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Agenda

Overview
 Introducing CS APIs
API Usage by Example
Example in Code
Advanced Topics
Summary
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Computational Storage
Why an API Library?
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 Data is being created at a exponential rate
 Storage has also grown to account for this growth

 NVMe SSDs provide better performance than ever before
 But their bandwidth not fully utilized by Host

 General purpose CPUs not able to fully tap this bandwidth
 Scaling limited by PCIe lanes

 SSDs have more internal bandwidth than utilized

 Computational Storage & Offloads tap into this
 Process data near storage
 Add compute to storage

Why Computational Storage?
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CS API Library Overview

 One Set of APIs across all CSx types
 CSP, CSD, CSA
 Common set of APIs for different CS devices

 One interface to different device and 
connectivity choices
 Hardware ASIC, CPU, FPGA, etc
 NVMe/NVMe-oF, PCIe, custom, etc

 Configurations may be local/remote attached
 Hides vendor specific implementation details 

below library
 Abstracts device specific details
 APIs to be OS agnostic
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Device Storage
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About API Library

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Library may interface with additional plugins based on 

implementation requirements
 Plugins help connect CSx to abstracted CS interfaces

 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

Cloud Computing AppsStorage Apps Data Analytics Apps
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Compress Checksum
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Device driver
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Computational Storage Drive (CSD)

Plugin
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API Requirements

 One interface across CS devices
 CSDs, CSPs, CSAs

 Discovery
 Access
 Configure
 Device Memory Allocation
 Data Movement

 Input: Host memory, Storage, Device memory
 Output: Device memory, Storage, Host memory

 Execute
 Device Management
 Queued I/O Requests
 Transparent Local/Remote usages
 Security

- Host memory
- Storage (NVMe SSD)
- Device memory

- Host memory
- Storage (NVMe SSD)
- Device memory

a)

b)

c)
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How to use Computational 
Storage
Usage by example
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Applying Computational Storage
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Computational Storage API 
Details
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Discovery & Access APIs

 Discovery
 Discover CSx devices

 By device path, file/directory path or all
 Discover CSFs by requirement

 Access
 Access CSx once discovered for CS usage
 Get access to a specific CSF for execution

CS_STATUS csGetCSxFromPath(char *Path, unsigned int *Length, char *DevName);
CS_STATUS csQueryFunctionList(char *Path, unsigned int *Length, char *Buffer);

CS_STATUS csOpenCSx(char *DevName, void *DevContext, CS_DEV_HANDLE *DevHandle);
CS_STATUS csCloseCSx(CS_DEV_HANDLE DevHandle);

CS_STATUS csGetFunction(CS_DEV_HANDLE DevHandle, char *Name, void *Context, CS_FUNCTION_ID *FunctionId);

This presentation discusses SNIA work in progress, 
which is subject to change without notice
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Device Memory

 Allocate / Deallocate Device Memory
 Manage Device Memory

 Memory scheme
 Memory mapped (PCIe BAR)
 Opaque

 Memory organization
 Host managed
 Device managed

 Mapping of memory to application space depends on the device
 Transparent to fabric usages
 Returns memory handle

 Virtual address pointer when applicable

CS_STATUS csAllocMem(CS_DEV_HANDLE DevHandle, int Bytes, unsigned int MemFlags, CS_MEM_HANDLE *MemHandle,
CS_MEM_PTR *VAddressPtr);

CS_STATUS csFreeMem(CS_MEM_HANDLE MemHandle);
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Storage I/O

 Initiate direct internal transfers between storage (SSD) and allocated Device Memory
 Seamlessly manages mapped/unmapped device memory
 P2P transfers through file system if device supports memory mapped P2P BAR

 Single interface to support block & file; extensible
 Transparent to fabric usages

 Follows common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event

CS_STATUS csQueueStorageRequest(csStorageRequest *Req, void *Context, csQueueCallbackFn CallbackFn, 
CS_EVT_HANDLE EventHandle, u32 *CompValue);

typedef struct {
enum CS_STORAGE_REQ_MODE Mode;
CS_DEV_HANDLE DevHandle;
union {

csBlockIo BlockIo;
csFileIo FileIo;

} u;
} csStorageRequest;

Some modes not available in all configurations
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Compute

 Initiate execution of a CSF with its input and output parameters
 API extensible for parameters
 Transparent to fabric usages

 Follows common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event Some modes not available in all configurations

CS_STATUS csQueueComputeRequest(csComputeRequest *Req, void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, u32 *CompValue);

typedef struct {
CS_DEV_HANDLE DevHandle;
CS_FUNCTION_ID FunctionId;
int NumArgs;
CsComputeArg Args[1];

} csComputeRequest;
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Copy Device Memory

 Transfer data between Host memory and allocated Device Memory
 Single interface for transfer operations

 Transparent to fabric usages
 Follows common completion modes

 Common completion modes
 Synchronous
 Asynchronous callback
 Asynchronous event

CS_STATUS csQueueCopyMemRequest(csCopyMemRequest *Req, void *Context, csQueueCallbackFn CallbackFn,
CS_EVT_HANDLE EventHandle, u32 *CompValue); 

typedef struct {
CS_MEM_HANDLE MemHandle;
unsigned long ByteOffset;

} csDevAFDM;

typedef enum {
CS_COPY_TO_DEVICE,
CS_COPY_FROM_DEVICE

} CS_MEM_COPY_TYPE;

typedef struct {
enum CS_MEM_COPY_TYPE Type;
void *HostVAddress;
csDevAFDM DevMem;
unsigned int Bytes;

} csCopyMemRequest;

Some modes not available in all configurations
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Coding the Example
Applying APIs to example



17 | ©2021 Storage Networking Industry Association © Samsung Semiconductor Inc. All Rights Reserved. 

APIs Required for Example

1. Discover CSx & CSF
2. Allocate Device Memory
3. Queue Storage Request
4. Queue Compute Request
5. Queue Copy Memory Request
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#include <cs.h>

int cs_decode(char *file_path, int fd, void *decode_buf)

{

// discover my CS device (CSx) and CSF

length = sizeof(csxBuffer);

status = csGetCSxFromPath(file_path, &length, &csxBuffer);

status = csOpenCSx(csxBuffer, &MyDevContext, &devHandle);

status = csGetFunction(devHandle, myFunction, NULL, &functId);

// allocate device memory for input and output buffers

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &inMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &outMemHandle, NULL);

// allocate storage request & read chunk size data from file handle fd

storReq = calloc(1, sizeof(CsStorageRequest));

if (!storReq) { ERROR_OUT("memory alloc error\n"); }

storReq->Mode = CS_STORAGE_FILE_IO;

storReq->DevHandle = devHandle;

storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;

storReq->u.CsFileIo.FileHandle = fd;

storReq->u.CsFileIo.Offset = 0;

storReq->u.CsFileIo.Bytes = CHUNK_SIZE;

storReq->u.CsFileIo.DevMem.MemHandle = inMemHandle;

storReq->u.CsFileIo.DevMem.ByteOffset = 0;

status = csQueueStorageRequest(storReq, storReq, NULL, NULL, NULL);

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle; 

compReq->FunctionId = functId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, outMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

// allocate copy request & copy results to host buffer

copyReq = calloc(1, sizeof(CsCopyMemRequest));

if (!copyReq) { ERROR_OUT("memory alloc error\n"); }

copyReq->Type = CS_COPY_FROM_DEVICE;

copyReq->HostVAddress = decode_buf;

copyReq->DevMem.MemHandle = outMemHandle;

copyReq->DevMem.ByteOffset = 0;

copyReq->Bytes = CHUNK_SIZE;

status = csQueueCopyMemRequest(copyReq, NULL, NULL, NULL, NULL);

return 0;

}

Sample Code – Decrypt file

1

2

3

4

5

*API return status values are not shown to check for success and errors to ease readability

This presentation discusses SNIA work in progress, 
which is subject to change without notice
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Other APIs
What else can the APIs do?
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Other Interfaces

CS API Library

csQueueBatchRequest()

csDownload()CSF

Device Storage

Device Memory

CSFCSEE
CSF

Storage 
Controller

I/OMGMT

Computational 
Storage Engine (CSE)

plugin

csQueryDeviceProperties()

csSetDeviceCapability()

csQueryDeviceStatistics()

csConfig()

csRegisterPlugin()
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Call for Action

Other sessions on Computational Storage
 Samsung Keynote – Yang Seok Ki
 Moving forward with an Architecture & API – Bill Martin
 Computational Storage Update from SNIA WG – Scott Shadley & Jason Molgaard
 NVMe Computational Storage Update – Kim Malone & Stephen Bates

 Join the standardization efforts
 SNIA, NVMe

Help build the ecosystem
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Thank You
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Please take a moment to rate this session. 
Your feedback is important to us. 
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