
1 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Virtual Conference
September 28-29, 2021

CSI Driver Design
Bringing a Parallel File System to Containerized Workloads

Eric Weber, Software Engineer and BeeGFS CSI Driver Contributor, NetApp
Joe McCormick, Software Engineer and BeeGFS CSI Driver Contributor, NetApp

2 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Container Storage Interface – Why?

Containers often need access to pre-provisioned or
dynamically allocated external storage

Old way
 Kubernetes-specific plugins

maintained in-tree
 Limited documentation on creating

dynamic provisioner

New way
 Standalone, fully-featured plugins

supported by multiple orchestrators

3 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Container Storage Interface – How?

Master node Worker node Worker node

Controller
plugin

Controller
service

Identity
service

Container orchestrator control plane

gRPC

Node
plugin

Node
service

Identity
service

Node
plugin

Node
service

Identity
service

External storage
Control plane Data plane

gRPC gRPC
A proto3 spec defines the RPC

interface between the Container
Orchestrator (CO) control plane and
the plugin

The plugin handles communicating
with and mounts external storage

4 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is BeeGFS?

 Parallel File System (similar architecture as Lustre).
 Stores file/directory metadata and file contents separately.
 Stripes file contents across multiple storage nodes.
 Designed for concurrent access to the same file(s) from 10s, 100s, or 1000s of clients.

BeeGFS
Metadata

Node

BeeGFS
Storage
Node

BeeGFS
Storage
Node

BeeGFS
Metadata

Node

BeeGFS
Storage
Node

Metadata Storage

(file/directory layout, file ownership,
permissions, create/update time, etc.) (file contents)

5 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is BeeGFS?

 Parallel File System (similar architecture as Lustre).
 Stores file/directory metadata and file contents separately.
 Stripes file contents across multiple storage nodes.
 Designed for concurrent access to the same file(s) from 10s, 100s, or 1000s of clients.

BeeGFS
Metadata

Node

BeeGFS
Storage
Node

BeeGFS
Storage
Node

./dir2

file1

BeeGFS
Metadata

Node

./dir1

512KB 512KB

BeeGFS
Storage
Node

512KB512KB File Chunks

6 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is BeeGFS?

 Parallel File System (similar architecture as Lustre).
 Stores file/directory metadata and file contents separately.
 Stripes file contents across multiple storage nodes.
 Designed for concurrent access to the same file(s) from 10s, 100s, or 1000s of clients.

BeeGFS
Metadata

Node

BeeGFS
Storage
Node

BeeGFS
Storage
Node

./dir2

file1

BeeGFS
Metadata

Node

./dir1

512KB 512KB

BeeGFS
Storage
Node

512KB512KB File Chunks

Default Stripe Pattern
4 Storage Targets
512KB chunk size

7 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
HereBeeGFS Client

What is BeeGFS?

BeeGFS
Metadata

Node

BeeGFS
Storage
Node

BeeGFS
Storage
Node

./dir2

file1

BeeGFS
Metadata

Node

./dir1

512KB 512KB

BeeGFS
Storage
Node

512KB512KB

/mnt/beegfs

BeeGFS
Management

Node

(registry/watchdog)

$ beegfs-ctl --getentryinfo file1
Entry type: file
EntryID: 0-613B7042-65
Metadata node: meta_01_tgt_0101 [ID: 101]
Stripe pattern details:
+ Type: RAID0
+ Chunksize: 512K
+ Number of storage targets: desired: 4; actual: 4
+ Storage targets:

+ 102 @ stor_01_tgt_0101 [ID: 101]
+ 301 @ stor_03_tgt_0301 [ID: 301]
+ 302 @ stor_03_tgt_0301 [ID: 301]
+ 501 @ stor_05_tgt_0501 [ID: 501]

8 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Major design decisions

What is a “volume”?
Do we support dynamic provisioning?
Which volume lifecycle model fits?
How do we package our driver?
How do we handle configuration?
How do we get started with implementation?

9 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is a “volume”?

 CSI specification defines a volume as:
 A unit of storage that will be made available inside of a container orchestrator

(CO) managed container, via the CSI.
 CSI volumes are directories in a BeeGFS filesystem.

 Capacity not enforced – all BeeGFS volumes are essentially “thin” provisioned.

/mnt/beegfs

./volume_01

./volume_02

https://github.com/NetApp/beegfs-csi-driver/blob/release-1.1/docs/usage.md#capacity

https://github.com/NetApp/beegfs-csi-driver/blob/release-1.1/docs/usage.md#capacity

10 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is a “volume”?

 CSI specification defines a volume as:
 A unit of storage that will be made available inside of a container orchestrator

(CO) managed container, via the CSI.
 CSI volumes are directories in a BeeGFS filesystem.

 Capacity not enforced – all BeeGFS volumes are essentially “thin” provisioned.
 Isolation achieved by creating a bind mount of the directory representing a

specific volume that is then exposed inside the container.

/mnt/beegfs

./volume_01

Host Filesystem View Container Filesystem View

./volume_01

/

Bind Mount

11 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

What is a “volume”?

 CSI specification defines a volume as:
 A unit of storage that will be made available inside of a container orchestrator

(CO) managed container, via the CSI.
 CSI volumes are directories in a BeeGFS filesystem.

 Capacity not enforced – all BeeGFS volumes are essentially “thin” provisioned.
 Isolation achieved by creating a bind mount of the directory representing a

specific volume that is then exposed inside the container by the CO.

/var/lib/kubelet/plugins/kubernetes.io/csi/pv/pvc-d75d0707/globalmount/mount

./beegfs_volumes/pvc-d75d0707

Host Mount Namespace

/var/lib/kubelet/pods/<uuid>/kubernetes.io~csi/pvc-d75d0707/mount

Container Mount Namespace

/mnt/beegfs

/

Root of the BeeGFS
Filesystem

Subdirectory in BeeGFS
representing the volume.

12 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Do we support dynamic provisioning?

According to the spec:
 A controller plugin is NOT required.
 A controller plugin with the CREATE_DELETE_VOLUME

capability can be implemented to dynamically provision volumes.

(i.e., Do we need a controller plugin?)

/mnt/beegfs/datasets/imagenet

TensorFlow Container

/imagenet
Static provisioning

/scratch
/mnt/beegfs_volumes/pvc-d75d0707 Dynamic provisioning

https://github.com/container-storage-interface/spec/blob/master/spec.md

13 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Do we support dynamic provisioning?

 According to the spec:
 A controller plugin is NOT required.
 A controller plugin with the CREATE_DELETE_VOLUME capability

can be implemented to dynamically provision volumes.
 BeeGFS CSI driver design considerations:
 BeeGFS does not have an easily consumed REST API.

 BeeGFS CSI driver decision:
 The controller component of our driver uses beegfs-ctl commands

AND mount commands to create and delete directories.
 Administrators must preinstall the BeeGFS client and utilities packages

on nodes that run both the controller and node plugins.
 Use CO features (i.e., labels, node selectors, affinities/anti-affinities) if

BeeGFS cannot or shouldn’t be mounted to all nodes in the cluster.

(i.e., Do we need a controller plugin?)

https://github.com/container-storage-interface/spec/blob/master/spec.md

14 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Which volume lifecycle model fits?

ControllerPublishVolume:
 Called when the CO wants to place a workload on a node.
 The controller plugin makes the volume available on that node in response.
 OPTIONALLY implemented (subject to the controller plugin

PUBLISH_UNPUBLISH_VOLUME capability).
NodeStageVolume:
 Called prior to a workload running on a node.
 The node plugin stages the volume at a global location on that node in response.
 OPTIONALLY implemented (subject to the node plugin

STAGE_UNSTAGE_VOLUME capability).

15 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Which volume lifecycle model fits?

CREATED

NODE_READY

VOL_READY

PUBLISHED

CreateVolume

Controller
Publish
Volume

Node
Stage

Volume

Node
Publish
Volume

Node
Unpublish
Volume

Node
Unstage
Volume

Controller
Unpublish
Volume

DeleteVolume

Example use case:
LUN masking on a storage array controller

Example use case:
Discovering a block device and mounting
a filesystem from one of its partitions

Example use case:
LUN provisioning

16 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Which volume lifecycle model fits?

Design considerations:
 BeeGFS is designed for parallel access
 BeeGFS can’t be mounted to a host on a per-directory basis
 Different workloads may want to mount BeeGFS with different options

17 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Which volume lifecycle model fits?

/ (node file system)
|-- ...

|-- staging_target_path
|-- unrelated_dir
|-- csi_dir

|-- csi_vol_1
|-- csi_vol_2

|-- some_file

/ (BeeGFS file system)
|-- unrelated_dir
|-- csi_dir

|-- csi_vol_1
|-- csi_vol_2

|-- some_file

/ (node file system)
|-- ...

|-- target_path
|-- some_file

CREATED

VOL_READY

PUBLISHED

CreateVolume

Node
Stage

Volume

Node
Publish
Volume

Node
Unpublish
Volume

Node
Unstage
Volume

DeleteVolume

18 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we package our driver?

According to the spec:
 For Plugins packaged in software form, Plugin Packages SHOULD use a well-

documented container image format (e.g., Docker, OCI).
 Plugin Supervisor SHALL guarantee that plugins will have CAP_SYS_ADMIN

capability on Linux when running on nodes.
According to the Kubernetes CSI Developer Documentation:
 The controller component can be deployed as a Deployment or a StatefulSet on

any node in the cluster.
 The node component should be deployed on every node in the cluster through a

DaemonSet.
 Each component consists of a driver container and sidecars.

https://github.com/container-storage-interface/spec/blob/master/spec.md
https://kubernetes-csi.github.io/docs/deploying.html

19 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we package our driver?

Design considerations:
 The BeeGFS client packages are not available by default in industry standard

Linux distributions.
 The BeeGFS client and RDMA connectivity function as kernel modules.
 The BeeGFS client license does not clearly allow for redistribution.
 It is generally preferable (especially when being careful about 3rd party licensing)

to limit the number of distributed packages and components.
 The BeeGFS client must communicate over UDP on a different port for each file

system mount. (This requires host instead of container networking.)

20 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we package our driver?

Node service
application

Base image
libraries

mount(8) user space
administration tool

Kernel spacemount(2) system
call

Arbitrary
application #1

Arbitrary
application #2

Base image
libraries

Base image
libraries

full mount tree
plugin ns

ns #1 ns #2

External storage

Bidirectional mount
propagation is required
for mount

Works if the kernel already
“knows how” to mount.

A “typical” CSI driver mount operation:

mount(8) may only be one of
many required tools

Requires the
CAP_SYS_ADMIN capability.

21 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we package our driver?

Node service
application

Base image
libraries

mount(8) user space
administration tool

Kernel spacemount(2) system
call

BeeGFS CSI controller service
application

Base image libraries

full mount tree
plugin ns

ns #1 ns #2

External storage

Extra considerations for BeeGFS (and others):

Host user space tools
(e.g. beegfs-ctl)

Chroot to the host’s mounted
root directory to access tools.READ ONLY!

Advantage:
Ship a driver image with NO
additional libraries/tools (use
the node’s own iscsiadm,
mount, multipath, etc. tools).

Disadvantage:
Gives the driver additional
access to the node.

BeeGFS packages and modules
MUST already be installed.

Additional privileges are
required.

22 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we handle configuration?

What might users want/have to configure for BeeGFS?
 Client Configuration: /etc/beegfs/beegfs-client.conf (default path).

 E.g., enable/disable RDMA, tuning, retries/timeouts, preferred interfaces.

 Dynamic Configuration: beegfs-ctl
 E.g., influence where/how files are

distributed across available storage
targets.

mount
beegfs_nodev on /mnt/beegfs type beegfs (rw,relatime,cfgFile=/etc/beegfs/beegfs-client.conf)
beegfs_nodev on /mnt/beegfs_1 type beegfs (rw,relatime,cfgFile=/etc/beegfs/beegfs-client_1.conf)

beegfs-ctl --getentryinfo datasets/
Entry type: directory
EntryID: 0-60818F4B-64
Metadata node: meta_01_tgt_0100 [ID: 100]
Stripe pattern details:
+ Type: RAID0
+ Chunksize: 512K
+ Number of storage targets: desired: 4
+ Storage Pool: 2 (ictm1626c1-ef600)

23 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we handle configuration?

 According to the spec:
 CreateVolume accepts a parameters map and returns a volume_id string and a volume_context map.
 NodeStageVolume and NodePublishVolume accept the volume_id string and the volume_context

map.
 NodeUnpublishVolume, NodeUnstageVolume, and DeleteVolume only accept the volume_id string.
 The volume_id alone should be sufficient to uniquely identify the volume.

 BeeGFS CSI driver design considerations:
 Our design does not include a source of truth accessible by the controller plugin and all node plugins.

The information passed in each RPC must be sufficient to complete the task designated by the RPC.
 A sysMgmtdHost and directory path are enough to uniquely identify a BeeGFS volume.
 Certain BeeGFS client configuration options may be necessary to connect to a particular BeeGFS file

system (containing any number of volumes) from a particular BeeGFS node.
 Certain striping patterns or permissions may increase the performance of a particular volume for a

particular workload.

https://github.com/container-storage-interface/spec/blob/master/spec.md

24 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we handle configuration?

 BeeGFS CSI driver decision:
 Default, file system-specific, and node-specific BeeGFS client configuration options can be specified

in a configuration file loaded on startup.
 These govern how an entire BeeGFS file system is mounted/accessed from a particular node.

Config File
(ConfigMap in K8s)

BeeGFS Management IP

Default Config

Filesystem Specific Config

Node Specific Config

Node/Filesystem Specific Config

Final BeeGFS Client Config

Lowest Precedence

Highest Precedence

25 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we handle configuration?

 BeeGFS CSI driver decision:
 Default, file system-specific, and node-specific BeeGFS client configuration options can be specified

in a configuration file loaded on startup.
 These govern how an entire BeeGFS file system is mounted/accessed from a particular node.

 Striping and permissions parameters are passed in the CreateVolume parameters map.
 volume_id is a URI composed of a sysMgmtdHost and a directory path (beegfs://192.168.3.100/datasets/imagenet)

 In combination with the startup configuration, this is enough information for all RPCs to operate.

Config File
(ConfigMap in K8s)

Storage Class
(or similar based on CO)

BeeGFS Management IP/Hostname Directory Pathbeegfs://

Default Config

Filesystem Specific Config

Node Specific Config

Node/Filesystem Specific Config

stripePattern/

Final BeeGFS Client Config

permissions/

beegfs-ctl --createdir
The directory

becomes the “single
source of truth” for
this configuration.

Lowest Precedence

Highest Precedence

BeeGFS
Volume ID

26 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

sysMgmtdHost = <Parsed from BeeGFS URI>
connClientPortUDP = 58616
connNetFilterFile = <PATH>/connNetFilterFile
connUseRDMA = True
connAuthFile = <PATH>/connAuthFile

Handling BeeGFS Client configuration

config:
connInterfaces:

- ib0
- eth0

beegfsClientConf:
connUseRDMA: true

csi-beegfs-config.yaml

- sysMgmtdHost: <sysMgmtdHost>
connAuth: <some_secret_value>

csi-beegfs-connauth.yaml

getEphemeralPortUDP() (port int, err error)

27 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Handling dynamic BeeGFS configuration

 Introducing Storage Classes in Kubernetes:
 Describe “classes” of storage available in the cluster.
 May map to different quality-of-service, backup policies, etc.
 Kubernetes is unopinionated about what they represent.

 Required BeeGFS Storage Class parameters
 sysMgmtdHost: Management IP for the BeeGFS filesystem
 volDirBasePath: Parent directory to create BeeGFS volumes under.

 Optional BeeGFS Storage Class Parameters
 stripePattern/storagePoolId
 stripePattern/chunkSize
 stripePattern/numTargets
 permissions/uid
 permissions/gid
 permissions/mode

Kubernetes Terminology:

• Pod: One or more containers with shared
storage/network and runtime specification.

• Storage Class: Way to describe “classes” of storage
available in a Kubernetes cluster.

• Persistent Volume (PV): Piece of storage with a
lifecycle independent of individual pods.

• Persistent Volume Claim (PVC): Request for
storage by a user/pod (consumes PVs).

28 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
HereResulting in this

directory configuration:

Handling dynamic BeeGFS configuration

stripePattern/storagePoolId: “1”
stripePattern/chunkSize: 256k
stripePattern/numTargets: “1”

Optimize my volume for small files
needing fast access:

If a user wants to…

stripePattern/storagePoolId: “1”
stripePattern/chunkSize: 2m
stripePattern/numTargets: “8”

Optimize my volume for large files
needing fast access:

stripePattern/storagePoolId: “2”
stripePattern/chunkSize: 512k
stripePattern/numTargets: “4”

Optimize my volume for mixed files
that just need to be archived:

256k

2m 2m 2m 2m

2m 2m 2m 2m

512k 512k 512k 512k

They use a storage class like:

Note: The striping and storage pool configuration on directories in BeeGFS is like a “template”
for how any new files or subdirectories created in that directory are written (by default).

Hot Small Files

Hot Large Files

Cold Storage

29 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

How do we start the implementation?

Start from the proto3 spec and stub out a
server in one of a large selection of languages.

Import the precompiled GoLang
stub into a new GoLang project.

Start with the HostPath example driver
and strip out/modify code as necessary.

https://github.com/container-storage-interface/spec/blob/master/csi.proto
https://github.com/container-storage-interface/spec/blob/master/lib/go/csi/csi.pb.go
https://github.com/container-storage-interface/spec/blob/master/lib/go/csi/csi.pb.go
https://github.com/kubernetes-csi/csi-driver-host-path

30 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Additional design decisions

 What volume capabilities do we support?
 E.g., block vs. filesystem, single vs. multi-node, reader and/or writer.
 There is no concept of a “block” volume to the BeeGFS client.
 BeeGFS is designed for highly parallel access from multiple nodes.
 There is no downside to supporting MULTI_NODE_xxx capabilities.

 What CO do we focus on for deployment/testing?
 Kubernetes, Hashicorp Nomad, Apache Mesos, and others support CSI.
 Kubernetes is far-and-away the most popular CO.
 Kubernetes has a well-documented deployment model for CSI drivers.
 BeeGFS CSI driver v1.2.0 will include an example Nomad deployment.

 What CSI features do we support?
 E.g., snapshots, cloning, volume expansion.
 BeeGFS is heavily focused on performance, so there isn’t a lot of native feature support.
 The BeeGFS CSI driver v1.0.0 was designed to be an MVP.

https://kubernetes-csi.github.io/docs/

31 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Additional design decisions

 How should the driver be deployed (kustomize vs something else)?
 E.g., straight YAML manifests, Kustomize, Helm, the operator pattern.
 The hostpath example driver uses straight manifests integrated with release tools.
 Kustomize provides a similar feature set with an added layer of customization.
 BeeGFS CSI driver v1.2.0 will release with an operator for native OpenShift/okd deployments.

 How do we handle permissions?
 BeeGFS is a POSIX compliant file system.
 Administrators should be able to control the permissions on new directories.
 The recursive process kicked off by fsGroup doesn’t work well for a shared file system.

 How do we test the driver?
 Tools like csi-sanity enable testing outside the context of a container orchestrator.
 The Kubernetes end-to-end tests have basic CSI integration.
 The Kubernetes end-to-end tests can be extended for custom use-cases.
 The Kubernetes storage APIs have evolved; testing on multiple versions is advised.

32 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Contact us!

Create an issue on our GitHub page
 https://github.com/netapp/beegfs-csi-driver

E-mail us
 ng-beegfs-csi-driver@netapp.com
 eric.weber2@netapp.com
 joe.mccormick@netapp.com

Read our blogs
 https://www.netapp.com/blog/kubernetes-meet-beegfs/
 https://netapp.io/?s=beegfs+csi

https://github.com/netapp/beegfs-csi-driver
mailto:ng-beegfs-csi-driver@netapp.com
mailto:eric.weber2@netapp.com
mailto:joe.mccormick@netapp.com
https://www.netapp.com/blog/kubernetes-meet-beegfs/
https://netapp.io/?s=beegfs+csi

33 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Important resources

CSI specification
https://github.com/container-storage-interface/spec/blob/master/spec.md

Precompiled Golang stub
https://github.com/container-storage-interface/spec/blob/master/lib/go/csi/csi.pb.go

Kubernetes CSI developer documentation
https://kubernetes-csi.github.io/docs/

 List of production CSI drivers (including BeeGFS)
https://kubernetes-csi.github.io/docs/drivers.html

Kubernetes CSI GA announcement
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

https://github.com/container-storage-interface/spec/blob/master/spec.md
https://github.com/container-storage-interface/spec/blob/master/lib/go/csi/csi.pb.go
https://kubernetes-csi.github.io/docs/
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/

34 | ©2021 Storage Networking Industry Association, © NetApp, Inc. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Please take a moment to rate this session.
Your feedback is important to us.

	CSI Driver Design
	Container Storage Interface – Why?
	Container Storage Interface – How?
	What is BeeGFS?
	What is BeeGFS?
	What is BeeGFS?
	What is BeeGFS?
	Major design decisions
	What is a “volume”?
	What is a “volume”?
	What is a “volume”?
	Do we support dynamic provisioning?
	Do we support dynamic provisioning?
	Which volume lifecycle model fits?
	Which volume lifecycle model fits?
	Which volume lifecycle model fits?
	Which volume lifecycle model fits?
	How do we package our driver?
	How do we package our driver?
	How do we package our driver?
	How do we package our driver?
	How do we handle configuration?
	How do we handle configuration?
	How do we handle configuration?
	How do we handle configuration?
	Handling BeeGFS Client configuration
	Handling dynamic BeeGFS configuration
	Handling dynamic BeeGFS configuration
	How do we start the implementation?
	Additional design decisions
	Additional design decisions
	Contact us!
	Important resources
	Please take a moment to rate this session.

