL: under the hood

= jo_uring prepares ‘structio_uring_cmd’

i loff_t pos_out,
ied 1nt remap flags);

int (*fadvise)(struct file *, loff_t, loff_t, int);

} randomize layout;

= Provider (FS, driver etc.) need to implement async

behavior
oo m

= Implement new method uring_cmd in struct file_operations

loctl provider

Short) E fop->uring_cmd(io_uring_cmd*) R
» Jo_uring submits IOCTL by calling uring_cmd method I
= Provider does what it should (for submission), and returns without ; return -EIOCBQUEUED

blocking !

= Provider can return the result immediately

= Or returns in future, by calling io_uring_cmd_done() ,
io_uring_cmd_done(io_uring_cmd*,ret) | o, completion

= Jo_uring puts result into CQE and posts it to the CQ ring

B W

= Jens v4 series: https://lore. kernel.org/linux-
nvme/20210317221027.366780-1-axboe@kernel.dk/

STORAGE DEVELOPER CONFEREMCE

i
10 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

NVMe passthru interface

= NVMe passthru interface — as of today

APP

= = Good part
Speak tabl
Pes ¢a = = [n-kernel path that cuts through layers of abstraction
IE‘ DB APP = Enables new device-features to be consumed (in native form) readily
_Q abstraction = Block/file generic in-kernel interfaces/users, and user-space interfaces may take time to evolve
User
----- l------|-------|---------- = Bad part
Kernel - Speak files z'l"eakk = Transport (from user to kernel) is only via synchronous ioctl()
ocC
¢ ¢ ig:ilé = That renders it virtually useless for fast I/O path
FS abstraction (Blocking) .
= NVMe passthru interface — of future (hopefully)
Block abstraction = Scalable enough to leverage performance-aspect of NVMe
features (beyond read/write)
Driver: SCSI, NVMe = Move along performance advancements of io_uring
7 = TL;:DR: much more useful passthru interface!

Device: SCSI, NVMe

STORAGE DEVELOPER CONFERENCE

i
11| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

NVMe passthru: async transport

= NVMe ioctl() operation

= Sync-over-Async
Device interface is ‘naturally’ async

Host submit commands into NVMe SQ, attime T
Device posts completion into NVMe CQ, attime T+ AT

Driver puts the submitter go into blocking-wait until completion arrives

* nvme uring_cmd() operation

» Decouples completion from submission; no blocking-wait

» The ‘async-update-to-user-memory’ problem

user-resident fields (in ioctl cmd) may need to updated as part of
completion

But completion, when arriving in interrupt-context, can not safely do

Thankfully Kernel has task-work infra

Driver, while in interrupt context, schedules update to be done in
submitter’s context

12 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

In user context

NVMe Driver NVMe Device

fop->uring_cmd(io_uring_cmd*)

Submitinto SQ _
return -EIOCBQUEUED

<
l

. Completion into CQ
io_uring_cmd_complete_in_task(io_uri <

ng_cmd *, driver_chb)

t"""'_
4

driver_cb(io_uring_cmd *)

A

Update user-
resident fields |

io_uring_cmd_done(io_uring_cmd*, ret)

et SEEE &

STORAGE DEVELOPER CONFEREMCE

=SDc¢C

| e Sl sl el L e TR IS N SO DO e N

Async NVMe passthru

= Example: read from
/dev/ngOn1

o1d nvme passthru read(struct 1o uring *ring, void *buf)
Allocate and setup nvme

passthru command

t
:lt
st
t
t

Prepare CSQE for uring-cmd

. 0_RDONLY) ;

sthru_cmd *)malloc(sizeof(struct nvme_passthru_cmd));

Setup passthroughioctl & cmd
pointer inside uring-cmd

= Tidbits for ZNS users

= Async zone-reset; Currently
possible only via zone-mgmt ioctl 1o_uring_submit(ring);

10 _uring walt cqe(ring, &

id *)ptemd;

= Zone-append at higher-qd printf(T
10_uring en(ring,
fr ptcr

STORAGE DEVELOPER CONFERENCE

i
13 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

Is Async enough

...can we take this further?

STORAGE DEVELOPER CONFERENCE

-
14 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

Features for faster I/O

Register-files Reference fd once and reuse [V] V1
SQPoll Offload 10 submission M V1
Fixed-buffer Map 10 buffer once and reuse [V]
Async polling Interrupt-free completion V1

STORAGE DEVELOPER CONFERENCE

i
15| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

| e Sl sl el L e TR IS N SO DO e N

Uring passthru: fixed-buffer

= What & how it helps

» Fixed-buffer or pre-mapped buffer

10 _uring_register buffers(stru 10_uring *ring,

= User-buffer need to be pinned before 10, and unpinned on completion . > — 5
1 urrer H

= Reduce the pin/unpin cost: pin once and reuse the same buffer 1
. . L i - Buff |

= jo_uring allows application to _buf_index utier }

= Pin N buffers upfront (using io_uring_register)
= Specify |O (fixed-buffer IO) by using any of the pre-mapped buffer

= Passthru with fixed-buffer Jcrancadedd wtd:.

buf index;

» jo_uring side
= New opcode IORING_OP_URING_CMD_FIXED
» Buffer are registered as before, and sqe->buf _index to be used for IO

» Provide infra (to driver) for accessing the registered buffer

= NVMe side

ing_cmd import fixed(void »

» |nstead of pin/unpin, talk to io_uring to reuse ‘previously pinned’ buffer ' int rw, struct 1ow

STORAGE DEVELOPER CONFEREMCE

i
16 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

/O polling: Sync vs Async

= Kernel I/O Polling

= Allows interrupt-free 10; particularly useful for ultra-low-latency devices
= Submitter actively checks for completion (busy-waiting)
= Sync Polling

= Application goes about spinning for completion just after submission

= Hybrid polling: sleep for some time (relax the cpu) while looking for completion
» Syscall: preadv2(), pwritev2() with RWF_HIPRI flag

= Async Polling

» \What choices do we have after submitting an 10 — 1. spin 2. sleep+spin 3.
do_more_work

= Async polling enables the third option i.e. submit more 10, or do other app-specific

processing

» Polling is decoupled from submission; Hybrid polling can still be configured into this
model

» Syscall: io_uring needs to be setup with IORING_SETUP_IOPOLL. All I/Os to such ring
are polled

17 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

/sys/block/nvmednl/queue/10 poll

5 VS [}_. .|_ oc I- fnvmednl/ queue/1o _F::.;. |_ .|_ ._.J.+ .|_ ay

Whether
polling is
enabled?

Switch between classic
and hybrid polling

STORAGE DEVELOPER CONFERENCE

=SDc¢C

Uring passthru: Async Polling

= Submission

Core0
sctx

hctx
Nvme

Return
cookie

Corel

L]

Interrupt
Enabled

Interrupt
Disabled

18 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

= Completion (polled)

Send cookie

blk_poll (cookie)
Poll respective nvme cq

A
hctx
5
v o444
Nvme @
sQ
Nvme)@_
cQ | '
Interrupt Interrupt
Enabled Disabled

STORAGE DEVELOPER CONFERENCE

=SDc¢C

Features for faster I/O

Register-files
SQPoll
Fixed-buffer

Async polling

Bio-recycling*

Reference fd once and reuse
Offload 10 submission

Map 10 buffer once and reuse
Interrupt-free completion

In-kernel cache to reduce per-io alloc & free

19 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

N NN XN

N N N

%]

STORAGE DEVELOPER CONFERENCE

=SDc¢C

Using the Char Device

STORAGE DEVELOPER CONFERENCE

i
20 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

P_

X

NVMe

N

Device

21| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

XNVMe API | Buffers | Commands | Queues | Files | Devices
§ xNVMe library backend implementation / runtime
o
v Mounted File-System || Block Device | | Generic Device SPDK
(0] 5
3 d Lo J LBlocki/o L priver 1ocTLs 2:.,';’ e
In-Kernel 1/O Path
1 S
o
) — S
O (%)
© %)
& U S
: s $
: 3
2 [Blocklayer | S
~ o
./ S

= |O / Command Library

= Change |/O Path without
changing a single-line of code

= Synchronous API, blocking
until completion

= Asynchronous API using
gqueues and callbacks

= Knobs to tune the underlying
implementation / runtime

STORAGE DEVELOPER CONFERENCE
: 21

X’\VJVME Tool Demod -

N

= Device enumeration
B xXxnvme enum

= Device inspection
= xnvme 1dfy-ns 0000:01:00.0 --dev-nsid 0x1
" xnvme idfy-ns /dev/ng0Onl
" xnvme idfy-ns /dev/nvmeOnl

= flo invocation

" fio .. ——filename=/dev/nvmelnl --xnvme async=io uring
" fio .. ——filename=/dev/ng0Onl ——xXnvme async=io uring cmd
"fio .. ——f1lename=0000:01:00.0 —xnvme dev nsid=0x1

22 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

STORAGE DEVELOPER CONFERENCE
8 21

XNVME Performance & Scalability
Block-Size= 4k * NVMe Passthru (today)

I/O operations Per Second as a function of I/O-Depth
* Driver [OCTL

—+— *NVMe:IOCTL/emu
= =» scale: none
200.0 1
150.0 1
s

100.0 1 + t -+

50.0

0.0 T T T T T T T

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

I/O-Depth

i
23| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

XN VMe Performance & Scalability
Block-Size= 4k * NVMe Passthru (today)

I/O operations Per Second as a function of I/O-Depth
* Driver [OCTL
—— xNVMe:IOCTL/emu
*NVMe:IOCTL/thrpool - 9 Scale. none
200.0 -]
= Driver IOCTL + threadpool
150.0 - "
100.0 A " + -
50.0
0.0 T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
I/O-Depth

-
24 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

Device max. IOPS for 4K 1/0O
Block-Size= 4k

I/O operations Per Second as a function of I/O-Dept

—t— *NVMe:IOCTL/emu
*NVMe:IOCTL/thrpool
200.0 1 —— xNVMe:io_uring_cmd/interrupt
150.0 -
S
100.0 - + ¥ +
50.0
0.0 T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

I/O-Depth

25| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

XNVME Performance & Scalability
* NVMe Passthru (today)

%\

= Driver IOCTL

= =» gcale: none

= Driver IOCTL + threadpool

* NVMe Passthru (future)
" j0o_uring_cmd() — v5 patchset
= =» scale: efficiently

STORAGE DEVELOPER CONFERENCE
: 21

XNVME Performance & Scalability
\J Block-Size= Dflglce e IOPSnyI/O = NVMe Passthru (tOdGY)

I/0 operations Per Second as a function of 1/O-Dept .
* Driver [OCTL

o0 = =» scale: none
= Driver IOCTL + threadpool
150.0 ~ [|
« * NVMe Passthru (future)
100.0 ~ + f -+ . .
" j0o_uring_cmd() — v5 patchset
50.0 1 —— XNVMe:lOCTL/emu = =>» scale: efficiently
—8— xNVMe/SPDK/Driver .
<NVMe0CTLthrpool = A gap to reach SPDK Driver
—— xNVMe:io_uring_cmd/interrupt
0.00.5 l.lﬂl l.|5 2.ICI 2.|5 3.IO 3.I5 4.IO 4.5

I/O-Depth

i
26 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

XN VMe Performance & Scalability
\J Block-Size= Dflglce e IOPSnyI/O = NVMe Passthru (tOdGY)

I/0 operations Per Second as a function of 1/O-Dept .
* Driver [OCTL

o0 = =» scale: none
= Driver IOCTL + threadpool
150.0 - .
« * NVMe Passthru (future)
A |) = jo_uring_cmd() — v5 patchset
0.0 e ANMe/SPDKIDIiver = => scale: efficiently
T e * Agap to reach SPDK Driver
O 1o 15 2% mﬁi‘pth o 35 a0 as " j0o_uring_cmd() — v6 patchset

= =» scale: reduce the gap with polling
» Further: fixedbufs, sqthread_poll, etc.

i
27| ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. «q.—-s D @

Upstreaming & Ecosystem

= NVMe Generic Device
= Available since 5.13

= Async IOCTLs
» Ongoing upstreaming effort
= Current working branch

= Kernel Patches: https://github.com/joshkan/nvme-uring-pt
» Features: async nvme passthru, fixed-buffer and polling support for passthru

= XNVMe

= Supported I/O Paths: psync, POSIX aio, libaio, io _uring, NVMe Generic, NVMe Driver
|OCTLs, SPDK NVMe Driver, Windows: 10 Control Ports and IOCTLs

= Supported Operating Systems: Linux, FreeBSD, Windows
» Latest release: https://github.com/OpenMPDK/xNVMe

STORAGE DEVELOPER CONFERENCE
28 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

https://github.com/joshkan/nvme-uring-pt
https://github.com/OpenMPDK/xNVMe

Talk to us

= Join our Discord Channel
» Samsung Memory Open-Source
= Email us
» Kanchan Joshi <joshi.k@samsung.com>
» Simon Lund <simon.lund@samsung.com>
» Javier Gonzalez <javier.gonz@samsung.com>

29 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

STORAGE DEVELOPER CONFERENCE

Please take a moment to rate this session.

Your feedback is important to us.

STORAGE DEVELOPER CONFERENCE
i
30 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved. vs D @

	Asynchronous I/O passthru in NVMe-Native Applications
	Foreword & Acknowledgement
	Agenda
	Raw Block in Linux
	NVMe Generic Device
	Consuming the NVMe Generic Device
	Async IOCTLs
	What is io_uring (in a nutshell)
	Asynchronous IOCTL: user-interface
	Asynchronous IOCTL: under the hood
	NVMe passthru interface
	NVMe passthru: async transport
	Async NVMe passthru
	Is Async enough
	Features for faster I/O
	Uring passthru: fixed-buffer
	I/O polling: Sync vs Async
	Uring passthru: Async Polling
	Features for faster I/O
	Using the Char Device
	Slide Number 21
	 Tool Demo
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	Upstreaming & Ecosystem
	Talk to us
	Please take a moment to rate this session.

