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Exponential Data Growth vs. Limited Processor Scaling 

CPU Performance Growth is slowing 
down

Original data up to the year 2010 collected and plotted by M. 
Horowitz, F, Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. 

Batten
New plot and data collected for 2010-2021 by K. Rupp

50 Years of Microprocessor Trend Data

Data Gravity

Moving Compute closer to data 
source can address these issues

Source: Medium

Volume of Data exponentially 
increases

Source: Statista
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Computational Storage 

 Computational Storage
 CSD, CSA, CSP

What is CSD (Computational Storage Drive)?
 CSD = Persistent data storage + Computation

 Samsung SmartSSD®
 SSD + HW acceleration engines

 Standard
 NVMe computational storage (TP4091, TP4131)
 SNIA

 Computational storage architecture and programming model
 Computational storage API

NVM Express TM

Computational Programs Command Set 
Specifications

https://www.snia.org/sites/default/files/technical-work/computational/draft/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.9-2022.06.23.pdf
https://www.snia.org/sites/default/files/technical-work/computational/draft/Computational%20Storage%20API%20v0.8r0%202022-06-29.pdf
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SNIA CSAPI Library

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Library may interface with additional plugins based on 

implementation requirements
 Plugins help connect CSx to abstracted CS interfaces

 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

Device Storage

Device Memory

CSFCSEE
CSF

Storage 
Controller

I/OMGMT

Resource
Repository

Computational 
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor B

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

App Adaptor CApp Adaptor A

PluginPluginPlugin

Computational Storage Device (CSx)
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Applying Computational Storage

SSD
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Samsung SmartSSD®

 SSD + HW acceleration engines
 HW logic for data intensive operations (e.g., Image Resizer, Insert, Lookup, DB scan/filter, etc.)
 At-Rest data processing

 The 1st Gen. SmartSSD® : FPGA interface based SmartSSD®
 The 2nd Gen. SmartSSD® : NVMe (TP4091) standard compliant SmartSSD®
 Standard compliant eBPF for orchestration of offloaded SW + HW processing

The 2nd  Gen. SmartSSD® - Standard compliant

* SLM: Subsystem Local Memory

PCIe Gen4

1st Gen. SmartSSD® - FPGA interface

PCIe Gen3
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Data Pipeline Today

1. Indexing
Find out where the 

data is located

2. Retrieval
Fetch the data 

from the storage

3. Compute
Process the data

Storage stack
(e.g., File System, Key-Value Store)

Application
(e.g., TensorFlow)

open("cat002.jpg") read("cat002.jpg") Pre-processing
jpg_decode(…)
resize(…)
crop(…)
mirror(…)

DNN model training
model_training(…)

DNN Model Training

How should the data pipeline be re-designed for Computational Storage?

Database scan, 
filtering, and 
aggregation
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RETINA: End-to-End (Storage+Compute) Framework for CS

We propose RETINA, an end-to-end framework for Computational Storage
 Data management: Cross-Layered RETINA Key-Value Store

 Indexing, crash consistency, concurrency, etc.

 At-Rest data processing: Dynamically Composable Computational Pipeline
 Offload computation to Computational Storage
 Chain compute functions as requested

1. Indexing
Find out where the 

data is located

2. Retrieval
Fetch the data 

from the storage

RETINA = Key-Value Store + Computational Pipeline on CS

3. Compute on CS
App-provided 

compute functions

Application

4. Compute on xPU
Process the data
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RETINA: End-to-End (Storage+Compute) Framework for CS

1. Indexing
Find out where the 

data is located

2. Retrieval
Fetch the data 

from the storage

RETINA = Key-Value Store + Computational Pipeline on CS Application

3. Compute on CS
App-provided 

compute functions

4. Compute on xPU
Process the data

lookup_ops("cat02.jpg“,[jpg_decode,resize,crop,mirror])

"cat02.jpg“
jpg_decode(…)
resize(…)
crop(…)
mirror(…)

DNN model training
model_training(…)

 Advantages of RETINA approach
 Exploit the fast internal (peer-to-peer) bandwidth inside CSD (SmartSSD®)
 Reduce data movement especially when the computed data is smaller 
 Allow sharing a CSD with multiple applications and tenants having different computations
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Cross-Layered RETINA Key-Value Store

 Let’s exploit what host and CS can do best for each.
 Relieve CPU from data movement  reduce power and bandwidth consumption
 Abstain CS accelerator (FPGA) from control plane operations (e.g., concurrency, OS 

interaction)  reduces the complexity
Use CPU as a control plane
 Communicate with FPGA and OS
 Manage concurrency, caching, etc.

Use FPGA to perform compute at-rest
 Use high speed interconnect between FPGA and SSD
 Offload CPU-intensive compute operations (data decoding, compression)
 Reduces data movement by bringing only the end-user data
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Why Cross-Layered Approach?

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

Data Layer
- Store actual data in leaf nodes, 

which is an array of key-value pairs

Search Layer
- Locate where the requested data is 

located (which leaf node)

lookup("cat02.jpg“)

- Traversing an index is branch-divergent so 
CPU can do well.

- Requiring a large data movement so CS 
can do well.
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Computational 
Storage

(SmartSSD®)

SSD

Cross-Layered RETINA Key-Value Store Architecture

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

CMA
Common 

Memory Area

FPGA

Accelerator

P2P

• Host CPU as control plane: triggering FPGA kernel call & SSD IO, concurrency, etc. 
• FPGA as at-rest data processing plane: manipulating and handling data on SSD

Search layer is stored on the host DRAM 
and is manipulated by the host CPU.

Data layer is stored on the SmartSSD and 
is processed by the SmartSSD®’s FPGA.
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SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

CMA
Common 

Memory Area

FPGA

Accelerator

P2P

(1) Host looks up the index 
with a key, “cat02.jpg” and 
locates a leaf node.

(2) Host triggers the SSD 
IO of the leaf node the 
CMA memory for P2P.
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SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

“b” “c” “d”

“at” “at” “og”

CMA (Common Memory Area) FPGA

lookup
insert

Accelerator

P2P

(3) SSD copies the leaf node 
to the FPGA memory (CMA) 
using peer-to-peer transfer.

(4) Host calls the FPGA 
lookup kernel for the leaf 
node on CMA.
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SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

“b” “c” “d”

“at” “at” “og”

CMA (Common Memory Area) FPGA

lookup
insert

Accelerator

P2P

(5) The FPGA lookup kernel 
finds “cat02.jpg” and copies 
the value to CMA for host.

++ Cross-layered cache design
++ Crash consistency guarantee
++ Concurrency control
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Dynamically Composable RETINA Computational Pipeline
What is Computational Pipeline? 

Why Computational Pipeline? 
 Simple and well-defined interface  only interact with input and output streams
 Easy to integrate different types of kernels as long as following the input/output streams
 Naturally exploit the pipeline parallelism for accelerator

Why Dynamically Composing Kernels is important?
 Hardwired pipelines are not generic enough
 Applications may require different compute kernels or different orders of compute kernels
 A compute kernel can be re-used in multiple applications
 SmartSSD® are shared by multiple applications and tenants

jpg_decode resize crop mirror

Compute Kernel

Input stream Output stream
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How to Achieve Dynamic Composability?

Goal: dynamically compose compute kernels as per user request on the fly
 Central pipeline manager (arbiter) based approach
 Compute kernels
 Already installed on FPGA
 Communicate via streams
 Don’t communicate with each other directly like in the hardwired pipeline architecture

 Central pipeline manager (arbiter)
 Instead, kernels communicate from/to arbiter using streams which manages the IO 

forwarding order
 Arbiter performs scheduling of compute kernels and manages FPGA memory
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Kernels for RETINA key-value 
store are also pipelined equally.

RETINA Computational Pipeline Architecture

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

Input/output stream: Each 
kernel talks only with the arbiter.

Arbiter receives a sequence of compute kernels:
lookup jpg_decode resize cropmirror 

Pointers on CMS are passed over 
streams for input and output.
IN: 0x1000 OUT: 0x9000

CMA (Common Memory Area)

0x1000 0x9000
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RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request
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RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.
 Arbiter forwards input & output as per the requested kernel order.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request
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RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.
 Arbiter forwards input & output as per the requested kernel order.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request ++ Scheduling
++ CMA memory management
++ Pipeline parallelism
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RETINA Performance Evaluation
 Ran the popular YCSB key-value store workload
 The baseline performance without compute kernels (the worst-case)

 Comparison with RocksDB
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50% lookup
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100% lookup
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RETINA CPU utilization running YCSB A
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Evolving RETINA for Upcoming SNIA CS API Architecture
 The early version of RETINA is implemented with OpenCL and tested on the 1st Gen. 

SmartSSD®
 Using SNIA CS API makes RETINA more performance efficient
 Further reduces the CPU utilization
 Rewriting using CS API is in progress

 RETINA can also benefit from the 2nd Gen. SmartSSD®
 Further reduces the host intervention, reducing the overall latency
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Summary

 Computational Storage is needed to tackle the challenges of exponential data 
growth and limited processor scaling.
 Computational Storage API is standardized.
 Samsung SmartSSD® are available now (Gen 1 and Gen 2).

 RETINA is a end-to-end framework for Computational Storage
 Cross-layered key-value store for data management
 Dynamically Composable computational pipeline as a generic At-Rest data processing 

framework

We expect more performance boost of RETINA with SNIA CS API and 2nd Gen 
SmartSSD®.
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Call for Action

Other sessions on Computational Storage
 Samsung Keynote – Yang Seok Ki
 Computational Storage APIs – Oscar Pinto
 Green Computing with Computational Storage Devices – Changho Choi, Yangwook
 Accelerating Near Real-time Analytics with High Performance Object Storage – Nithya, 

Mayank
 Multiple sessions from SNIA CS TWG and NVMe CS

Help build the ecosystem
 Join the standardization efforts
 SNIA, NVMe



29 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved. 

Please take a moment to rate this session. 
Your feedback is important to us. 
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