
1 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Virtual Conference
September 28-29, 2021

A Event

Computational
Storage APIs
Oscar P Pinto, Principal Engineer
Samsung Semiconductor Inc.

2 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Agenda

Overview
 Introducing CS APIs
API Usage by Example
Example in Code
Advanced Topics
Summary

3 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

Computational Storage
Why an API Library?

4 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

 Data is being created at a exponential rate
 Storage has also grown to account for this growth

 NVMe SSDs provide better performance than ever before
 But their bandwidth not fully utilized by Host

 General purpose CPUs not able to fully tap this bandwidth
 Scaling limited by PCIe lanes

 SSDs have more internal bandwidth than utilized

 Computational Storage & Offloads tap into this
 Process data near storage
 Add compute to storage

Why Computational Storage?

5 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

CS API Library Overview

 One Set of APIs across all CSx types
 CSP, CSD, CSA
 Common set of APIs for different CS devices

 One interface to different device and
connectivity choices
 Hardware ASIC, CPU, FPGA, etc
 NVMe/NVMe-oF, PCIe, custom, etc

 Configurations may be local/remote attached
 Hides vendor specific implementation details

below library
 Abstracts device specific details
 APIs to be OS agnostic

Computational
Storage

Processor (CSP)

Computational
Storage Drive

(CSD)

Computational
Storage Array

(CSA)

Device driver

CS API Library

fabric

Computational Storage Device (CSx)

Device driver Device driver

6 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Computational
Storage Engine (CSE)

Accel. func2

About API Library

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Library may interface with additional plugins based on

implementation requirements
 Plugins help connect CSx to abstracted CS interfaces

 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor

Encrypt
Compress Checksum

Accel. func1

Device driver

CS API Library

fabric

User-space

Kernel space

Computational Storage Drive (CSD)

Plugin

7 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

API Requirements

 One interface across CS devices
 CSDs, CSPs, CSAs

 Discovery
 Access
 Configure
 Device Memory Allocation
 Data Movement

 Input: Host memory, Storage, Device memory
 Output: Device memory, Storage, Host memory

 Execute
 Device Management
 Queued I/O Requests
 Transparent Local/Remote usages
 Security

- Host memory
- Storage (NVMe SSD)
- Device memory

- Host memory
- Storage (NVMe SSD)
- Device memory

a)

b)

c)

8 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

How to use Computational
Storage
Usage by example

9 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Applying Computational Storage

SSD

Application

DRAM CPU

1

2

3

Host

Device

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Computational
Storage Engine (CSE)

CS API Library

Computational Storage Drive (CSD)

Application

queue
request(s)

1 3

Host

Device
2

Input data does
not get

transferred to
Host DRAM

10 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

Computational Storage API
Details

11 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Discovery & Access APIs

 Discovery
 Discover CSx devices

 By device path, file/directory path or all
 Discover CSFs by requirement

 Access
 Access CSx once discovered for CS usage
 Get access to a specific CSF for execution

CS_STATUS csGetCSxFromPath(char *Path, unsigned int *Length, char *DevName);
CS_STATUS csQueryFunctionList(char *Path, unsigned int *Length, char *Buffer);

CS_STATUS csOpenCSx(char *DevName, void *DevContext, CS_DEV_HANDLE *DevHandle);
CS_STATUS csCloseCSx(CS_DEV_HANDLE DevHandle);

CS_STATUS csGetFunction(CS_DEV_HANDLE DevHandle, char *Name, void *Context, CS_FUNCTION_ID *FunctionId);

This presentation discusses SNIA work in progress,
which is subject to change without notice

12 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Device Memory

 Allocate / Deallocate Device Memory
 Manage Device Memory

 Memory scheme
 Memory mapped (PCIe BAR)
 Opaque

 Memory organization
 Host managed
 Device managed

 Mapping of memory to application space depends on the device
 Transparent to fabric usages
 Returns memory handle

 Virtual address pointer when applicable

CS_STATUS csAllocMem(CS_DEV_HANDLE DevHandle, int Bytes, unsigned int MemFlags, CS_MEM_HANDLE *MemHandle,
CS_MEM_PTR *VAddressPtr);

CS_STATUS csFreeMem(CS_MEM_HANDLE MemHandle);

13 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Storage I/O

 Initiate direct internal transfers between storage (SSD) and allocated Device Memory
 Seamlessly manages mapped/unmapped device memory
 P2P transfers through file system if device supports memory mapped P2P BAR

 Single interface to support block & file; extensible
 Transparent to fabric usages

 Follows common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event

CS_STATUS csQueueStorageRequest(csStorageRequest *Req, void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, u32 *CompValue);

typedef struct {
enum CS_STORAGE_REQ_MODE Mode;
CS_DEV_HANDLE DevHandle;
union {

csBlockIo BlockIo;
csFileIo FileIo;

} u;
} csStorageRequest;

Some modes not available in all configurations

14 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Compute

 Initiate execution of a CSF with its input and output parameters
 API extensible for parameters
 Transparent to fabric usages

 Follows common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event Some modes not available in all configurations

CS_STATUS csQueueComputeRequest(csComputeRequest *Req, void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, u32 *CompValue);

typedef struct {
CS_DEV_HANDLE DevHandle;
CS_FUNCTION_ID FunctionId;
int NumArgs;
CsComputeArg Args[1];

} csComputeRequest;

15 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Copy Device Memory

 Transfer data between Host memory and allocated Device Memory
 Single interface for transfer operations

 Transparent to fabric usages
 Follows common completion modes

 Common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event

CS_STATUS csQueueCopyMemRequest(csCopyMemRequest *Req, void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, u32 *CompValue);

typedef struct {
CS_MEM_HANDLE MemHandle;
unsigned long ByteOffset;

} csDevAFDM;

typedef enum {
CS_COPY_TO_DEVICE,
CS_COPY_FROM_DEVICE

} CS_MEM_COPY_TYPE;

typedef struct {
enum CS_MEM_COPY_TYPE Type;
void *HostVAddress;
csDevAFDM DevMem;
unsigned int Bytes;

} csCopyMemRequest;

Some modes not available in all configurations

16 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

Coding the Example
Applying APIs to example

17 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

APIs Required for Example

1. Discover CSx & CSF
2. Allocate Device Memory
3. Queue Storage Request
4. Queue Compute Request
5. Queue Copy Memory Request

CS API Library

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Computational
Storage Engine (CSE)

Computational Storage Drive (CSD)

Application

queue
request(s)

Host

Device

18 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

#include <cs.h>

int cs_decode(char *file_path, int fd, void *decode_buf)

{

// discover my CS device (CSx) and CSF

length = sizeof(csxBuffer);

status = csGetCSxFromPath(file_path, &length, &csxBuffer);

status = csOpenCSx(csxBuffer, &MyDevContext, &devHandle);

status = csGetFunction(devHandle, myFunction, NULL, &functId);

// allocate device memory for input and output buffers

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &inMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &outMemHandle, NULL);

// allocate storage request & read chunk size data from file handle fd

storReq = calloc(1, sizeof(CsStorageRequest));

if (!storReq) { ERROR_OUT("memory alloc error\n"); }

storReq->Mode = CS_STORAGE_FILE_IO;

storReq->DevHandle = devHandle;

storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;

storReq->u.CsFileIo.FileHandle = fd;

storReq->u.CsFileIo.Offset = 0;

storReq->u.CsFileIo.Bytes = CHUNK_SIZE;

storReq->u.CsFileIo.DevMem.MemHandle = inMemHandle;

storReq->u.CsFileIo.DevMem.ByteOffset = 0;

status = csQueueStorageRequest(storReq, storReq, NULL, NULL, NULL);

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle;

compReq->FunctionId = functId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, outMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

// allocate copy request & copy results to host buffer

copyReq = calloc(1, sizeof(CsCopyMemRequest));

if (!copyReq) { ERROR_OUT("memory alloc error\n"); }

copyReq->Type = CS_COPY_FROM_DEVICE;

copyReq->HostVAddress = decode_buf;

copyReq->DevMem.MemHandle = outMemHandle;

copyReq->DevMem.ByteOffset = 0;

copyReq->Bytes = CHUNK_SIZE;

status = csQueueCopyMemRequest(copyReq, NULL, NULL, NULL, NULL);

return 0;

}

Sample Code – Decrypt file

1

2

3

4

5

*API return status values are not shown to check for success and errors to ease readability

This presentation discusses SNIA work in progress,
which is subject to change without notice

19 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

Other APIs
What else can the APIs do?

20 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Other Interfaces

CS API Library

csQueueBatchRequest()

csDownload()CSF

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Computational
Storage Engine (CSE)

plugin

csQueryDeviceProperties()

csSetDeviceCapability()

csQueryDeviceStatistics()

csConfig()

csRegisterPlugin()

21 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Call for Action

Other sessions on Computational Storage
 Samsung Keynote – Yang Seok Ki
 Moving forward with an Architecture & API – Bill Martin
 Computational Storage Update from SNIA WG – Scott Shadley & Jason Molgaard
 NVMe Computational Storage Update – Kim Malone & Stephen Bates

 Join the standardization efforts
 SNIA, NVMe

Help build the ecosystem

22 | ©2021 Storage Developer Conference © Samsung Semiconductor Inc. All Rights Reserved.

Thank You

23 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Computational Storage APIs
	Agenda
	Computational Storage
	Why Computational Storage?
	CS API Library Overview
	About API Library
	API Requirements
	How to use Computational Storage
	Applying Computational Storage
	Computational Storage API Details
	Discovery & Access APIs
	Device Memory
	Storage I/O
	Compute
	Copy Device Memory
	Coding the Example
	APIs Required for Example
	Sample Code – Decrypt file
	Other APIs
	Other Interfaces
	Call for Action
	Thank You
	Please take a moment to rate this session.

