
1 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Virtual Conference
September 28-29, 2021

Asynchronous I/O passthru
in NVMe-Native Applications
Presented by

Kanchan Joshi
Samsung Semiconductor
India Research
(SSIR)

Simon Lund
Samsung Semiconductor
Denmark Research
(SSDR)

Javier González
Samsung Semiconductor
Denmark Research
(SSDR)

2 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Foreword & Acknowledgement

This has elements that are under discussion in LKML
 And few have not been discussed yet
 Mechanism, Opcode, API etc. may change in future

The work presented here is a community effort
 Feedback, ideas and code have come from many contributors!
 Jens Axboe, Christoph Hellwig, Keith Busch to name a few

3 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Agenda

1. NVMe Generic Device in the Linux Kernel
 Enable an in-kernel passthru I/O Path
 Support all NVMe device features

2. Async IOCTLs in the Linux Kernel
 Provide a performant and scalable I/O path for driver passthru
 Generic layer in io_uring. Specific support for NVMe

3. Application enablement through xNVMe
 Provide a storage API with cross I/O Path and cross OS support
 Characterization with real-world numbers

4 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Raw Block in Linux

 Lowest API for block I/O in Linux
 Control over LBA address space
 Control over raw I/O properties (e.g., async/sync, direct/cached, queue depth)
 Block device (namespace) granularity

A common block abstraction comes with (natural) limitations
 Unsupported data protection schemes (PI DIF/DIX)
 Constrains on new device types (e.g., NVMe ZNS)

Rise of SPDK
 Enable domain-specific I/O paths and block devices
 Pave the way for a low-latency storage stack
 Support fast innovation in end-to-end deployments
 Becoming generic comes with redundancy

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce

Device

Mounted
File-System

Block
Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O
Driver

API

UFS SCSI NVMe

5 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Generic Device

Generic Device
 Always available
 In-kernel passthru
 Kernel security (e.g., cgroups)
 Char device per namespace
 Upstream in NVMe (5.13)

 IOCTL I/O
 Tool support ongoing

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce

Device

Mounted File-
System Block Device Generic Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O Driver IOCTLs
Driver

API

UFS SCSI NVMe

6 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Consuming the NVMe Generic Device

Enumeration
 Nvme-cli can list [1]
 Nvme-cli can issue I/O (already upstream)

How application can use
 Send any nvme command via passthru interface
 Current transport - via NVMe Driver IOCTL
 Future transport - via io_uring

How to enable over fabrics (NVMe-oF)
 Automatic, when block-interface (/dev/nvme0n1) is up
 When it is not, enable passthru controller

(CONFIG_NVME_TARGET_PASSTHRU)’

[1] https://github.com/joshkan/nvme-cli/tree/standalone_list_ng

https://github.com/joshkan/nvme-cli/tree/standalone_list_ng

7 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Async IOCTLs
….the io_uring way

8 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is io_uring (in a nutshell)

 Scalable asynchronous IO infrastructure
 File IO as well as Network IO
 Async without needing O_DIRECT (unlike “linux aio”)
 Extensible - rapidly adding async variants of sync syscalls

 mkdir, link, symlink: few recent ones

 User-Kernel communication scheme
 App/Kernel communicate over shared ring-buffers (SQ and CQ)

 Reduce syscalls & copies
 Prepare IO: Get SQE from SQ ring, and fill it up (fill more to make a batch)
 Submit IO: By calling io_uring_enter
 Complete IO: Reap CQE from CQ ring

 Submission can be offloaded (no syscall)
 Completion can be polled (interrupt-free IO)

 Faster IO through io_uring https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

SQ CQ

Submit SQE Reap CQE

Process
SQE

Post CQE

File-provider
(FS, Block-dev etc.)

Io-uring

User

Kernel

1

2 4

5

Execution3

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/

9 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Asynchronous IOCTL: user-interface

 ‘uring cmd’: IOCTL-like async facility
 New opcode IORING_OP_URING_CMD
 A new ‘command’ SQE (CSQE) to be used

 CSQE = Specialized SQE with 40 bytes of free-space
 Useful for avoiding allocation (for IOCTL cmd) cost
 Can be used in other way too (e.g. pointer to larger IOCTL cmd)

 Submit CSQE and reap completion, as usual

ioctl (fd, CMD_OPCODE, arg)

SQE

CSQE

64 Bytes

40 Bytes
Payload

1 2 Keep pointer to itStore inline

10 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Asynchronous IOCTL: under the hood

 io_uring prepares ‘struct io_uring_cmd’

Io-uring Ioctl provider

fop->uring_cmd(io_uring_cmd*)

return -EIOCBQUEUED

io_uring_cmd_done(io_uring_cmd*, ret) On completion

 Provider (FS, driver etc.) need to implement async
behavior
 Implement new method uring_cmd in struct file_operations (fop, in

short)
 Io_uring submits IOCTL by calling uring_cmd method
 Provider does what it should (for submission), and returns without

blocking
 Provider can return the result immediately
 Or returns in future, by calling io_uring_cmd_done()
 Io_uring puts result into CQE and posts it to the CQ ring

 Jens v4 series: https://lore.kernel.org/linux-
nvme/20210317221027.366780-1-axboe@kernel.dk/

https://lore.kernel.org/linux-nvme/20210317221027.366780-1-axboe@kernel.dk/

11 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Device

NVMe passthru interface

 NVMe passthru interface – as of today
 Good part

 In-kernel path that cuts through layers of abstraction
 Enables new device-features to be consumed (in native form) readily

 Block/file generic in-kernel interfaces/users, and user-space interfaces may take time to evolve

 Bad part
 Transport (from user to kernel) is only via synchronous ioctl()
 That renders it virtually useless for fast I/O path

 NVMe passthru interface – of future (hopefully)
 Scalable enough to leverage performance-aspect of NVMe

features (beyond read/write)
 Move along performance advancements of io_uring
 TL;DR: much more useful passthru interface!

Device: SCSI, NVMe

Driver: SCSI, NVMe

Block abstraction

FS abstraction

DB
abstraction

Speak files

Speak tables

Speak
native
(Blocking)

Speak
block

User

Kernel

Passthru

12 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe passthru: async transport

 NVMe ioctl() operation
 Sync-over-Async

 Device interface is ‘naturally’ async
 Host submit commands into NVMe SQ, at time T
 Device posts completion into NVMe CQ, at time T+ ∆ T

 Driver puts the submitter go into blocking-wait until completion arrives

 nvme uring_cmd() operation
 Decouples completion from submission; no blocking-wait
 The ‘async-update-to-user-memory’ problem

 user-resident fields (in ioctl cmd) may need to updated as part of
completion

 But completion, when arriving in interrupt-context, can not safely do
that!

 Thankfully Kernel has task-work infra
 Driver, while in interrupt context, schedules update to be done in

submitter’s context

Io-uring NVMe Driver

fop->uring_cmd(io_uring_cmd*)

return -EIOCBQUEUED

io_uring_cmd_complete_in_task(io_uri
ng_cmd *, driver_cb)

NVMe Device

Submit into SQ

Completion into CQ

driver_cb(io_uring_cmd *)

io_uring_cmd_done(io_uring_cmd*, ret)
Update user-
resident fieldsIn user context

13 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Async NVMe passthru

 Example: read from
/dev/ng0n1

Prepare CSQE for uring-cmd

Allocate and setup nvme
passthru command

Setup passthrough ioctl & cmd
pointer inside uring-cmd

 Tidbits for ZNS users
 Async zone-reset; Currently

possible only via zone-mgmt ioctl
 Zone-append at higher-qd

14 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Is Async enough
…can we take this further?

15 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Features for faster I/O

Feature What it does Io_uring Uring-passthru

Register-files Reference fd once and reuse

SQPoll Offload IO submission

Fixed-buffer Map IO buffer once and reuse

Async polling Interrupt-free completion

16 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Uring passthru: fixed-buffer

What & how it helps
 Fixed-buffer or pre-mapped buffer

 User-buffer need to be pinned before IO, and unpinned on completion
 Reduce the pin/unpin cost: pin once and reuse the same buffer
 io_uring allows application to

 Pin N buffers upfront (using io_uring_register)

 Specify IO (fixed-buffer IO) by using any of the pre-mapped buffer

 Passthru with fixed-buffer
 io_uring side

 New opcode IORING_OP_URING_CMD_FIXED
 Buffer are registered as before, and sqe->buf_index to be used for IO
 Provide infra (to driver) for accessing the registered buffer

 NVMe side
 Instead of pin/unpin, talk to io_uring to reuse ‘previously pinned’ buffer

0 Buffer

Buffer
1

buf_index

17 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

I/O polling: Sync vs Async

Kernel I/O Polling
 Allows interrupt-free IO; particularly useful for ultra-low-latency devices
 Submitter actively checks for completion (busy-waiting)
 Sync Polling

 Application goes about spinning for completion just after submission
 Hybrid polling: sleep for some time (relax the cpu) while looking for completion
 Syscall: preadv2(), pwritev2() with RWF_HIPRI flag

 Async Polling
 What choices do we have after submitting an IO – 1. spin 2. sleep+spin 3.

do_more_work
 Async polling enables the third option i.e. submit more IO, or do other app-specific

processing
 Polling is decoupled from submission; Hybrid polling can still be configured into this

model
 Syscall: io_uring needs to be setup with IORING_SETUP_IOPOLL. All I/Os to such ring

are polled

Switch between classic
and hybrid polling

Whether
polling is
enabled?

18 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Uring passthru: Async Polling
 Submission

Interrupt
Disabled

Interrupt
Enabled

sctx

hctx

Nvme
CQ

Core 0 Core 1

Choose
polled hctx

Return
cookie

Nvme
SQ

Store cookie in
io_uring_cmd

1 2

Interrupt
Disabled

Interrupt
Enabled

blk_poll (cookie)

hctx

Nvme
CQ

Nvme
SQ

io_uring_enter()
To reap completion

Send cookie

Poll respective nvme cq

 Completion (polled)

19 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Features for faster I/O

Feature What it does Io_uring Uring-passthru

Register-files Reference fd once and reuse

SQPoll Offload IO submission

Fixed-buffer Map IO buffer once and reuse

Async polling Interrupt-free completion

Bio-recycling* In-kernel cache to reduce per-io alloc & free

20 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Using the Char Device

21 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

U
se

r S
pa

ce
Ke

rn
el

Sp
ac

e

Device

Mounted File-System Block Device Generic Device SPDK

In-Kernel I/O Path

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

VFS + FS

Block Layer

Driver

Ke
rn

el
-b

yp
as

s I
/O

 P
at

h

File I/O Block I/O Driver IOCTLs
Driver
API

UFS SCSI NVMe

xNVMe API
xNVMe library backend implementation / runtime

Buffers Commands Files | DevicesQueues

 IO / Command Library
 Change I/O Path without

changing a single-line of code
 Synchronous API, blocking

until completion
 Asynchronous API using

queues and callbacks
 Knobs to tune the underlying

implementation / runtime

22 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Tool Demo

Device enumeration
 xnvme enum

Device inspection
 xnvme idfy-ns 0000:01:00.0 --dev-nsid 0x1
 xnvme idfy-ns /dev/ng0n1
 xnvme idfy-ns /dev/nvme0n1

 fio invocation
 fio … --filename=/dev/nvme0n1 --xnvme_async=io_uring
 fio … --filename=/dev/ng0n1 --xnvme_async=io_uring_cmd
 fio … --filename=0000:01:00.0 –xnvme_dev_nsid=0x1

23 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k NVMe Passthru (today)

 Driver IOCTL
 scale: none

24 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k NVMe Passthru (today)

 Driver IOCTL
 scale: none

 Driver IOCTL + threadpool
 scale: but high overhead

25 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k

Device max. IOPS for 4K I/O NVMe Passthru (today)
 Driver IOCTL

 scale: none
 Driver IOCTL + threadpool

 scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

 scale: efficiently

26 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
Block-Size= 4k

Device max. IOPS for 4K I/O NVMe Passthru (today)
 Driver IOCTL

 scale: none
 Driver IOCTL + threadpool

 scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

 scale: efficiently
 A gap to reach SPDK Driver

27 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Performance & Scalability
NVMe Passthru (today)
 Driver IOCTL

 scale: none
 Driver IOCTL + threadpool

 scale: but high overhead

NVMe Passthru (future)
 io_uring_cmd() – v5 patchset

 scale: efficiently
 A gap to reach SPDK Driver
 io_uring_cmd() – v6 patchset

 scale: reduce the gap with polling
 Further: fixedbufs, sqthread_poll, etc.

Device max. IOPS for 4K I/O
Block-Size= 4k

28 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Upstreaming & Ecosystem

 NVMe Generic Device
 Available since 5.13

 Async IOCTLs
 Ongoing upstreaming effort
 Current working branch

 Kernel Patches: https://github.com/joshkan/nvme-uring-pt
 Features: async nvme passthru, fixed-buffer and polling support for passthru

 xNVMe
 Supported I/O Paths: psync, POSIX aio, libaio, io_uring, NVMe Generic, NVMe Driver

IOCTLs, SPDK NVMe Driver, Windows: IO Control Ports and IOCTLs
 Supported Operating Systems: Linux, FreeBSD, Windows
 Latest release: https://github.com/OpenMPDK/xNVMe

https://github.com/joshkan/nvme-uring-pt
https://github.com/OpenMPDK/xNVMe

29 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Talk to us

 Join our Discord Channel
 Samsung Memory Open-Source

Email us
 Kanchan Joshi <joshi.k@samsung.com>
 Simon Lund <simon.lund@samsung.com>
 Javier González <javier.gonz@samsung.com>

30 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Please take a moment to rate this session.
Your feedback is important to us.

	Asynchronous I/O passthru in NVMe-Native Applications
	Foreword & Acknowledgement
	Agenda
	Raw Block in Linux
	NVMe Generic Device
	Consuming the NVMe Generic Device
	Async IOCTLs
	What is io_uring (in a nutshell)
	Asynchronous IOCTL: user-interface
	Asynchronous IOCTL: under the hood
	NVMe passthru interface
	NVMe passthru: async transport
	Async NVMe passthru
	Is Async enough
	Features for faster I/O
	Uring passthru: fixed-buffer
	I/O polling: Sync vs Async
	Uring passthru: Async Polling
	Features for faster I/O
	Using the Char Device
	Slide Number 21
	 Tool Demo
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	 Performance & Scalability
	Upstreaming & Ecosystem
	Talk to us
	Please take a moment to rate this session.

