
Building Applications with

Software-Enabled Flash™

Rory Bolt, Software-Enabled Flash Project TSC Chair

Agenda

› Software-Enabled Flash™ Concepts

› The Software Stack

› Software Development Kit

› Flash Translation Layer

› I/O Through the FTL Modules

› Future Ideas

› Get Involved

A Different Way of Thinking About Flash

› Drop the HDD paradigm

› Expose full parallelism of flash

› Explicit controls over isolation,

queueing modes

› Application defined latency

outcomes

Features for Storage Developers

› Hardware and software-based isolation

› Advanced queueing

› Die-Time Weighted I/O prioritization

› Open source, BSD 3-clause for

API and SDK

Explicit requests for flash behavior

Custom Hardware and Software

PCIe® Interface

Hardware manages

the flash media

Host applications control

the storage behavior

* PCIe is a registered trademark and/or service mark of the PCI-SIG

Storage Applications

Software
Stack

High-Level SDK

Low-Level API

Kernel Driver

(NVMe®)

Device Firmware

* NVMe is a registered trademark and/or service mark of the PCI-SIG

Storage Applications

High-Level SDK

Low-Level API

Standard Block vs. SEF Application

Device Firmware

NVMe® driver

Kernel (File-based I/O)

Storage Application SEF SDK + API

File System / Page Cache

Optional Standard Block I/O

Kernel Driver

(NVMe® based)

Device Firmware

* NVMe is a registered trademark and/or service mark of the PCI-SIG

Application
Programming
Interface
› Low-level wrappers for device commands

› Exposes native “Nameless Write, Nameless

Copy, Read Physical”

› Built to be multi-vendor capable

Software
Development
Kit
› C language based

› 32 + 64 Bit

› Multiple architectures

› Modern Linux® kernels

› Library (shared or static)

› Event driven callbacks

› Thread safe, built for lockless operation

› Modular, built for customization

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Software Development Kit

High-Level SDK

Reference Flash
Translation Layer

(FTL)

Reference VirtIO
Device Drivers

FIO Test Tool
CLI with Python

Interpreter

Device
orchestration

and management

Ported to SEF for
fast and easy

experimentation

No code changes
to evaluate SEF in
multi-tenant mode

Bring more
common block
interface to SEF

applications

Built to be
customized

Command Line Interface

› Full lifecycle management

› Python® scriptable

› Dynamic provisioning

› Per-application

› Per-virtual machine

› Per-container basis

sef-cli create qos -s 0 -v 0 \

--flash-capacity 1024000 \

--num-fmq 4 \

--weight-read "150 150 150 150" \

--weight-erase "200 200 200 200" \

--weight-program "300 300 300 300" \

--weight-copy-read "150 150 150 150" \

--weight-copy-erase "200 200 200 200" \

--weight-copy-program "300 300 300 300" \

--fmq-read 0 --fmq-program 1 \

--fmq-copy-read 0 --fmq-copy-program 1

* Python is a registered trademark of the PSF.

› Explore configuration options

› Test latency and isolation controls

› Prototype system performance

› Full sources included in SDK

FIO Testing Tool

› NO GUEST CODE CHANGES

› Customize overprovisioning per VM

› Run ZNS and block-based VMs on

single drive

› Full data, performance isolation,

queueing control

VM

VM ZNS Driver

VM VM VM VM VM

QEMU VM Host

VM Block Driver

Software-Enabled Flash™ Storage

Reference VirtIO Device Drivers

› Full Flash Translation Layer (FTL)

› Provides block-like interface to

applications

› Built for modularity, expandability

Reference FTL

› Handle user I/O requests

› Manage per-placement ID

write buffers

› Protect against WAR, RAW,

etc. hazards

› Map from logical to physical

via look up table

› Tracks used super blocks

and their states

› Recover from power loss

› Tombstoning old blocks

› Managing garbage

collection, patrol reads, etc.

FTL Tasks

FTL Components

Let’s walk
through an

I/O to
examine

each of these
layers…

SEF Block Layer

Look Up Table

Super Block Management

Garbage Collection

Metadata Persistence

In
s
tr

u
m

e
n

ta
ti

o
n

Terminal

Application Sending I/O to Block Layer

SefBlockIO(SefMultiContext *ctx)

SEF Block Layer

struct SEFMultiContext {

SEFBlockHandle blockHandle; /* SEF Block handle to be used for access to the block instance */

struct SEFMultiContext *parent; /* Pointer to instance of SEFMultiContext used for compound operations */

void (*completion)(struct SEFMultiContext *); /* Function called when the transaction is completed */

void *arg; /* A pointer that can be used by caller for any reason */

uint64_t lba; /* Logical block address */

uint32_t lbc; /* Logical block count */

enum SEFBlockIOType ioType; /* The I/O Type that needs to be performed */

uint8_t flags; /* I/O flags enum SEFBlockIOFlags */

char reserved[2];

struct iovec *iov; /* A pointer to the scatter/gather list */

int iovcnt; /* The number of elements in the scatter/gather list */

uint32_t iovOffset; /* Starting byte offset into iov array */

struct SEFPlacementID placementID; /* Placement ID for writes */

atomic_int transferred; /* Counter denoting number of bytes transferred for the transaction */

atomic_int count; /* Reference count, I/O is completed -> 0 */

atomic_int error; /* First error for the transaction */

int cancel; /* Set to indicate cancel in progress */

};

Look Up Table (LUT)

› Contains mapping of LBA to a physical flash address

› 64-Bits per entry for support of Massive Capacities

› 2GiB RAM per 1 TiB flash

› Host-based DRAM use

› Different use cases could optimize

› Object storage

› Zoned Namespace-like accesses

› Compression (start, extent, etc.)

› Split between host RAM and drive flash

Look Up Table

* GiB refers to gibibyte, or 2^30. TiB refers to tibibyte, or 2^40

Super Block Management

› Device responsible for choosing “best” super block to allocate

› Super Block module keeps track of allocated blocks

› Identifiers (opaque, give by device)

› Current state (open for write, open for copy, closed, etc.)

› Placement ID associated

› Number of allocated ADU (~sector)

› Bitmap of valid ADUs

› Etc.

› Provides information to garbage collection as needed

› Minimal RAM requirements

Super Block Management

Garbage Collection Module

› Automatic and application initiated

› Free super blocks drop below defined threshold

› Application decides “now is a good time”

› Runs in its own thread

› Supports full SEF offload and queueing

› Copy offload (nameless copy) fully implemented

› Can be assigned to any specific queue to run at

higher or lower priority on the device

› Can be customized or replaced by developer

Garbage Collection

Garbage Collection Procedure

› While (still work to do)

› Get list of collectable superblocks (ones w/invalid data)

› Sort by # of invalid ADUs(~sectors)

› Determine placement id with most invalid data

› Allocate destination super blocks

› Send nameless copy bitmaps

(from Super BlockTracking)

› Perform copy in-drive, no host CPU or

DRAM or PCIe® bus bandwidth

› Update Flash Translation with new mappings

› Discard read-out super blocks

Garbage Collection

* PCIe is a registered trademark and/or service mark of the PCI-SIG

(Metadata) Persistence

› Keeps track of metadata

› FTL look up tables

› Super Block state

› Placement IDs

› Etc.

› Uses “Root Pointer” feature of SEF hardware

› Provides a well-known area for data storage

› Enables restart of FTL after unclean shut down

Metadata Persistence

Instrumentation

› SEF operations invisible to standard I/O tracking tools

› IOstat, etc. will not register any I/O

› Dynamic enable and disable

› Sample counters without restarting application

› Avoid overhead of tracking if not needed

› Controlled via named UNIX sockets

› Can dump JSON format for easy use

Instrumentation

Future SEF SDK Ideas

EXT4-on-SEF
file system

› Directly links EXT4
inodes into SEF

› Applications could
use standard file
system interface,
get SEF benefits

SEF on Data Processing
Unit (DPU) or

Computational Storage

› ARM® processor
support already
enabled

› Minimize host resource
impact on virtualized
systems

Distributing write
buffers between

host & drive RAM

› SEF hardware
specification
allows for
flexibility in
design

* Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Summary

SEF provides
fine-grained
control over

flash to
applications.

SEF SDK
makes it

easier to use.

SEF
Reference FTL
is modular and

extendable.

Get Involved

› Get source code at GitHub

› https://github.com/SoftwareEnabledFlash/

› Read and watch more content

› https://softwareenabledflash.org

› Join the mailing list

› https://lists.softwareenabledflash.org/g/sef-dev/join

› Sign up for the Software-Enabled Flash Project

› https://enrollment.lfx.linuxfoundation.org/?project=sef

https://github.com/SoftwareEnabledFlash/
https://softwareenabledflash.org/
https://lists.softwareenabledflash.org/g/sef-dev/join
https://enrollment.lfx.linuxfoundation.org/?project=sef

