
1 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Virtual Conference
September 28-29, 2021

Asynchronous I/O passthru
in NVMe-Native Applications
Presented by

Kanchan Joshi
Samsung Semiconductor
India Research
(SSIR)

Simon Lund
Samsung Semiconductor
Denmark Research
(SSDR)

Javier González
Samsung Semiconductor
Denmark Research
(SSDR)

2 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Foreword & Acknowledgement

This has elements that are under discussion in LKML
 And few have not been discussed yet
 Mechanism, Opcode, API etc. may change in future

The work presented here is a community effort
 Feedback, ideas and code have come from many contributors!
 Jens Axboe, Christoph Hellwig, Keith Busch to name a few

3 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Agenda

1. NVMe Generic Device in the Linux Kernel
 Enable an in-kernel passthru I/O Path
 Support all NVMe device features

2. Async IOCTLs in the Linux Kernel
 Provide a performant and scalable I/O path for driver passthru
 Generic layer in io_uring. Specific support for NVMe

3. Application enablement through xNVMe
 Provide a storage API with cross I/O Path and cross OS support
 Characterization with real-world numbers

4 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Raw Block in Linux

 Lowest API for block I/O in Linux
 Control over LBA address space
 Control over raw I/O properties (e.g., async/sync, direct/cached, queue depth)
 Block device (namespace) granularity

A common block abstraction comes with (natural) limitations
 Unsupported data protection schemes (PI DIF/DIX)
 Constrains on new device types (e.g., NVMe ZNS)

Rise of SPDK
 Enable domain-specific I/O paths and block devices
 Pave the way for a low-latency storage stack
 Support fast innovation in end-to-end deployments
 Becoming generic comes with redundancy

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce

Device

Mounted
File-System

Block
Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O
Driver

API

UFS SCSI NVMe

5 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Generic Device

Generic Device
 Always available
 In-kernel passthru
 Kernel security (e.g., cgroups)
 Char device per namespace
 Upstream in NVMe (5.13)

 IOCTL I/O
 Tool support ongoing

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce

Device

Mounted File-
System Block Device Generic Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O Driver IOCTLs
Driver

API

UFS SCSI NVMe

6 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Consuming the NVMe Generic Device

Enumeration
 Nvme-cli can list [1]
 Nvme-cli can issue I/O (already upstream)

How application can use
 Send any nvme command via passthru interface
 Current transport - via NVMe Driver IOCTL
 Future transport - via io_uring

How to enable over fabrics (NVMe-oF)
 Automatic, when block-interface (/dev/nvme0n1) is up
 When it is not, enable passthru controller

(CONFIG_NVME_TARGET_PASSTHRU)’

[1] https://github.com/joshkan/nvme-cli/tree/standalone_list_ng

https://github.com/joshkan/nvme-cli/tree/standalone_list_ng

7 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Async IOCTLs
….the io_uring way

8 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is io_uring (in a nutshell)

 Scalable asynchronous IO infrastructure
 File IO as well as Network IO
 Async without needing O_DIRECT (unlike “linux aio”)
 Extensible - rapidly adding async variants of sync syscalls

 mkdir, link, symlink: few recent ones

 User-Kernel communication scheme
 App/Kernel communicate over shared ring-buffers (SQ and CQ)

 Reduce syscalls & copies
 Prepare IO: Get SQE from SQ ring, and fill it up (fill more to make a batch)
 Submit IO: By calling io_uring_enter
 Complete IO: Reap CQE from CQ ring

 Submission can be offloaded (no syscall)
 Completion can be polled (interrupt-free IO)

 Faster IO through io_uring https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

SQ CQ

Submit SQE Reap CQE

Process
SQE

Post CQE

File-provider
(FS, Block-dev etc.)

Io-uring

User

Kernel

1

2 4

5

Execution3

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

9 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Asynchronous IOCTL: user-interface

 ‘uring cmd’: IOCTL-like async facility
 New opcode IORING_OP_URING_CMD
 A new ‘command’ SQE (CSQE) to be used

 CSQE = Specialized SQE with 40 bytes of free-space
 Useful for avoiding allocation (for IOCTL cmd) cost
 Can be used in other way too (e.g. pointer to larger IOCTL cmd)

 Submit CSQE and reap completion, as usual

ioctl (fd, CMD_OPCODE, arg)

SQE

CSQE

64 Bytes

40 Bytes
Payload

1 2 Keep pointer to itStore inline

10 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Asynchronous IOCTL: under the hood

 io_uring prepares ‘struct io_uring_cmd’

Io-uring Ioctl provider

fop->uring_cmd(io_uring_cmd*)

return -EIOCBQUEUED

io_uring_cmd_done(io_uring_cmd*, ret) On completion

 Provider (FS, driver etc.) need to implement async
behavior
 Implement new method uring_cmd in struct file_operations (fop, in

short)
 Io_uring submits IOCTL by calling uring_cmd method
 Provider does what it should (for submission), and returns without

blocking
 Provider can return the result immediately
 Or returns in future, by calling io_uring_cmd_done()
 Io_uring puts result into CQE and posts it to the CQ ring

 Jens v4 series: https://lore.kernel.org/linux-
nvme/20210317221027.366780-1-axboe@kernel.dk/

https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

11 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Device

NVMe passthru interface

 NVMe passthru interface – as of today
 Good part

 In-kernel path that cuts through layers of abstraction
 Enables new device-features to be consumed (in native form) readily

 Block/file generic in-kernel interfaces/users, and user-space interfaces may take time to evolve

 Bad part
 Transport (from user to kernel) is only via synchronous ioctl()
 That renders it virtually useless for fast I/O path

 NVMe passthru interface – of future (hopefully)
 Scalable enough to leverage performance-aspect of NVMe

features (beyond read/write)
 Move along performance advancements of io_uring
 TL;DR: much more useful passthru interface!

Device: SCSI, NVMe

Driver: SCSI, NVMe

Block abstraction

FS abstraction

DB
abstraction

Speak files

Speak tables

Speak
native
(Blocking)

Speak
block

User

Kernel

Passthru

12 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe passthru: async transport

 NVMe ioctl() operation
 Sync-over-Async

 Device interface is ‘naturally’ async
 Host submit commands into NVMe SQ, at time T
 Device posts completion into NVMe CQ, at time T+ ∆ T

 Driver puts the submitter go into blocking-wait until completion arrives

 nvme uring_cmd() operation
 Decouples completion from submission; no blocking-wait
 The ‘async-update-to-user-memory’ problem

 user-resident fields (in ioctl cmd) may need to updated as part of
completion

 But completion, when arriving in interrupt-context, can not safely do
that!

 Thankfully Kernel has task-work infra
 Driver, while in interrupt context, schedules update to be done in

submitter’s context

Io-uring NVMe Driver

fop->uring_cmd(io_uring_cmd*)

return -EIOCBQUEUED

io_uring_cmd_complete_in_task(io_uri
ng_cmd *, driver_cb)

NVMe Device

Submit into SQ

Completion into CQ

driver_cb(io_uring_cmd *)

io_uring_cmd_done(io_uring_cmd*, ret)
Update user-
resident fieldsIn user context

13 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Async NVMe passthru

 Example: read from
/dev/ng0n1

Prepare CSQE for uring-cmd

Allocate and setup nvme
passthru command

Setup passthrough ioctl & cmd
pointer inside uring-cmd

 Tidbits for ZNS users
 Async zone-reset; Currently

possible only via zone-mgmt ioctl
 Zone-append at higher-qd

14 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Is Async enough
…can we take this further?

15 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Features for faster I/O

Feature What it does Io_uring Uring-passthru

Register-files Reference fd once and reuse  

SQPoll Offload IO submission  

Fixed-buffer Map IO buffer once and reuse  

Async polling Interrupt-free completion  

16 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Uring passthru: fixed-buffer

What & how it helps
 Fixed-buffer or pre-mapped buffer

 User-buffer need to be pinned before IO, and unpinned on completion
 Reduce the pin/unpin cost: pin once and reuse the same buffer
 io_uring allows application to

 Pin N buffers upfront (using io_uring_register)

 Specify IO (fixed-buffer IO) by using any of the pre-mapped buffer

 Passthru with fixed-buffer
 io_uring side

 New opcode IORING_OP_URING_CMD_FIXED
 Buffer are registered as before, and sqe->buf_index to be used for IO
 Provide infra (to driver) for accessing the registered buffer

 NVMe side
 Instead of pin/unpin, talk to io_uring to reuse ‘previously pinned’ buffer

0 Buffer

Buffer
1

buf_index

17 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

I/O polling: Sync vs Async

Kernel I/O Polling
 Allows interrupt-free IO; particularly useful for ultra-low-latency devices
 Submitter actively checks for completion (busy-waiting)
 Sync Polling

 Application goes about spinning for completion just after submission
 Hybrid polling: sleep for some time (relax the cpu) while looking for completion
 Syscall: preadv2(), pwritev2() with RWF_HIPRI flag

 Async Polling
 What choices do we have after submitting an IO – 1. spin 2. sleep+spin 3.

do_more_work
 Async polling enables the third option i.e. submit more IO, or do other app-specific

processing
 Polling is decoupled from submission; Hybrid polling can still be configured into this

model
 Syscall: io_uring needs to be setup with IORING_SETUP_IOPOLL. All I/Os to such ring

are polled

Switch between classic
and hybrid polling

Whether
polling is
enabled?

18 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Uring passthru: Async Polling
 Submission

Interrupt
Disabled

Interrupt
Enabled

sctx

hctx

Nvme
CQ

Core 0 Core 1

Choose
polled hctx

Return
cookie

Nvme
SQ

Store cookie in
io_uring_cmd

1 2

Interrupt
Disabled

Interrupt
Enabled

blk_poll (cookie)

hctx

Nvme
CQ

Nvme
SQ

io_uring_enter()
To reap completion

Send cookie

Poll respective nvme cq

 Completion (polled)

19 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Features for faster I/O

Feature What it does Io_uring Uring-passthru

Register-files Reference fd once and reuse  

SQPoll Offload IO submission  

Fixed-buffer Map IO buffer once and reuse  

Async polling Interrupt-free completion  

Bio-recycling* In-kernel cache to reduce per-io alloc & free  

20 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Using the Char Device

21 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

U
se

r S
pa

ce
Ke

rn
el

Sp
ac

e

Device

Mounted File-System Block Device Generic Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O Driver IOCTLs
Driver
API

UFS SCSI NVMe

xNVMe API
xNVMe library backend implementation / runtime

Buffers Commands Files | DevicesQueues

 IO / Command Library
 Change I/O Path without

changing a single-line of code
 Synchronous API, blocking

until completion
 Asynchronous API using

queues and callbacks
 Knobs to tune the underlying

implementation / runtime

22 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Tool Demo

Device enumeration
 xnvme enum

Device inspection
 xnvme idfy-ns 0000:01:00.0 --dev-nsid 0x1
 xnvme idfy-ns /dev/ng0n1
 xnvme idfy-ns /dev/nvme0n1

 fio invocation
 fio … --filename=/dev/nvme0n1 --xnvme_async=io_uring
 fio … --filename=/dev/ng0n1 --xnvme_async=io_uring_cmd
 fio … --filename=0000:01:00.0 –xnvme_dev_nsid=0x1

23 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k NVMe Passthru (today)

 Driver IOCTL
  scale: none

24 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k NVMe Passthru (today)

 Driver IOCTL
  scale: none

 Driver IOCTL + threadpool
  scale: but high overhead

25 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k

Device max. IOPS for 4K I/O NVMe Passthru (today)
 Driver IOCTL

  scale: none
 Driver IOCTL + threadpool

  scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

  scale: efficiently

26 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k

Device max. IOPS for 4K I/O NVMe Passthru (today)
 Driver IOCTL

  scale: none
 Driver IOCTL + threadpool

  scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

  scale: efficiently
 A gap to reach SPDK Driver

27 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
NVMe Passthru (today)
 Driver IOCTL

  scale: none
 Driver IOCTL + threadpool

  scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

  scale: efficiently
 A gap to reach SPDK Driver
 io_uring_cmd() – v6 patchset

  scale: reduce the gap with polling
 Further: fixedbufs, sqthread_poll, etc.

Device max. IOPS for 4K I/O
Block-Size= 4k

28 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Upstreaming & Ecosystem

 NVMe Generic Device
 Available since 5.13

 Async IOCTLs
 Ongoing upstreaming effort
 Current working branch

 Kernel Patches: https://github.com/joshkan/nvme-uring-pt
 Features: async nvme passthru, fixed-buffer and polling support for passthru

 xNVMe
 Supported I/O Paths: psync, POSIX aio, libaio, io_uring, NVMe Generic, NVMe Driver

IOCTLs, SPDK NVMe Driver, Windows: IO Control Ports and IOCTLs
 Supported Operating Systems: Linux, FreeBSD, Windows
 Latest release: https://github.com/OpenMPDK/xNVMe

https://github.com/joshkan/nvme-uring-pt
https://github.com/OpenMPDK/xNVMe

29 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Talk to us

 Join our Discord Channel
 Samsung Memory Open-Source

Email us
 Kanchan Joshi <joshi.k@samsung.com>
 Simon Lund <simon.lund@samsung.com>
 Javier González <javier.gonz@samsung.com>

30 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Please take a moment to rate this session.
Your feedback is important to us.

	Asynchronous I/O passthru in NVMe-Native Applications
	Foreword & Acknowledgement
	Agenda
	Raw Block in Linux
	NVMe Generic Device
	Consuming the NVMe Generic Device
	Async IOCTLs
	What is io_uring (in a nutshell)
	Asynchronous IOCTL: user-interface
	Asynchronous IOCTL: under the hood
	NVMe passthru interface
	NVMe passthru: async transport
	Async NVMe passthru
	Is Async enough
	Features for faster I/O
	Uring passthru: fixed-buffer
	I/O polling: Sync vs Async
	Uring passthru: Async Polling
	Features for faster I/O
	Using the Char Device
	Slide Number 21
	 Tool Demo
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	Upstreaming & Ecosystem
	Talk to us
	Please take a moment to rate this session.

