
1 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

A Event

RETINA: Exploring
Computational Storage
(SmartSSD) Usecase
Vishwanath Maram, Director of Software Engineering
Samsung Semiconductor Inc

Changwoo Min, Assistant Professor
Virginia Tech

2 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Agenda
 Industry Trend
 Exponential Data Growth vs. Limited Processor Scaling

 Computational Storage
 SNIA CSAPI
 Samsung SmartSSD

 RETINA: End-to-End (Compute+Storage) Framework for CS
 Cross-Layered RETINA Key-Value Store
 Dynamic Composable RETINA Computational Pipeline

 Summary
 Call for Action

3 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Exponential Data Growth vs. Limited Processor Scaling

CPU Performance Growth is slowing
down

Original data up to the year 2010 collected and plotted by M.
Horowitz, F, Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.

Batten
New plot and data collected for 2010-2021 by K. Rupp

50 Years of Microprocessor Trend Data

Data Gravity

Moving Compute closer to data
source can address these issues

Source: Medium

Volume of Data exponentially
increases

Source: Statista

4 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Exponential Data Growth vs. Limited Processor Scaling

CPU Performance Growth is slowing
down

Original data up to the year 2010 collected and plotted by M.
Horowitz, F, Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.

Batten
New plot and data collected for 2010-2021 by K. Rupp

50 Years of Microprocessor Trend Data

Data Gravity

Moving Compute closer to data
source can address these issues

Source: Medium

Volume of Data exponentially
increases

Source: Statista

Computational Storage

5 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Computational Storage

 Computational Storage
 CSD, CSA, CSP

What is CSD (Computational Storage Drive)?
 CSD = Persistent data storage + Computation

 Samsung SmartSSD®
 SSD + HW acceleration engines

 Standard
 NVMe computational storage (TP4091, TP4131)
 SNIA

 Computational storage architecture and programming model
 Computational storage API

NVM Express TM

Computational Programs Command Set
Specifications

https://www.snia.org/sites/default/files/technical-work/computational/draft/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.9-2022.06.23.pdf
https://www.snia.org/sites/default/files/technical-work/computational/draft/Computational%20Storage%20API%20v0.8r0%202022-06-29.pdf

6 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

SNIA CSAPI Library

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Library may interface with additional plugins based on

implementation requirements
 Plugins help connect CSx to abstracted CS interfaces

 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor B

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

App Adaptor CApp Adaptor A

PluginPluginPlugin

Computational Storage Device (CSx)

7 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Applying Computational Storage

SSD

Application

DRAM CPU

1

2

3

Host

Device

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Computational
Storage Engine (CSE)

CS API Library

Computational Storage Drive (CSD)

Application

queue
request(s)

1 3

Host

Device
2

Input data does
not get

transferred to
Host DRAM

8 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Samsung SmartSSD®

 SSD + HW acceleration engines
 HW logic for data intensive operations (e.g., Image Resizer, Insert, Lookup, DB scan/filter, etc.)
 At-Rest data processing

 The 1st Gen. SmartSSD® : FPGA interface based SmartSSD®
 The 2nd Gen. SmartSSD® : NVMe (TP4091) standard compliant SmartSSD®
 Standard compliant eBPF for orchestration of offloaded SW + HW processing

The 2nd Gen. SmartSSD® - Standard compliant

* SLM: Subsystem Local Memory

PCIe Gen4

1st Gen. SmartSSD® - FPGA interface

PCIe Gen3

9 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Agenda
 Industry Trend
 Exponential Data Growth vs. Limited Processor Scaling

 Computational Storage
 SNIA CSAPI
 Samsung SmartSSD

 RETINA: End-to-End (Compute+Storage) Framework for CS
 Cross-Layered RETINA Key-Value Store
 Dynamic Composable RETINA Computational Pipeline

 Summary
 Call for Action

10 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Data Pipeline Today

1. Indexing
Find out where the

data is located

2. Retrieval
Fetch the data

from the storage

3. Compute
Process the data

Storage stack
(e.g., File System, Key-Value Store)

Application
(e.g., TensorFlow)

open("cat002.jpg") read("cat002.jpg") Pre-processing
jpg_decode(…)
resize(…)
crop(…)
mirror(…)

DNN model training
model_training(…)

DNN Model Training

How should the data pipeline be re-designed for Computational Storage?

Database scan,
filtering, and
aggregation

11 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA: End-to-End (Storage+Compute) Framework for CS

We propose RETINA, an end-to-end framework for Computational Storage
 Data management: Cross-Layered RETINA Key-Value Store

 Indexing, crash consistency, concurrency, etc.

 At-Rest data processing: Dynamically Composable Computational Pipeline
 Offload computation to Computational Storage
 Chain compute functions as requested

1. Indexing
Find out where the

data is located

2. Retrieval
Fetch the data

from the storage

RETINA = Key-Value Store + Computational Pipeline on CS

3. Compute on CS
App-provided

compute functions

Application

4. Compute on xPU
Process the data

12 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA: End-to-End (Storage+Compute) Framework for CS

1. Indexing
Find out where the

data is located

2. Retrieval
Fetch the data

from the storage

RETINA = Key-Value Store + Computational Pipeline on CS Application

3. Compute on CS
App-provided

compute functions

4. Compute on xPU
Process the data

lookup_ops("cat02.jpg“,[jpg_decode,resize,crop,mirror])

"cat02.jpg“
jpg_decode(…)
resize(…)
crop(…)
mirror(…)

DNN model training
model_training(…)

 Advantages of RETINA approach
 Exploit the fast internal (peer-to-peer) bandwidth inside CSD (SmartSSD®)
 Reduce data movement especially when the computed data is smaller
 Allow sharing a CSD with multiple applications and tenants having different computations

13 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Cross-Layered RETINA Key-Value Store

 Let’s exploit what host and CS can do best for each.
 Relieve CPU from data movement  reduce power and bandwidth consumption
 Abstain CS accelerator (FPGA) from control plane operations (e.g., concurrency, OS

interaction)  reduces the complexity
Use CPU as a control plane
 Communicate with FPGA and OS
 Manage concurrency, caching, etc.

Use FPGA to perform compute at-rest
 Use high speed interconnect between FPGA and SSD
 Offload CPU-intensive compute operations (data decoding, compression)
 Reduces data movement by bringing only the end-user data

14 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Why Cross-Layered Approach?

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

Data Layer
- Store actual data in leaf nodes,

which is an array of key-value pairs

Search Layer
- Locate where the requested data is

located (which leaf node)

lookup("cat02.jpg“)

- Traversing an index is branch-divergent so
CPU can do well.

- Requiring a large data movement so CS
can do well.

15 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Computational
Storage

(SmartSSD®)

SSD

Cross-Layered RETINA Key-Value Store Architecture

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

CMA
Common

Memory Area

FPGA

Accelerator

P2P

• Host CPU as control plane: triggering FPGA kernel call & SSD IO, concurrency, etc.
• FPGA as at-rest data processing plane: manipulating and handling data on SSD

Search layer is stored on the host DRAM
and is manipulated by the host CPU.

Data layer is stored on the SmartSSD and
is processed by the SmartSSD®’s FPGA.

16 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

cat00.jpg
cat01.jpg
cat02.jpg

bat00.jpg
bat01.jpg
bat02.jpg

dog00.jpg
dog01.jpg
dog02.jpg

“b” “c” “d”

“at” “at” “og”

CMA
Common

Memory Area

FPGA

Accelerator

P2P

(1) Host looks up the index
with a key, “cat02.jpg” and
locates a leaf node.

(2) Host triggers the SSD
IO of the leaf node the
CMA memory for P2P.

17 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

“b” “c” “d”

“at” “at” “og”

CMA (Common Memory Area) FPGA

lookup
insert

Accelerator

P2P

(3) SSD copies the leaf node
to the FPGA memory (CMA)
using peer-to-peer transfer.

(4) Host calls the FPGA
lookup kernel for the leaf
node on CMA.

18 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

SSD

RETINA Key-Value Store In Action: lookup(cat02.jpg)

“b” “c” “d”

“at” “at” “og”

CMA (Common Memory Area) FPGA

lookup
insert

Accelerator

P2P

(5) The FPGA lookup kernel
finds “cat02.jpg” and copies
the value to CMA for host.

++ Cross-layered cache design
++ Crash consistency guarantee
++ Concurrency control

19 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Dynamically Composable RETINA Computational Pipeline
What is Computational Pipeline?

Why Computational Pipeline?
 Simple and well-defined interface  only interact with input and output streams
 Easy to integrate different types of kernels as long as following the input/output streams
 Naturally exploit the pipeline parallelism for accelerator

Why Dynamically Composing Kernels is important?
 Hardwired pipelines are not generic enough
 Applications may require different compute kernels or different orders of compute kernels
 A compute kernel can be re-used in multiple applications
 SmartSSD® are shared by multiple applications and tenants

jpg_decode resize crop mirror

Compute Kernel

Input stream Output stream

20 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

How to Achieve Dynamic Composability?

Goal: dynamically compose compute kernels as per user request on the fly
 Central pipeline manager (arbiter) based approach
 Compute kernels
 Already installed on FPGA
 Communicate via streams
 Don’t communicate with each other directly like in the hardwired pipeline architecture

 Central pipeline manager (arbiter)
 Instead, kernels communicate from/to arbiter using streams which manages the IO

forwarding order
 Arbiter performs scheduling of compute kernels and manages FPGA memory

21 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Kernels for RETINA key-value
store are also pipelined equally.

RETINA Computational Pipeline Architecture

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

Input/output stream: Each
kernel talks only with the arbiter.

Arbiter receives a sequence of compute kernels:
lookup jpg_decode resize cropmirror

Pointers on CMS are passed over
streams for input and output.
IN: 0x1000 OUT: 0x9000

CMA (Common Memory Area)

0x1000 0x9000

22 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request

23 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.
 Arbiter forwards input & output as per the requested kernel order.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request

24 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])

Host CPU looks up the search layer and performs SSD IO for the lead node.
Host CPU sends a request to arbiter with lookupjpg_decoderesizecropmirror.
 Arbiter forwards input & output as per the requested kernel order.

jpg_decode resize crop mirrorpng_decodelookup insert

arbiter

CMA (Common Memory Area)

request ++ Scheduling
++ CMA memory management
++ Pipeline parallelism

25 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

RETINA Performance Evaluation
 Ran the popular YCSB key-value store workload
 The baseline performance without compute kernels (the worst-case)

 Comparison with RocksDB

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

RETINA

RocksDB

YCSB A
50% lookup
50% update

YCSB B
95% lookup
5% update

YCSB C
100% lookup

Ho
st

 C
PU

 u
til

iza
tio

n
(%

)
Time (seconds)

RETINA CPU utilization running YCSB A

26 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Evolving RETINA for Upcoming SNIA CS API Architecture
 The early version of RETINA is implemented with OpenCL and tested on the 1st Gen.

SmartSSD®
 Using SNIA CS API makes RETINA more performance efficient
 Further reduces the CPU utilization
 Rewriting using CS API is in progress

 RETINA can also benefit from the 2nd Gen. SmartSSD®
 Further reduces the host intervention, reducing the overall latency

27 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Summary

 Computational Storage is needed to tackle the challenges of exponential data
growth and limited processor scaling.
 Computational Storage API is standardized.
 Samsung SmartSSD® are available now (Gen 1 and Gen 2).

 RETINA is a end-to-end framework for Computational Storage
 Cross-layered key-value store for data management
 Dynamically Composable computational pipeline as a generic At-Rest data processing

framework

We expect more performance boost of RETINA with SNIA CS API and 2nd Gen
SmartSSD®.

28 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Call for Action

Other sessions on Computational Storage
 Samsung Keynote – Yang Seok Ki
 Computational Storage APIs – Oscar Pinto
 Green Computing with Computational Storage Devices – Changho Choi, Yangwook
 Accelerating Near Real-time Analytics with High Performance Object Storage – Nithya,

Mayank
 Multiple sessions from SNIA CS TWG and NVMe CS

Help build the ecosystem
 Join the standardization efforts
 SNIA, NVMe

29 | ©2022 Samsung Semiconductor Inc & Virginia Tech. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	RETINA: Exploring Computational Storage (SmartSSD) Usecase
	Agenda
	Exponential Data Growth vs. Limited Processor Scaling
	Exponential Data Growth vs. Limited Processor Scaling
	Computational Storage
	SNIA CSAPI Library
	Applying Computational Storage
	Samsung SmartSSD®
	Agenda
	Data Pipeline Today
	RETINA: End-to-End (Storage+Compute) Framework for CS
	RETINA: End-to-End (Storage+Compute) Framework for CS
	Cross-Layered RETINA Key-Value Store
	Why Cross-Layered Approach?
	Cross-Layered RETINA Key-Value Store Architecture
	RETINA Key-Value Store In Action: lookup(cat02.jpg)
	RETINA Key-Value Store In Action: lookup(cat02.jpg)
	RETINA Key-Value Store In Action: lookup(cat02.jpg)
	Dynamically Composable RETINA Computational Pipeline
	How to Achieve Dynamic Composability?
	RETINA Computational Pipeline Architecture
	RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])
	RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])
	RETINA in Action: lookup_ops(“cat02.jpg”,[jpg_decode,resize,crop,mirror])
	RETINA Performance Evaluation
	Evolving RETINA for Upcoming SNIA CS API Architecture
	Summary
	Call for Action
	Please take a moment to rate this session.

