
1 | ©2022 Storage Networking Industry Association. All Rights Reserved.

A Event

SNIA Computational
Storage APIs
Oscar P Pinto, Principal Engineer

Samsung Semiconductor Inc.

2 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Agenda

SNIA CS APIs
Programming Model
 Discover CSx Resources
 Configure CSx Resources
 Discover CSF
 Execute CSF

Programming Example
CS APIs and NVMe
Summary

3 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SNIA CS APIs

4 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SNIA Computational Storage APIs

 One API set for all CSx types
 CSP, CSD, CSA

 APIs hide device details
 Hardware, Connectivity (local/remote)

 Abstracts device specific details
 Discovery
 Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

 Hides vendor specific implementation details
 Extensible Interface

 Plugins connect CSx to abstracted APIs
 APIs are OS agnostic Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

Computational Storage Drive (CSD)

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

PluginPluginPlugin

5 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SNIA CS API Update

 Computational Storage API v0.8 approved by SNIA for public review
 https://www.snia.org/publicreview

 Updates since last public release
 Simplified API Set for Resource Usage
 Interface for Query & Configure Resource

 Discovery and Access
 Configuration and Activation

 Download & Configure CSFs
 Mechanism to download CSF to device
 Configure and Activate CSF

 CSF Discovery
 Ability to discover one or more CSFs
 Ability to choose CSF by Performance and Power Characteristics

https://www.snia.org/publicreview

6 | ©2022 Storage Networking Industry Association. All Rights Reserved.

API Overview
Functionality API Details
Discovery

csQueryCSxList() • Discover available Computational Storage Devices (CSxes)
csGetCSxFromPath() • Identify CSx associated with storage path
csQueryCSFList() • Discover available Computational Storage Functions (CSFs) in given storage path

Access
csOpenCSx() • Access a CSx
csCloseCSx() • Release access to previously opened CSx

Memory
csAllocMem() • Allocate memory for CSF usage
csFreeMem() • Free previously allocated memory

Storage
csQueueStorageRequest() • Issue a read/write request to transfer data between storage and device memory

Copy
csQueueCopyMemRequest() • Transfer data between device memory and host memory

Compute
csGetCSFId() • Get access to a CSF to execute
csQueueComputeRequest() • Schedule a CSF to execute work on device

Management
csQueryDeviceProperties() • Query device resources
csConfig() • Configure device resource
csDownload() • Download a CSF to device

7 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Programming Model

8 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Computational Storage Programming Model

1 2 3 4

Discover
Resources

Configure
CSEE

Configure
CSF

Discover
CSFs

5

Execute
CSFs

• Discover individual
CS resources

• Configure execution
environment for
usage

• Configure functions
for usage

• Discover CSFs for
Execution

• Choose CSFs

• Execute CSFs

May be preconfigured by Manufacturer

Privileged operation Normal operation

9 | ©2022 Storage Networking Industry Association. All Rights Reserved.

CSx Overview

Device Storage

Device Memory

Storage
Controller

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)

CSEE

Resource Repository

FDM
AFDMAFDM

CSFCSF CSEECSEE

Computational Storage Drive (CSD)

MGMT I/O

CSFCSFStorage

Computational Storage Processor (CSP)
- Contains CSRs and Device Memory
- Able to execute one or more CSFs
- Storage association implementation specific

Computational Storage Drive (CSD)
- Contains CSRs, Device Memory & Storage

Controller
- Able to execute one or more CSFs
- Provides persistent data storage

Computational Storage Array (CSA)
- Contains CSRs, Device Memory, Storage

Controller & Control Software
- Provides virtualization to storage services,

storage devices and CSRs
- Able to execute one or more CSFs
- Provides persistent data storage
- CSRs may be centrally located/distributed

across CSDs/CSPs with array

CSF – Computational Storage Function
CSEE - Computational Storage Execution Environment
FDM – Function Data Memory
AFDM – Allocated Function Data Memory

10 | ©2022 Storage Networking Industry Association. All Rights Reserved.

CSF Overview
 Defines a set of specific operations that may

be configured and executed by a CSE
 Performs only the defined operations
 May be pre-installed or downloaded
 Must be activated prior to execution

CSF

Pre-installed by Manufacturer
• Fixed Function
• May not be removed/unloaded
• May be activated/deactivated

(manufacturer dependent)
• Fixed copies as provided

Downloaded by Host
• Downloaded to Repository
• May be unloaded
• May be activated/deactivated
• Multiple copies may be executed

depending on CSEE

CSF

11 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Discover Resources
CS_STATUS csQueryDeviceProperties(CS_DEV_HANDLE DevHandle, CS_RESOURCE_TYPE Type,

int *Length, CsProperties *Buffer)

 API to Query CSx resources
 Returns resource list by type

CSx

engine type X engine type Y engine type Z

…

CSFCSFCSFCSF

CSFCSFCSFCSF

CSFCSFCSFCSF

CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
RESOURCE TYPE PROPERTY

CSx CSxProperties

CSE CSEProperties

CSEE CSEEProperties

CSF CSFProperties

VENDOR_SPECIFIC CSVendorSpecific

1

Input Output

12 | ©2022 Storage Networking Industry Association. All Rights Reserved.

CSx Resources Hierarchy
CSx

CSFCSFCSFCSF

CSEECSEECSEE

CSE

CSxProperties

CSFProperties

CSFInfo+
CSFInstance*

CSFInstance*

CSFInfo + ^ CSFInstance* ^

CSEProperties

CSEInfo
ComputeResource

ComputeResource

engine type X

CSEInfo
ComputeResource

ComputeResource

engine type Y

CSEEProperties

CSEEInfo+

CSEEInfo + ^

CSEEInstance*

CSEEInstance*

*CSFInstance, CSEEInstance – activated for usage
+CSEEInfo, CSFInfo – each in repository

CSEEInstance* ^

^CSEEInfo, CSEEInstance – hard-coded in CSE
^CSFInfo, CSFInstance – hard-coded in CSEE

CSECSE

13 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Configure CSEE
CS_STATUS csConfig(CS_DEV_HANDLE DevHandle, CsConfigInfo *Info, int *Length,

CsConfigData *Data)

 API to Configure CSEE
 Creates an Activated Instance
 Select CSE & CSEE from Repository
 Activate CSEE Instance

 Returns Activated CSEE Instance

CSx

engine type X engine type Y engine type Z

…

CSFCSFCSFCSF

CSFCSFCSFCSF

CSFCSFCSFCSF

CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE

CONFIG TYPE PROPERTY

CSEE CSEEActivateConfig

2

Input Property

14 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Configure CSEE - cont.

• Pair CSEInfo with CSEEInfo (must be of the same CSETypeToken)
• Activation creates a new Instance of the resource

15 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Configure CSF
CS_STATUS csConfig(CS_DEV_HANDLE DevHandle, CsConfigInfo *Info, int *Length,

CsConfigData *Data)

 API to Configure CSF
 Creates an Activated Instance
 [optional] Download CSF to Repository
 Select CSF & Activated CSEE Instance

 Select Compute Resources as needed
 Activate CSF Instance

 Returns Activated CSF Instance

CSx

engine type X engine type Y engine type Z

…

CSFCSFCSFCSF

CSFCSFCSFCSF

CSFCSFCSFCSF

CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE
CSEECSEECSEECSEECSEECSEECSEECSEECSEE

CSECSECSE

CONFIG TYPE PROPERTY

CSF CSFActivateConfig

3

Input Property

16 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Configure CSF - cont.

• Activation creates a new Instance of the CSF
• Only an Activated CSF Instance is available for Execution

17 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Discover CSFs
CS_STATUS csQueryCSFList(char *Path, int *Length, char *Buffer)
 API to Discover CSFs before Access

 Helps choose CSx by available CSF types
 Find all (Activated) CSFs for CSx by a valid Path

 Or across all CSxes with a NULL Path

 Returns a list of CSFs by name

4

CS_STATUS csGetCSFId(CS_DEV_HANDLE DevHandle, char *CSFName, int *Length, CSFIfInfo *Buffer)
 API to Discover CSFs after Access

 Helps choose desired CSF in CSx
 Choose by Performance, Power and Instances

 Returns a list of CSFs by specific characteristics

typedef struct {
CS_CSF_ID CSFId; // unique Identifier to schedule compute work
u8 RelativePerformance;// values [1-10]; higher is better
u8 RelativePower; // values [1-10]; lower is better
u8 Count; // number of available CSF instances

} CSFIdInfo;

18 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Execute CSF
CS_STATUS csQueueComputeRequest(CsComputeRequest *Req, void *Context,

csQueueCallbackFn CallbackFn, CS_EVENT_HANDLE EventHandle,
u64 *CompValue)

 API to Execute CSF with CS request
 Queues a compute request to CSx
 Request describes CSF input/output parameters
 Supports Synchronous/Asynchronous completion modes

 Asynchronous supports callback or event mode

 Synchronous mode: Returns only after request completes
 Asynchronous mode: Returns immediately after queuing the request

5

typedef struct {
CS_CSF_ID CSFId; // unique Identifier to schedule compute work
int NumArgs; // total number of arguments to CSF
CsComputeArg Args[1]; // Argument list

} CsComputeRequest;

19 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Programming Example

20 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Example: Run Data Filter
Application

Device driver

SNIA CS API Library

PluginPluginPlugin

User-space

Kernel space

2

3

4

Computational Storage Drive (CSD)

1. Allocate Device Memory

2. Load Storage data in Device Memory

3. Run Data Filter CSF

4. Copy Results to Host Memory

1

21 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Example: Allocate Device Memory

1. Allocate Device Memory
 Allocate memory for required buffers

 Buffer1 - load data from storage
 Buffer2 – collect results of filter

// allocate device memory for input and output buffers

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &inputMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &resultsMemHandle, NULL);

Filter
Load Data From

Storage
Allocate Device

Memory
Copy Results to

Host

22 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Example: Load Storage Data

2. Load Storage Data directly in Device Memory
// allocate storage request & read chunk size data from file handle fd

storReq = calloc(1, sizeof(CsStorageRequest));

if (!storReq) { ERROR_OUT("memory alloc error\n"); }

storReq->Mode = CS_STORAGE_FILE_IO;

storReq->DevHandle = devHandle;

storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;

storReq->u.CsFileIo.FileHandle = fd;

storReq->u.CsFileIo.Offset = 0;

storReq->u.CsFileIo.Bytes = CHUNK_SIZE;

storReq->u.CsFileIo.DevMem.MemHandle = inputMemHandle;

storReq->u.CsFileIo.DevMem.ByteOffset = 0;

status = csQueueStorageRequest(storReq, storReq, NULL, NULL, NULL);

Filter
Load Data From

Storage
Allocate Device

Memory
Copy Results to

Host

23 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Example: Run Data Filter

3. Execute Data Filter CSF in CSx
// allocate compute request for 3 args & issue compute request API

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->CSFId = ScanQueryId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inputMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, MAX_CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, resultsMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

Filter
Load Data From

Storage
Allocate Device

Memory
Copy Results to

Host

24 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Example: Copy Results

4. Copy Output Results to Host Memory
 Copy Device Memory Contents to Host

// allocate copy request & copy results to host buffer

copyReq = calloc(1, sizeof(CsCopyMemRequest));

if (!copyReq) { ERROR_OUT("memory alloc error\n"); }

copyReq->Type = CS_COPY_FROM_DEVICE;

copyReq->HostVAddress = results_buf;

copyReq->DevMem.MemHandle = resultsMemHandle;

copyReq->DevMem.ByteOffset = 0;

copyReq->Bytes = CHUNK_SIZE;

status = csQueueCopyMemRequest(copyReq, NULL, NULL, NULL, NULL);

Filter
Load Data From

Storage
Allocate Device

Memory
Copy Results to

Host

25 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Batching the Request

Create one Batch request that includes all requests in one job
 Optimization for recurring jobs
 Submit request and get notified on final Results

csQueueBatchRequest()

Filter
Load Data From

Storage
Allocate Device

Memory
Copy Results to

Host

26 | ©2022 Storage Networking Industry Association. All Rights Reserved.

CS APIs & NVMe

27 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Mapping to NVMe for Computational Storage

 NVMe is developing an interface for Computational
Storage*
 Compute Namespace [new]

 Support one or more Compute Engines (CE)
 Support one or more Computational Programs

 Computational Programs may be device-defined or downloaded
 New I/O command set

 Memory Namespace [new]
 Subsystem level scope
 Used by Computational Programs
 New I/O command set

 Storage Namespace
 Map to a virtualized environment

 SNIA abstractions map to NVMe CS developments

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Computational Storage Drive (CSD)

Storage Namespace nStorage Namespace n

port

Storage Namespace Z

CE
0

CE
1

programprogramProgram 0

Compute Namespace X

Memory
Namespace

Y

NVMe Controller

CE
2

…

NVMe SSD

FUNCTION

COMPUTE

MEMORY

STORAGE

SNIA

NVMe

*Optional support in NVMe

This presentation discusses NVMe work in
progress, which is subject to change without notice

28 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Summary

29 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Summary

SNIA: a generic Programming Interface for Computational Storage
APIs map to different device solutions
Simple to follow and scalable
 v0.8 available for public review
Attend other Computational Storage sessions

 Join the standardization efforts
 SNIA, NVMe

Help build the ecosystem

https://www.snia.org/publicreview

30 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	SNIA Computational Storage APIs
	Agenda
	SNIA CS APIs
	SNIA Computational Storage APIs
	SNIA CS API Update
	API Overview
	Programming Model
	Computational Storage Programming Model
	CSx Overview
	CSF Overview
	Discover Resources
	CSx Resources Hierarchy
	Configure CSEE
	Configure CSEE - cont.
	Configure CSF
	Configure CSF - cont.
	Discover CSFs
	Execute CSF
	Programming Example
	Example: Run Data Filter
	Example: Allocate Device Memory
	Example: Load Storage Data
	Example: Run Data Filter
	Example: Copy Results
	Batching the Request
	CS APIs & NVMe
	Mapping to NVMe for Computational Storage
	Summary
	Summary
	Please take a moment to rate this session.

