STORAGE DEVELOPER CONFERENCE

Virtual Conference September 28-29, 2021

A Quintuple Parity Error Correcting Code - a Game Changer in Data Protection

Presented by Marek Rychlik, Ph.D., CEO of Xoralgo, Inc.

A SNIA, Event

Introductions

The speaker, Xoralgo Inc. and the patent

2 | ©2021 Storage Networking Industry Association ©. Xoralgo, Inc. All Rights Reserved.

About Xoralgo, Inc.

- Xoralgo, Inc. is a University of Arizona start-up, 2018
- Technology is based on the US utility patent 10,997,024 awarded in May 2021
- Assignee: The Regents of The University of Arizona
- Priority date: January 24, 2017
- In addition to being the presenter, I am:
 - A professor at the U of A Mathematics Department
 - The co-inventor on the patent along with my student
 - The CEO of Xoralgo, Inc.

PentaRAID[™]and its Error Correcting Code

About Xoralgo's RAID implementation

5 | ©2021 Storage Networking Industry Association ©. Xoralgo, Inc. All Rights Reserved.

Undetected Disk Errors (UDE)

- Errors undetected by the disk controller of a hard drive
- Occur during normal operation due to the laws of physics
- Frequency is 1 error per 10¹⁴ or 10¹⁵ reads
- For data rate of 1GB/sec a UDE occurs in 10⁵ seconds = 2 days
- RAID 6 with 1 failed disk operating in degraded mode takes weeks to recover with big drives of today, during which period every UDE becomes data loss
- In conclusion, data loss due to UDE is a common occurrence

Errors (= UDE) and Erasures

- We read previously stored data N blocks of data at a time
- An error occurs when one of the blocks is incorrect, but we do not know which one
- An erasure occurs when one of the blocks is incorrect, and we know which one
- An erasure is called that because we just may as well assume that the corresponding data is zeroed out, or erased
- UDE are synonymous with errors

UDE - source of Silent Data Corruption!

· Institutions (e.g. university) retire disks in a few months

How many errors/erasures can PentaRAID[™] correct?

- Z number of erasures
- E number of errors

 $Z + 2E \leq 4$

- Up to 4 erasures (failed disks)
- Up to 2 errors (UDE)
- To be able to correct 2 errors, we must be able to correct 4 failed disks
- A similar law applies to all storage systems (4 is specific to us)

How many errors/erasures can RAID 6 correct?

- Z number of erasures
- E number of errors

$Z + 2E \le 2$

- Up to 2 erasures (failed disks)
- Only 1 error (UDE)
- This is why RAID 6 will lose data operating in degraded mode

A description of PentaRAID[™] for an Impatient Expert

- Based on a linear, systematic, forward error correcting code with $N \le q 2$ data words and fixed K = 5 parity words if Galois field GF(q) is used
- Not a Maximum Distance Separable (MDS) code; D = 5
- For example, if GF(256) is used, 254 data disks are supported

Advantages of PentaRAID[™]

- Offers greatly superior data protection as compared to RAID 6, without increasing computational complexity
- Offers an extremely efficient syndrome decoding algorithm as compared to, e.g., Reed-Solomon coding
- The decoder does not use Chien Search
- Chien Search is a trial-and-error method of solving polynomial equations responsible for high computational complexity of most error correcting schemes

Mean Time To Data Loss (MTTDL)

- Mean Time To Data Loss (MTTDL) is a standard measure of the reliability of a storage system
- Realistic assumptions on the number of disks, UDE rate, etc. yields

one hundred quadrillion years

- Comparable to number of atoms in a gallon of milk...
- ...or the number of stars in visible universe

PentaRAID[™] Implementation

Xoralgo's first storage appliance

14 | ©2021 Storage Networking Industry Association ©. Xoralgo, Inc. All Rights Reserved.

A reference software implementation

- RAID implementation in user space as a C library under Linux
- Exposed to the Linux OS using NBD protocol and NBD Kit (Red Hat)
 - Storage exposed to the OS as a block device
 - Can be used raw, partitioned (MBR/GPT), or used as a partition
 - Storage can be exposed as network storage using NBD
- PentaRAID[™], along with RAID 0, 1 and 6 is available
- The user can format and partition the storage as if it were a single disk
- Original implementation 2017, used NBD Kit version 1
- New implementation 2021, uses NBD Kit version 2

A Xoralgo storage appliance and test bed

- Industry standard server
- RAID controller in JBOD mode
- Software PentaRAID[™]
- Performance of RAID 6
- Vastly superior data protection
- Commercially available in 2022

Testing PentaRAID[™] Implementation

- Cannot wait 100 quadrillion years for an error... must speed things up!
- Simulation 1: Injection of multiple random errors into physical or virtual disks
- Simulation 2: Disk removal test
- Simulation 3: Running operating systems on PentaRAID[™] storage

Disk Removal Testing (15 disks) – real results!

STATUS	REASON	REMOVED DEVICES	TOTAL
[OK]		2	1
[OK]		23	2
[OK]		27	2
[OK]		278	3
[OK]		2678	4
[OK]		2710	3
[OK]		2711	3
[OK]		2712	3
[OK]		2 7 13	3
[OK]		2714	3
[OK]		2 10 11	3
[OK]		2 10 12	3
[OK]		2 10 13	3
[OK]		2 10 14	3
[OK]		2 11 12	3
[OK]		2 11 13	3
[OK]		2 11 14	3
[OK]		2 12 13	3
[OK]		2 12 14	3
[OK]		2 13 14	3
[OK]		10 11 12	3
[OK]		10 11 13	3
[OK]		10 11 14	3
[OK]		10 12 14	3
[OK]		11 12 13	3

STATUS	REASON	REMOVED DEVICES	TOTAL
[OK]		11 12 14	3
[OK]		11 13 14	3
[OK]		12 13 14	3
[OK]		26710	4
[OK]		26711	4
[OK]		26712	4
[OK]		26713	4
[OK]		26714	4
[OK]		271011	4
[OK]		2 7 10 12	4
[OK]		2 7 10 13	4
[OK]		2 7 10 14	4
[OK]		2 7 11 12	4
[OK]		2 7 11 13	4
[OK]		2 7 11 14	4
[OK]		2 7 12 13	4
[OK]		2 7 12 14	4
[OK]		2 7 13 14	4
[OK]		2 10 11 12	4
[OK]		2 10 11 13	4
[OK]		2 10 11 14	4
[OK]		2 10 12 13	4
[OK]		2 10 12 14	4
[OK]		2 10 13 14	4
[OK]		2 11 12 13	4
[OK]		2 11 12 14	4
[OK]		2 11 13 14	4
[OK]		2 12 13 14	4
[OK]		11 12 13 14	4
[OK]		10 12 13 14	4
[OK]		10 11 13 14	4
[OK]		10 11 12 14	4
[OK]		10 11 12 13	4

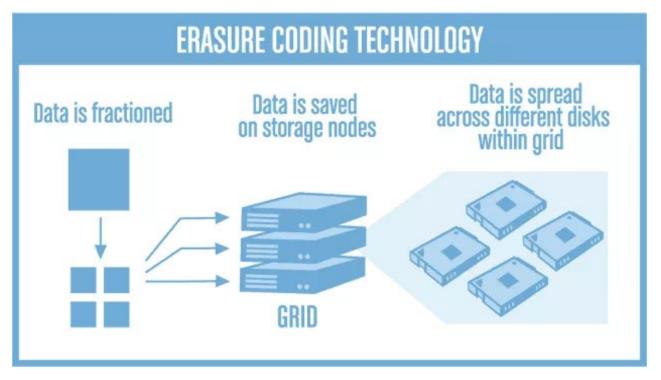
Running Ubuntu Linux on PentaRAID™

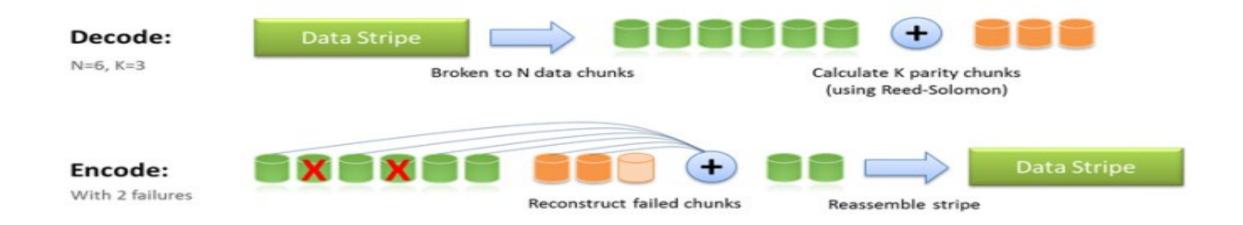
- Testing swap partition performance
- Playing video games
- Testing app performance

		NewUbuntu [Running] - Oracle VM VirtualBox	_ = ×
Disks			🏚 🖪 📧 🕪 9:40 AM 🔱
Q			
		sda	
		8 Benchmark	
٢	20 GB Hard Disk VBOX HARDDISK CD/DVD Drive	3020 MB/s 2718 MB/s	
	VBÓX CD-ROM 545 KB Loop Device /var/lib/snapd/snaps/gnuchess_9.snap	2416 MB/a	
	83 MB Loop Device /var/lib/snapd/snaps/core_1689.snap	1812 MB/s	
		1510 MB/s 25 ms 1208 MB/s 20 ms	
		906 MB/s 15 ms	
A		604 MB/s 302 MB/s 5 ms	
a		OMBA OK 10% 20% 30% 40% 50% 60% 70% 80% 60% 100% 0ms Disk or Device Partition 5 of 20 GB Hard Disk VBOX HARDDISK [1.0] (/dev/sda5) (/dev/	
		Last Benchmarked Wed 28 Jun 2017 09:39:16 AM MST (Less than a minute ago)	
1		Sample Size 16.0 MiB (16,777,216 bytes)	
		Average Read Rate 1.9 GB/s (100 samples)	
*		Average Write Rate 1.8 GB/s (100 samples) Average Access Time 0.11 msec (1000 samples)	
<i>(</i>		Start Benchmark Close	
•			

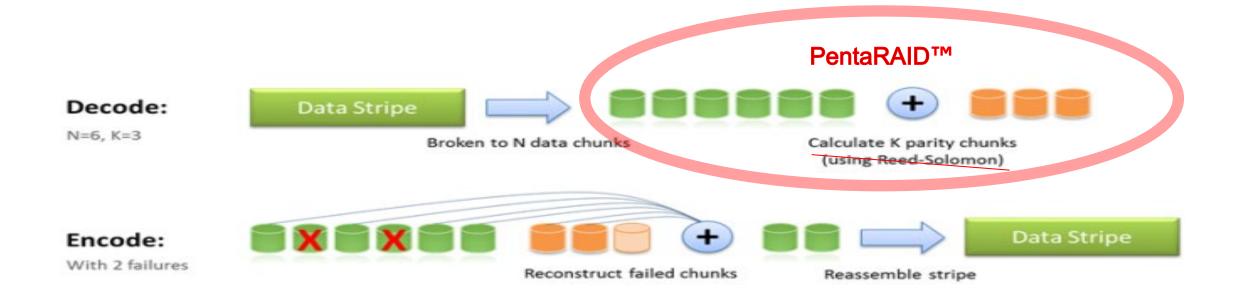
Future high-performance implementation

- Kernel module implementation for Linux
- Windows 10/11 driver
- FPGA based PentaRAID[™] controller
- ASIC
- Licensing to hardware/software vendors


Partnerships welcome!


PentaRAID[™] fits in "Erasure Coding" workflow

- Storage nodes use ECC to reduce replication
- PentaRAID[™] can be that ECC and excel at this task


PentaRAID[™] as a drop-in replacement

Graphic source: stonefly.com/blog

PentaRAID[™] as a drop-in replacement

- K=5 and N=10 results in the same redundancy overhead
- Data protection is vastly increased

PentaRAID[™] as a "Game Changer"

What can it do for the storage industry?

24 | ©2021 Storage Networking Industry Association ©. Xoralgo, Inc. All Rights Reserved.

Case for PentaRAID[™] at Large Data Centers

- There is no longer a case for storing data in triplicate vs. using ECC
- High computational complexity argument against ECC defeated by low complexity decoding algorithm of PentaRAID[™]
- Reducing number of spinning disks by 30% and increased data protection is an easy target
- Retiring old disk later, e.g. doubling time-in-service, will result in further savings

Case for PentaRAID[™] at Small Businesses

- Data protection of a large data center in a small storage appliance
- Any IT manager who is able to manage RAID 6 will be able to manage PentaRAID[™] (as simple as: "if disk enclosure blinking, replace disk")
- Eliminates latency accessing one's business data associated with cloud (example: a small, independent video producer)
- Significant cost-of-storage reduction

Contact information

- E-mail: <u>Rychlik@Arizona.edu</u>
- Xoralgo's Website: <u>xoralgo.com</u>

- PentaRAID[™] White Paper: <u>https://arxiv.org/abs/1806.08266</u>
- Peter Anvin's RAID 6 algorithm exposition followed by new RAID 6 implementations
- Sarah Mann's dissertation (directed by me) a 2013 exposition of Reed-Solomon coding with computational complexity analysis

Please take a moment to rate this session.

Your feedback is important to us.

29 | ©2021 Storage Networking Industry Association ©. Xoralgo, Inc. All Rights Reserved.